JPH0525277A - Resist composition and production of organosilicon polymer - Google Patents

Resist composition and production of organosilicon polymer

Info

Publication number
JPH0525277A
JPH0525277A JP3180011A JP18001191A JPH0525277A JP H0525277 A JPH0525277 A JP H0525277A JP 3180011 A JP3180011 A JP 3180011A JP 18001191 A JP18001191 A JP 18001191A JP H0525277 A JPH0525277 A JP H0525277A
Authority
JP
Japan
Prior art keywords
group
polymer
general formula
following general
sir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3180011A
Other languages
Japanese (ja)
Inventor
Keiji Watabe
慶二 渡部
Ei Yano
映 矢野
Takahisa Namiki
崇久 並木
Manami Fukuda
麻奈美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3180011A priority Critical patent/JPH0525277A/en
Publication of JPH0525277A publication Critical patent/JPH0525277A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To produce a negative resist which is used for the upper layer of a double-layer resist and has an improved resolution without detriment to sensitivity and resistance to oxygen and plasma by using an organosilicon polymer having a structure wherein a silalkylene backbone having a random three- dimensional structure is sorrounded and blocked by triorganosilyl groups. CONSTITUTION:A resist compsn. which mainly comprises an organosilicon polymer of formula I (wherein R<1> is alkylene; R<2> is a monovalent hydrocarbon group provided that three R<2s> may be the same or different; and (m) and (n) are each a positive integer). The polymer is prepd, e.g. by hydrolyzing an organosilicon compd. of formula II, subjecting the hydrolyzate to polycondensation to give a polymer, and reacting the polymer with an organosilicon compd. selected from among organosilicon compds. of formulas III, IV, and V to substitute the hydroxl groups in the polymer with triorganosilyl groups of formula VI. In formulas II to VI, X is halogen, alkoxy, cyano, isocyanate, or thioisocyanate; and R<1> and R<2> are each as defined in formula I.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二層構造上層用ネガ型レ
ジストと、それを構成する有機硅素重合体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative resist for a two-layer structure upper layer and a method for producing an organic silicon polymer constituting the same.

【0002】大量の情報を迅速に処理する必要から、情
報処理装置の主体を構成する半導体装置は集積化が進ん
でLSI やVLSIが実用化されている。こゝで、集積化は単
位素子の小形化により行われており、配線パターンの最
小線幅はサブミクロンに達している。
Since it is necessary to process a large amount of information quickly, semiconductor devices that form the main body of information processing devices have been integrated and LSI and VLSI have been put into practical use. Here, integration is performed by miniaturizing the unit element, and the minimum line width of the wiring pattern reaches submicron.

【0003】また、多層配線が行われていることから、
集積回路を形成する半導体ウエハ上には微細な段差が数
多く存在している。さて、半導体集積回路の製造には半
導体基板上にレジストを被覆した後に選択露光を行い、
現像処理により露光部あるいは非露光部を溶解してレジ
ストを窓開けした後、ドライエッチングを行って導電膜
や絶縁膜をエッチングする写真蝕刻技術( フォトリソグ
ラフィ或いは電子線リソグラフィ) が不可欠である。
Since multi-layer wiring is used,
There are many minute steps on a semiconductor wafer forming an integrated circuit. By the way, in the manufacture of semiconductor integrated circuits, selective exposure is performed after coating a resist on a semiconductor substrate,
Photolithography technology (photolithography or electron beam lithography) in which exposed areas or unexposed areas are dissolved by a developing process to open a resist window and then dry etching is performed to etch the conductive film or insulating film is essential.

【0004】そのため、段差の影響を無くして精度よく
微細パターンを形成する方法として三層構造或いは二層
構造をとる多層レジスト法が用いられているが、中でも
工程数の少ない二層レジスト法が一般的に用いられてい
る。
Therefore, a multi-layer resist method having a three-layer structure or a two-layer structure is used as a method for forming a fine pattern with high accuracy by eliminating the influence of a step, but the two-layer resist method having a small number of steps is generally used. It is used for.

【0005】[0005]

【従来の技術】二層構造レジスト法をとると、露光によ
り直接パターン形成するレジスト層の厚さを単層レジス
ト法に較べて格段に薄くできるため、高解像性の実現が
可能である。
2. Description of the Related Art When a two-layer structure resist method is used, the thickness of a resist layer directly patterned by exposure can be made much smaller than that of a single-layer resist method, so that high resolution can be realized.

【0006】こゝで、上層レジストに適用し得るレジス
トは酸素プラズマに対し充分な耐性を備えていることが
必要であり、次のような有機硅素重合体が用いられてい
る。ポリ-P- クロロメチルフェニルシロキサン, ポリア
リルシルセスキオキサン,ポリビニルシルセスキオキサ
ンなど。
Here, the resist applicable to the upper layer resist is required to have sufficient resistance to oxygen plasma, and the following organic silicon polymers are used. Poly-P-chloromethylphenyl siloxane, polyallyl silsesquioxane, polyvinyl silsesquioxane, etc.

【0007】然し、このような材料よりなるレジストの
露光後の現像には有機溶媒を使用せざるを得ないことか
ら、レジストの膨潤が激しく、二層構造レジスト法の利
点を充分に活かすことがてきず、解像性はさほど向上し
ない。
However, since an organic solvent must be used for the development after exposure of a resist made of such a material, the resist swells sharply and the advantages of the two-layer structure resist method can be fully utilized. The resolution is not so improved.

