JPH02256279A - Semiconductor device having avalanche breakdown type junction - Google Patents

Semiconductor device having avalanche breakdown type junction

Info

Publication number
JPH02256279A
JPH02256279A JP1208900A JP20890089A JPH02256279A JP H02256279 A JPH02256279 A JP H02256279A JP 1208900 A JP1208900 A JP 1208900A JP 20890089 A JP20890089 A JP 20890089A JP H02256279 A JPH02256279 A JP H02256279A
Authority
JP
Japan
Prior art keywords
region
semiconductor region
semiconductor
type
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1208900A
Other languages
Japanese (ja)
Other versions
JPH0582072B2 (en
Inventor
Akio Kiyomura
清村 明生
Takami Terajima
寺島 隆美
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP1208900A priority Critical patent/JPH02256279A/en
Priority to KR1019890019078A priority patent/KR920010676B1/en
Priority to US07/458,398 priority patent/US4999683A/en
Publication of JPH02256279A publication Critical patent/JPH02256279A/en
Publication of JPH0582072B2 publication Critical patent/JPH0582072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an avalanche diode which is hard to receive the effect of ions in an insulating film by providing a constitution wherein an N<+> type region has impurity concentration that is decreased from one main surface side of a semiconductor substrate toward the side of an N-type region, and the side end surface of the region is surrounded with a P<+> region. CONSTITUTION:A semiconductor substrate 11 is provided with the following regions: an N-type region (first semiconductor region) 15; an N<++> type region 16 for ohmic connection which is formed at the lower surface of the region 15; a planar ring-shaped P<+> type region (second semiconductor region) 17 whose upper surface is exposed to one main surface of the semiconductor substrate 11 and which is surrounded with the N-type region at the neighboring part; and an N<+> type region (third semiconductor region) 18 whose upper surface is exposed to one main surface of the semiconductor substrate 1 and which is surrounded with the P<+> type region 17. The impurity concentration of the N<+> type region 18 is higher than that of the N-type region 15. The impurity concentration at the surface side is higher than that in the inside. Even if the depletion layer at the surface of the N-type region 15 is changed by the ions in an insulating film 12, the fluctuation of a breakdown voltage can be made less in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アバランシェ降伏型接合を有する半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having an avalanche breakdown type junction.

[従来の技術及び発明が解決しようとする課題]アバラ
ンシェブレークダウン(なだれ降伏)現象を利用した定
電圧ダイオードは一般にアバランシェダイオードと呼ば
れ、基準電圧回路や保護回路等の種々の電子回路に広く
使用されている。
[Prior art and problems to be solved by the invention] A constant voltage diode that utilizes the avalanche breakdown phenomenon is generally called an avalanche diode, and is widely used in various electronic circuits such as reference voltage circuits and protection circuits. has been done.

ところで、アバランシェダイオード及びツェナーダイオ
ードにおいてブレークダウン電圧を所定値にするために
は、可能な限り半導体基体(サブストレート)の内部で
ブレークダウンを生じさせることが望ましい、特開昭5
7−71186号公報には、第13図に示すように半導
体基体の内部でブレークダウンを生じさせるために、N
影領域1の内部にP+形領領域2形成すると共に、P+
形領領域2下側にN+形領領域3埋め込むように形成し
、N+形領領域3はN++形領域4を介してカソード電
極5を接続し、P+形領領域2はアノード電極6を接続
したツェナーダイオードが開示されている。第13図の
ツェナーダイオードと同一形状にアバランシェダイオー
ドを形成すると、半導体基体の表面の影響を受けない領
域でブレークダウンを生じさせることができるという長
所が得られる反面、ブレークダウン電圧の温度依存性(
温度変化によるブレークダウン電圧の変化)を小さくす
ることが困難であるという欠点が生じる。
By the way, in order to set the breakdown voltage to a predetermined value in an avalanche diode and a Zener diode, it is desirable to cause the breakdown to occur inside the semiconductor substrate as much as possible, as disclosed in Japanese Patent Laid-Open No. 5
7-71186, as shown in FIG. 13, in order to cause breakdown inside the semiconductor substrate, N
A P+ shaped area 2 is formed inside the shadow area 1, and a P+ shaped area 2 is formed inside the shadow area 1.
An N+ type area 3 was formed so as to be embedded under the type area 2, and a cathode electrode 5 was connected to the N+ type area 3 via an N++ type area 4, and an anode electrode 6 was connected to the P+ type area 2. A Zener diode is disclosed. Forming an avalanche diode in the same shape as the Zener diode shown in FIG. 13 has the advantage of allowing breakdown to occur in an unaffected region of the surface of the semiconductor substrate.
The disadvantage is that it is difficult to reduce the breakdown voltage (change in breakdown voltage due to temperature change).

ブレークダウン電圧の温度依存性は、PN接合に基づい
て生じる空乏層に幅狭部分を形成し、この幅狭部分でブ
レークダウンを生じさせることによって改善することが
できる。このために、第14図に示すように、P+形領
領域2側面を包囲するようにN+形領領域3配置したア
バランシェダイオードが既に製造されている。なお、第
14図において、第13図と共通する部分には同一の符
号が付されている。第14図のアバランシェダイオード
によれば、アノード環i6が絶縁膜7を介してN+形領
領域3上方に延在しているので、PN接合による全六層
の他に電界効果による空乏層が生じ、破線で示すような
空乏層8が得られる。