【0008】そのため、サブミクロンパターンが要求さ
れる超LSI の製造に必要なレジストパターンを安定して
形成することができないと云う問題があった。
Therefore, there is a problem that a resist pattern required for manufacturing a VLSI having a submicron pattern cannot be stably formed.

【0009】[0009]

【発明が解決しようとする課題】有機硅素重合体が露光
により架橋が進行して現像液に対して不溶となるのを利
用して 二層構造上層レジストとして用いられている
が、現像液中でレジストの不溶部分の膨潤が大きいため
に、0.5 μm 以下のレジストパターンを形成する場合に
はエッジの荒れや橋かけ(ブリッジ) が起こり易く、高
い解像性が得られない。
The organic silicon polymer is used as an upper layer resist having a two-layer structure because the organic silicon polymer becomes insoluble in a developing solution due to the progress of crosslinking when exposed to light. Due to the large swelling of the insoluble portion of the resist, when forming a resist pattern of 0.5 μm or less, rough edges and bridges are likely to occur, and high resolution cannot be obtained.

【0010】そこで、感度と酸素プラズマ耐性を損なう
ことなく、解像性を向上させることが課題である。
Therefore, it is an object to improve the resolution without impairing the sensitivity and the oxygen plasma resistance.

【0011】[0011]

【課題を解決するための手段】上記の課題はレジスト組
成物の主成分を構成し、下記の一般式(1) で表される有
機硅素重合体の製法として下記一般式(2) で示される有
機硅素化合物を加水分解し、脱水縮重合して得られるポ
リマ中に含まれる水酸基を下記の一般式(3),(4),(5) の
中の何れか一つの有機硅素化合物と反応させ、次の一般
式(6) で示されるトリオルガノシリル基に置換したこと
を特徴として構成するか、或いは下記一般式(3),(4),
(5) で示される硅素化合物の少なくとも一つを有機溶剤
に溶解し、この溶液に水の存在の下で下記の一般式(2)
で示される有機硅素化合物を徐々に添加して脱水縮重合
させ、この有機硅素化合物中に含まれる水酸基を下記の
一般式(6) で示されるトリオルガノシリル基に置換した
ことを特徴として一般式(1)記載の有機硅素重合体の製
造方法を構成することにより解決することができる。
[Means for Solving the Problems] The above problems constitute the main component of a resist composition and are represented by the following general formula (2) as a method for producing an organic silicon polymer represented by the following general formula (1). Hydrolyzing an organic silicon compound and reacting the hydroxyl group contained in the polymer obtained by dehydration polycondensation with any one of the following general formulas (3), (4) and (5) , Characterized by being substituted with a triorganosilyl group represented by the following general formula (6), or the following general formula (3), (4),
At least one of the silicon compounds represented by (5) is dissolved in an organic solvent, and in the presence of water in this solution, the following general formula (2)
The organic silicon compound represented by is gradually added and dehydrated and polycondensed, and the hydroxyl group contained in this organic silicon compound is replaced by a triorganosilyl group represented by the following general formula (6). This can be solved by configuring the method for producing an organic silicon polymer described in (1).

【0012】 (Si2R1O3) m (R2 3SiO1/2) n ・・・・・・(1) X3SiR1SiX3 ・・・・・・・・(2) R2 3SiX ・・・・・・・・(3) R2 3Si-NH-SiR2 3 ・・・・・・・・(4) R2 3Si-O-SiR2 3 ・・・・・・・・(5) R2 3Si- ・・・・・・・・(6) こゝで、X はハロゲン基, アルコキシ基, シアノ基, イ
ソシアナト基またはイソシアナト基を表し、R1はアルキ
レンを表し、R2は1価の炭化水素基を表し、同一または
異なっていてもよい。
(Si 2 R 1 O 3 ) m (R 2 3 SiO 1/2 ) n ... (1) X 3 SiR 1 SiX 3 ... (2) R 2 3 SiX ・ ・ ・ ・ ・ ・ (3) R 2 3 Si-NH-SiR 2 3・ ・ ・ ・ ・ ・ ・ ・ (4) R 2 3 Si-O-SiR 2 3・ ・ ・ ・ ・・ (5) R 2 3 Si- ・ ・ ・ (6) Here, X represents a halogen group, an alkoxy group, a cyano group, an isocyanato group or an isocyanato group, and R 1 represents an alkylene. , R 2 represents a monovalent hydrocarbon group and may be the same or different.

【0013】[0013]

【作用】発明者等は有機硅素重合体よりなるレジストを
露光して現像する際に露光により架橋して不溶化した部
分が膨潤するのを抑制する方法として有機硅素重合体の
配列方法を変えるものである。
The inventors of the present invention intend to change the method for arranging the organic silicon polymer as a method for suppressing the swelling of the insolubilized portion which is cross-linked by the exposure when the resist made of the organic silicon polymer is exposed and developed. is there.

【0014】すなわち、従来の重合体は-Si-O-結合が線
状やラダー形をしており、この末端をトリオルガノシリ
ル基により封止しているが、本発明に係る重合体はラン
ダムな三次元構造をしたシルアルキレン骨格の周辺をト
リオルガノシリル基が囲んで封止した構造をとる。
That is, in the conventional polymer, the --Si--O-- bond has a linear or ladder shape, and the end thereof is sealed with a triorganosilyl group, but the polymer according to the present invention is random. It has a structure in which a triorganosilyl group surrounds and seals the periphery of a silalkylene skeleton having a simple three-dimensional structure.

【0015】このような三次元構造をとると、従来の線
状構造やラダー形構造に較べて軟化温度が上昇し、ま
た、現像液中での分子の運動が制限されるため、膨潤が
抑制され、結果として解像性を向上することができる。
When such a three-dimensional structure is adopted, the softening temperature is increased as compared with the conventional linear structure or ladder type structure, and the movement of molecules in the developer is restricted, so that the swelling is suppressed. As a result, the resolution can be improved.

【0016】こゝで、本発明に係り、(Si2R1O3) m (R2 3
SiO1/2) n の一般式で表される有機硅素重合体でR1で表
したアルキレンとしてはメチレン,エチレン,プロピレ
ンなど低級アルキレンが該当している。
Here, according to the present invention, (Si 2 R 1 O 3 ) m (R 2 3
As the alkylene represented by R 1 in the organic silicon polymer represented by the general formula of SiO 1/2 ) n , lower alkylene such as methylene, ethylene and propylene is applicable.

【0017】また、R2は1価の炭化水素基を表し、同一
または異なっていてもよいが、具体的には、メチル基,
エチル基,ヘキシル基などのアルキル基、1-クロロメチ
ル基,2-クロロエチル基,3-クロルプロピル基などのハ
ロアルキル基、2-フェニルエチル基,2-フェニルエチル
基, 2-フェニルプロピル基などのアラルキル基、メトキ
シ基, エトキシ基などのアルコキシ基、ビニル基, アリ
ル基などのアルケニル基、フェニル基, トリル基などの
アリール基、パラクロロフェニルなどのハロアリール
基、エポキシ基などがこれに該当する。
R 2 represents a monovalent hydrocarbon group, which may be the same or different. Specifically, a methyl group,
Alkyl groups such as ethyl group, hexyl group, haloalkyl groups such as 1-chloromethyl group, 2-chloroethyl group, 3-chloropropyl group, 2-phenylethyl group, 2-phenylethyl group, 2-phenylpropyl group, etc. This includes aralkyl groups, alkoxy groups such as methoxy groups and ethoxy groups, alkenyl groups such as vinyl groups and allyl groups, aryl groups such as phenyl groups and tolyl groups, haloaryl groups such as parachlorophenyl, and epoxy groups.

【0018】次に、レジストの形成法としては、かゝる
有機硅素重合体をアルコール, ケトン, エーテルなどの
有機溶媒に溶解し、孔径が0.1 μm 程度のフィルタを用
いて濾過した後、スピンコートした場合に0.2 〜0.3 μ
m の膜厚になるように濃度調節をして塗液を作ればよ
い。
Next, as a method for forming a resist, such an organic silicon polymer is dissolved in an organic solvent such as alcohol, ketone or ether, filtered using a filter having a pore size of about 0.1 μm, and then spin coated. 0.2 to 0.3 μ
The coating solution may be prepared by adjusting the concentration so that the film thickness becomes m.

【0019】[0019]

【実施例】【Example】

合成例1(請求項2に該当) メチルイソブチルケトン(MIBK) 50cc, アセトン25cc,
メタノール25ccよりなる混合溶媒にビス(トリメトキシ
シリル)メタン16gを溶かし、水5.4cc を加えて室温で
30分攪拌した。
Synthesis Example 1 (corresponding to claim 2) Methyl isobutyl ketone (MIBK) 50cc, acetone 25cc,
Dissolve 16 g of bis (trimethoxysilyl) methane in a mixed solvent consisting of 25 cc of methanol and add 5.4 cc of water at room temperature.
It was stirred for 30 minutes.

【0020】そして、減圧下で系を濃縮し、約20重量%
の樹脂溶液を得た。その後、フェニルジメチルクロロシ
ラン90gとピリジン90gを加え、80℃で2時間攪拌し
た。
Then, the system was concentrated under reduced pressure to obtain about 20% by weight.
A resin solution of Then, 90 g of phenyldimethylchlorosilane and 90 g of pyridine were added, and the mixture was stirred at 80 ° C. for 2 hours.

【0021】冷却した後、MIBKと水をそれぞれ100cc 加
え、分液漏斗を用いて上層のMIBK層をとり、水で数回洗
浄した後、共沸により残存している水を取り除いた。そ
の後、反応溶液を多量の水に投入して樹脂を析出させて
回収し、凍結乾燥を施して約10gの白色粉末を得た。
After cooling, 100 cc of each of MIBK and water was added, the upper MIBK layer was taken using a separatory funnel and washed several times with water, and then the remaining water was removed by azeotropic distillation. Then, the reaction solution was poured into a large amount of water to precipitate and collect the resin, which was freeze-dried to obtain about 10 g of a white powder.

【0022】これをケルパーミエ−ションクロマトグラ
フ( 略称GPC)により測定した重量平均分子量は標準ポリ
スチレン換算で5.3 ×103 また分散度は2.8 であった。 合成例2(請求項3に該当) 500cc の四つ口フラスコにメチルイソブチルケトン40c
c, メタノール25cc, アセトン25cc, 水50cc, 濃塩酸5c
cおよびヘキサメチルジシロキサン4.05gを仕込み、加
熱攪拌して還流状態とした。
The weight average molecular weight of the product was 5.3 × 10 3 in terms of standard polystyrene and the dispersity was 2.8 as measured by Kelper permeation chromatography (abbreviated as GPC). Synthesis Example 2 (corresponding to claim 3) Methyl isobutyl ketone 40c in a 500cc four-necked flask
c, methanol 25cc, acetone 25cc, water 50cc, concentrated hydrochloric acid 5c
c and 4.05 g of hexamethyldisiloxane were charged and heated to a reflux state.

【0023】次に、1,2-ビス( トリメトキシシリル) エ
タン15.9gをMIBKの35ccに溶かし、フラスコ内に20分か
けて滴下した。その後、30分攪拌を続けた後に冷却し、
MIBKと水をそれぞれ50cc加え、分液漏斗を用いて上層の
MIBK層をとり、水で数回洗浄した後、共沸により残存し
ている水を取り除いた。
Next, 15.9 g of 1,2-bis (trimethoxysilyl) ethane was dissolved in 35 cc of MIBK and added dropwise into the flask over 20 minutes. After that, continue stirring for 30 minutes and then cool,
Add 50cc each of MIBK and water, and use the separating funnel to
The MIBK layer was taken, washed with water several times, and then the remaining water was removed by azeotropic distillation.

【0024】その後、反応溶液を多量の水に投入して樹
脂を析出させて回収し、凍結乾燥を施して約12gの白色
粉末を得た。これをケルパーミエ−ションクロマトグラ
フ( 略称GPC)により測定した重量平均分子量は標準ポリ
スチレン換算で1.2 ×104 また分散度は4.0 であった。 合成例3(請求項4に該当) 合成例2で得た粉末の4%MIBK溶液100 gにトリメチル
クロロシランとピリジンをそれぞれ10cc加え、80℃で2
時間攪拌した。
Then, the reaction solution was poured into a large amount of water to precipitate and collect the resin, which was freeze-dried to obtain about 12 g of a white powder. The weight average molecular weight of the product was 1.2 × 10 4 in terms of standard polystyrene and the dispersity was 4.0 as measured by Kelpermeation chromatography (abbreviated as GPC). Synthesis Example 3 (corresponding to claim 4) To 100 g of a 4% MIBK solution of the powder obtained in Synthesis Example 2 was added 10 cc each of trimethylchlorosilane and pyridine, and the mixture was heated at 80 ° C.
Stir for hours.

【0025】冷却した後、MIBKと水をそれぞれ50cc加
え、分液漏斗を用いて上層のMIBK層をとり、水で数回洗
浄した後、共沸により残存している水を取り除いた。そ
の後、反応溶液を多量の水に投入して樹脂を析出させて
回収し、凍結乾燥を施して4.17gの白色粉末を得た。
After cooling, 50 cc of each of MIBK and water was added, the upper MIBK layer was taken using a separatory funnel, washed several times with water, and then the remaining water was removed by azeotropic distillation. Then, the reaction solution was poured into a large amount of water to precipitate the resin, which was collected and freeze-dried to obtain 4.17 g of a white powder.

【0026】その後、エタノールとアセトニトリルを用
いて低分子量オリゴマや不純物を洗浄して除き、最終的
に2.16gの白色粉末を得た。これをケルパーミエ−ショ
ンクロマトグラフ( 略称GPC)により測定した重量平均分
子量は標準ポリスチレン換算で4.1 ×104 また分散度は
3.5 であった。 合成例4(請求項4に該当) 合成例2で得た粉末の4%MIBK溶液100 gにビニルジメ
チルクロロシランとピリジンをそれぞれ10cc加え、80℃
で2時間攪拌した。
Then, low molecular weight oligomers and impurities were removed by washing with ethanol and acetonitrile to finally obtain 2.16 g of white powder. The weight average molecular weight of this was measured by Kelpermeation Chromatograph (abbreviated as GPC) to be 4.1 × 10 4 in terms of standard polystyrene.
It was 3.5. Synthetic Example 4 (corresponding to claim 4) To 100 g of a 4% MIBK solution of the powder obtained in Synthetic Example 2, 10 cc each of vinyldimethylchlorosilane and pyridine was added, and the mixture was heated to 80 ° C.
And stirred for 2 hours.

【0027】冷却した後、MIBKと水をそれぞれ50cc加
え、分液漏斗を用いて上層のMIBK層をとり、水で数回洗
浄した後、共沸により残存している水を取り除いた。そ
の後、反応溶液を多量の水に投入して樹脂を析出させて
回収し、凍結乾燥を施して4.0gの白色粉末を得た。
After cooling, 50 cc of each of MIBK and water was added, the upper MIBK layer was taken using a separatory funnel and washed several times with water, and then the remaining water was removed by azeotropic distillation. Then, the reaction solution was poured into a large amount of water to precipitate and collect the resin, which was freeze-dried to obtain 4.0 g of a white powder.

【0028】その後、エタノールとアセトニトリルを用
いて低分子量オリゴマや不純物を洗浄して除き、最終的
に1.24gの白色粉末を得た。これをケルパーミエ−ショ
ンクロマトグラフ( 略称GPC)により測定した重量平均分
子量は標準ポリスチレン換算で4.2 ×104 また分散度は
4.2 であった。 合成例5(請求項4に該当) 合成例2で得た粉末の4%MIBK溶液100 gにフェニルジ
メチルクロロシランとピリジンをそれぞれ10cc加え、80
℃で2時間攪拌した。
Then, low molecular weight oligomers and impurities were removed by washing with ethanol and acetonitrile to finally obtain 1.24 g of white powder. The weight average molecular weight of this was measured by Kelpermeation chromatography (abbreviated as GPC) to be 4.2 × 10 4 in terms of standard polystyrene.
It was 4.2. Synthesis Example 5 (corresponding to claim 4) To 100 g of a 4% MIBK solution of the powder obtained in Synthesis Example 2 was added 10 cc each of phenyldimethylchlorosilane and pyridine, and
The mixture was stirred at 0 ° C for 2 hours.

【0029】冷却した後、MIBKと水をそれぞれ50cc加
え、分液漏斗を用いて上層のMIBK層をとり、水で数回洗
浄した後、共沸により残存している水を取り除いた。そ
の後、反応溶液を多量の水に投入して樹脂を析出させて
回収し、凍結乾燥を施して2.20gの白色粉末を得た。
After cooling, 50 cc of each of MIBK and water was added, the upper MIBK layer was taken using a separatory funnel and washed several times with water, and then the remaining water was removed by azeotropic distillation. Then, the reaction solution was poured into a large amount of water to precipitate the resin, which was collected and freeze-dried to obtain 2.20 g of a white powder.

【0030】これをケルパーミエ−ションクロマトグラ
フ( 略称GPC)により測定した重量平均分子量は標準ポリ
スチレン換算で5.4 ×104 また分散度は2.9 であった。 合成例6(請求項3に該当) 300cc の四つ口フラスコにメチルイソブチルケトン50c
c, エタノール25cc, アセトン25cc, 水50cc, 濃塩酸5c
cおよびヘキサビニルジシロキサン7.15gを仕込み、加
熱攪拌して還流状態とした。
The weight average molecular weight of the polymer was 5.4 × 10 4 in terms of standard polystyrene and the dispersity was 2.9 as measured by Kelpermeation chromatography (abbreviated as GPC). Synthesis Example 6 (corresponding to claim 3) Methyl isobutyl ketone 50c in a 300cc four-necked flask
c, ethanol 25cc, acetone 25cc, water 50cc, concentrated hydrochloric acid 5c
C and 7.15 g of hexavinyldisiloxane were charged, and the mixture was heated and stirred to bring it to a reflux state.

【0031】次に、1,2-ビス( トリエトキシシリル) エ
タン20.1gをフラスコ内に20分かけて滴下した。その
後、20分攪拌を続けた後に冷却し、MIBKと水をそれぞれ
50cc加え、分液漏斗を用いて上層のMIBK層をとり、水で
数回洗浄した後、共沸により残存している水を取り除い
た。
Next, 20.1 g of 1,2-bis (triethoxysilyl) ethane was dropped into the flask over 20 minutes. Then, continue stirring for 20 minutes, then cool and mix MIBK and water respectively.
50 cc was added, the upper MIBK layer was taken using a separatory funnel, washed with water several times, and then the remaining water was removed by azeotropic distillation.

【0032】その後、反応溶液を多量の水に投入して樹
脂を析出させて回収し、凍結乾燥を施して約15gの白色
粉末を得た。これをケルパーミエ−ションクロマトグラ
フ( 略称GPC)により測定した重量平均分子量は標準ポリ
スチレン換算で4.1 ×104 また分散度は5.6 であった。 合成例7(請求項4に該当) 合成例2で得た粉末の14%MIBK溶液85gにフェニルジビ
ニルクロロシランとピリジンをそれぞれ10cc加え、80℃
で2時間攪拌した。
Then, the reaction solution was poured into a large amount of water to precipitate and collect the resin, which was freeze-dried to obtain about 15 g of a white powder. The weight average molecular weight of the product was 4.1 × 10 4 in terms of standard polystyrene and the dispersity was 5.6 as measured by Kelpermeation chromatography (abbreviated as GPC). Synthesis example 7 (corresponding to claim 4) To 85 g of a 14% MIBK solution of the powder obtained in synthesis example 2 was added 10 cc each of phenyldivinylchlorosilane and pyridine,
And stirred for 2 hours.

【0033】冷却した後、MIBKと水をそれぞれ50cc加
え、分液漏斗を用いて上層のMIBK層をとり、水で数回洗
浄した後、共沸により残存している水を取り除いた。そ
の後、反応溶液を多量の水に投入して樹脂を析出させて
回収し、凍結乾燥を施して10.4gの白色粉末を得た。
After cooling, 50 cc of each of MIBK and water was added, and the upper MIBK layer was taken using a separatory funnel and washed several times with water, and then the remaining water was removed by azeotropic distillation. Then, the reaction solution was poured into a large amount of water to precipitate and collect the resin, which was freeze-dried to obtain 10.4 g of white powder.

【0034】このポリマをイソプロピルアルコールに溶
解し、温度差により析出させて分子量分別を行った。こ
れをケルパーミエ−ションクロマトグラフ( 略称GPC)に
より測定した重量平均分子量は標準ポリスチレン換算で
3.5 ×104 また分散度は1.8 であった。
This polymer was dissolved in isopropyl alcohol and precipitated by a temperature difference, and molecular weight fractionation was performed. The weight average molecular weight of this was measured by Kelpermeation chromatography (abbreviated as GPC) in terms of standard polystyrene.
The dispersity was 3.5 × 10 4 and was 1.8.

【0035】実施例1(電子線レジストとして使用例) 合成例7で得たポリマの13%MIBK溶液を作り、これを孔
径が0.1 μm のメンブランフィルタで濾過してレジスト
溶液とした。
Example 1 (Example of use as electron beam resist) A 13% MIBK solution of the polymer obtained in Synthesis Example 7 was prepared and filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist solution.

【0036】次に、Si基板上にノボラック系レジスト(M
P-1300, シプレー社) を2.0 μm の厚さになるように塗
布し、ハードベークして平坦化層とした。この上に、上
記のレジスト溶液を0.2 μm の厚さになるように塗布
し、80℃で20分間ベーキングした。
Next, a novolac-based resist (M
P-1300, Shipley Co., Ltd.) was applied to a thickness of 2.0 μm and hard baked to form a planarization layer. Onto this, the above resist solution was applied so as to have a thickness of 0.2 μm, and baked at 80 ° C. for 20 minutes.

【0037】こうして得られた二層レジスト膜に加速電
圧20KVで電子線の走査を行った後、MIBKで60秒間現像
し、次にイソプロピルアルコールで30秒間のリンス処理
を行った。
The bilayer resist film thus obtained was scanned with an electron beam at an acceleration voltage of 20 KV, developed with MIBK for 60 seconds, and then rinsed with isopropyl alcohol for 30 seconds.

【0038】次に、試料を平行平板型のドライエッチン
グ装置に入れ、酸素プラズマ(真空度2Pa, 電力0.22W
/cm2 ) で15分間に亙ってドライエッチングを行い、上
層パターンを下層に転写した。
Next, the sample was placed in a parallel plate type dry etching apparatus, and oxygen plasma (vacuum degree 2 Pa, power 0.22 W) was used.
/ Cm 2 ), dry etching was performed for 15 minutes to transfer the upper layer pattern to the lower layer.

【0039】この結果、電子線露光量8μC/cm2 の条件
で0.5 μm のライン・アンド・スペースパターンを解像
することができた。 実施例2(フォトレジストとして使用例) 合成例7で得たポリマの13%MIBK溶液を作り、これを孔
径が0.1 μm のメンブランフィルタで濾過してレジスト
溶液とした。
As a result, a 0.5 μm line-and-space pattern could be resolved under the condition of electron beam exposure of 8 μC / cm 2 . Example 2 (Example of use as photoresist) A 13% MIBK solution of the polymer obtained in Synthesis Example 7 was prepared, and this was filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist solution.

【0040】次に、Si基板上にノボラック系レジスト(M
P-1300, シプレー社) を2.0 μm の厚さになるように塗
布し、ハードベークして平坦化層とした。この上に、上
記のレジスト溶液を0.2 μm の厚さになるように塗布
し、80℃で20分間ベーキングした。
Next, a novolac-based resist (M
P-1300, Shipley Co., Ltd.) was applied to a thickness of 2.0 μm and hard baked to form a planarization layer. Onto this, the above resist solution was applied so as to have a thickness of 0.2 μm, and baked at 80 ° C. for 20 minutes.

【0041】こうして得られた二層レジスト膜に波長が
248nmVの遠紫外線を照射した後、MIBKで60秒間現像し、
次にイソプロピルアルコールで30秒間のリンス処理し
た。次に、試料を平行平板型のドライエッチング装置に
入れ、酸素プラズマ(真空度2Pa, 電力0.22W/cm2 )
で15分間に亙ってドライエッチングを行い、上層パター
ンを下層に転写した。
The two-layer resist film thus obtained has a wavelength of
After irradiating deep ultraviolet rays of 248 nmV, develop with MIBK for 60 seconds,
Then, a rinse treatment was performed for 30 seconds with isopropyl alcohol. Next, the sample was placed in a parallel plate type dry etching device and oxygen plasma (vacuum degree 2 Pa, power 0.22 W / cm 2 ) was used.
Then, dry etching was performed for 15 minutes to transfer the upper layer pattern to the lower layer.

【0042】この結果、露光量80mJ/cm2の条件で0.5 μ
m のライン・アンド・スペースパターンを解像すること
ができた。
As a result, 0.5 μ was obtained under the condition of the exposure amount of 80 mJ / cm 2.
I was able to resolve m line and space patterns.

【0043】[0043]

【発明の効果】本発明によれば、感度と酸素プラズマ耐
性に優れ、また膨潤の少ない高解像性のレジストとなる
有機硅素重合体を得ることができ、これにより半導体集
積回路を構成する微細パターン精度を向上することがで
きる。
According to the present invention, it is possible to obtain an organic silicon polymer which is a resist having high sensitivity and oxygen plasma resistance and high swelling and high resolution. The pattern accuracy can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 麻奈美 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Manami Fukuda             1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture             Within Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) で示される有機硅素重合
体を主成分とするレジスト組成物 (Si2R1O3)m (R2 3SiO1/2) n ・・・・・・(1) こゝで、 R1はアルキレンを表し、 R2は1価の炭化水素基を表し、同一または異なっていて
もよい。 m,n はそれぞれ正の整数を表す、
1. A resist composition (Si 2 R 1 O 3 ) m (R 2 3 SiO 1/2 ) n, containing an organic silicon polymer represented by the following general formula (1) as a main component. - (1) thisゝa, R 1 represents an alkylene, R 2 represents a monovalent hydrocarbon group and may be the same or different. m and n are positive integers,
【請求項2】 下記一般式(2) で示される有機硅素化合
物を加水分解し、脱水縮重合して得られるポリマを下記
の一般式(3),(4),(5) の中の何れか一つの有機硅素化合
物と反応させ、該ポリマ中の水酸基を次の一般式(6) で
示されるトリオルガノシリル基に置換したことを特徴と
する上記一般式(1) 記載の有機硅素重合体の製造方法。 X3SiR1SiX3 ・・・・・・・・(2) R2 3SiX ・・・・・・・・(3) R2 3Si-NH-SiR2 3 ・・・・・・・・(4) R2 3Si-O-SiR2 3 ・・・・・・・・(5) R2 3Si- ・・・・・・・・(6) こゝで、 X はハロゲン基, アルコキシ基, シアノ基, イソシアナ
ト基またはイソチオシアナト基を表し、 R1はアルキレンを表し、 R2は1価の炭化水素基を表し、同一または異なっていて
もよい。
2. A polymer obtained by hydrolyzing an organosilicon compound represented by the following general formula (2) and dehydration polycondensation to obtain one of the following general formulas (3), (4) and (5): The organic silicon polymer according to the above general formula (1), characterized in that the hydroxyl group in the polymer is replaced with a triorganosilyl group represented by the following general formula (6). Manufacturing method. X 3 SiR 1 SiX 3・ ・ ・ ・ ・ ・ (2) R 2 3 SiX ・ ・ ・ ・ ・ ・ (3) R 2 3 Si-NH-SiR 2 3・ ・ ・ ・ ・ ・ ・ ・(4) R 2 3 Si-O-SiR 2 3・ ・ ・ ・ ・ ・ (5) R 2 3 Si- ・ ・ ・ ・ ・ ・ (6) Here, X is a halogen group or alkoxy. Group, cyano group, isocyanato group or isothiocyanato group, R 1 represents alkylene, R 2 represents a monovalent hydrocarbon group, which may be the same or different.
【請求項3】 下記一般式(3),(4),(5) で示される硅素
化合物の少なくとも一つを有機溶剤に溶解し、この溶液
に水の存在の下で下記の一般式(2) で示される有機硅素
化合物を徐々に添加して脱水縮重合させ、該有機硅素化
合物中に含まれる水酸基を下記の一般式(6) で示される
トリオルガノシリル基に置換したことを特徴とする上記
一般式(1) 記載の有機硅素重合体の製造方法。 X3SiR1SiX3 ・・・・・・・・(2) R2 3SiX ・・・・・・・・(3) R2 3Si-NH-SiR2 3 ・・・・・・・・(4) R2 3Si-O-SiR2 3 ・・・・・・・・(5) R2 3Si- ・・・・・・・・(6) こゝで、 X はハロゲン基, アルコキシ基, シアノ基, イソシアナ
ト基またはイソシアナト基を表し、 R1はアルキレンを表し、 R2は1価の炭化水素基を表し、同一または異なっていて
もよい。
3. At least one of the silicon compounds represented by the following general formulas (3), (4) and (5) is dissolved in an organic solvent, and this solution is dissolved in the presence of water to give the following general formula (2): ) The organic silicon compound represented by the formula (1) is gradually added to cause dehydration polycondensation, and the hydroxyl group contained in the organic silicon compound is replaced with a triorganosilyl group represented by the following general formula (6). A method for producing the organic silicon polymer represented by the general formula (1). X 3 SiR 1 SiX 3・ ・ ・ ・ ・ ・ (2) R 2 3 SiX ・ ・ ・ ・ ・ ・ (3) R 2 3 Si-NH-SiR 2 3・ ・ ・ ・ ・ ・ ・ ・(4) R 2 3 Si-O-SiR 2 3・ ・ ・ ・ ・ ・ (5) R 2 3 Si- ・ ・ ・ ・ ・ ・ (6) Here, X is a halogen group or alkoxy. Group, cyano group, isocyanato group or isocyanato group, R 1 represents alkylene, R 2 represents a monovalent hydrocarbon group, which may be the same or different.
【請求項4】 下記一般式(3),(4),(5) で示される硅素
化合物の少なくとも一つを有機溶剤に溶解し、この溶液
に水の存在の下で下記の一般式(2) で示される有機硅素
化合物を徐々に添加して脱水縮重合させ、該有機硅素化
合物中に含まれる水酸基を下記の一般式(6) で示される
トリオルガノシリル基に置換した後、更に一般式(3),
(4),(5) で示される硅素化合物を添加することを特徴と
する上記一般式(1) 記載の有機硅素重合体の製造方法。 X3SiR1SiX3 ・・・・・・・・(2) R2 3SiX ・・・・・・・・(3) R2 3Si-NH-SiR2 3 ・・・・・・・・(4) R2 3Si-O-SiR2 3 ・・・・・・・・(5) R2 3Si- ・・・・・・・・(6) こゝで、 X はハロゲン基, アルコキシ基, シアノ基, イソシアナ
ト基またはイソシアナト基を表し、 R1はアルキレンを表し、 R2は1価の炭化水素基を表し、同一または異なっていて
もよい。
4. At least one of the silicon compounds represented by the following general formulas (3), (4) and (5) is dissolved in an organic solvent, and the solution of the following general formula (2 ) The organic silicon compound represented by the formula (1) is gradually dehydrated and polycondensed, and the hydroxyl group contained in the organic silicon compound is replaced with a triorganosilyl group represented by the following general formula (6). (3),
A method for producing an organic silicon polymer described in the above general formula (1), characterized by adding a silicon compound represented by (4) or (5). X 3 SiR 1 SiX 3・ ・ ・ ・ ・ ・ (2) R 2 3 SiX ・ ・ ・ ・ ・ ・ (3) R 2 3 Si-NH-SiR 2 3・ ・ ・ ・ ・ ・ ・ ・(4) R 2 3 Si-O-SiR 2 3・ ・ ・ ・ ・ ・ (5) R 2 3 Si- ・ ・ ・ ・ ・ ・ (6) Here, X is a halogen group or alkoxy. Group, cyano group, isocyanato group or isocyanato group, R 1 represents alkylene, R 2 represents a monovalent hydrocarbon group, which may be the same or different.
JP3180011A 1991-07-20 1991-07-20 Resist composition and production of organosilicon polymer Withdrawn JPH0525277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180011A JPH0525277A (en) 1991-07-20 1991-07-20 Resist composition and production of organosilicon polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180011A JPH0525277A (en) 1991-07-20 1991-07-20 Resist composition and production of organosilicon polymer

Publications (1)

Publication Number Publication Date
JPH0525277A true JPH0525277A (en) 1993-02-02

Family

ID=16075897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180011A Withdrawn JPH0525277A (en) 1991-07-20 1991-07-20 Resist composition and production of organosilicon polymer

Country Status (1)

Country Link
JP (1) JPH0525277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016177A (en) * 2005-07-08 2007-01-25 Fujitsu Ltd Silica-based film forming material, silica-based film, method for producing the same, maltilayer wiring, method for producing the same, semiconductor device, and method for producing the same
JP2009177198A (en) * 2009-03-30 2009-08-06 Hitachi Chem Co Ltd Silica-based film forming coating liquid, silica-based film and semiconductor device using the silica-based film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016177A (en) * 2005-07-08 2007-01-25 Fujitsu Ltd Silica-based film forming material, silica-based film, method for producing the same, maltilayer wiring, method for producing the same, semiconductor device, and method for producing the same
US8124239B2 (en) 2005-07-08 2012-02-28 Fujitsu Limited Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same
JP2009177198A (en) * 2009-03-30 2009-08-06 Hitachi Chem Co Ltd Silica-based film forming coating liquid, silica-based film and semiconductor device using the silica-based film

Similar Documents

Publication Publication Date Title
CA1335542C (en) Pattern-forming material and pattern formation method
US5041358A (en) Negative photoresist and use thereof
EP0493367B1 (en) Silane resist materials and method for their preparation
KR930007921B1 (en) Polyisophenylene siloxane, production process thereof and resist material and semiconductor device formed thereof
KR20080058503A (en) Silsesquioxane-titania hybrid polymers
JPS60147732A (en) Organosilicon composition
JPH11130860A (en) Polymer containing silicon and resist composition using the same and formation of resist pattern
JPH0525277A (en) Resist composition and production of organosilicon polymer
JPH04181254A (en) Polysilphenylenesiloxane, its production, resist material, and semiconductor device
JPS62276543A (en) Pattern forming method
JP2623780B2 (en) Organosilicon polymer resist composition
JP7392056B2 (en) Composition for resist underlayer film and pattern forming method using the same
JP3000643B2 (en) Resist composition and method of forming resist pattern
JPH05117392A (en) Organosilicon polymer and resist composition containing the same
JP3085775B2 (en) Method of forming resist pattern
JPS63113021A (en) Polysilane and photosensitive composition using said polysilane
JP2692209B2 (en) Method of forming resist pattern
JP2655580B2 (en) Polyorganosilsesquioxane, process for producing the same, and pattern forming material
JP2938199B2 (en) Negative photosensitive resin
KR20240021015A (en) Resist underlayer composition, and method of forming patterns using the composition
JP2628597B2 (en) Silicone compound
JP2786502B2 (en) Resist material
KR20230019721A (en) Resist underlayer composition, and method of forming patterns using the composition
JPS63106649A (en) Pattern forming method
CN118550156A (en) Underlayer compound for lithography, multilayer structure, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008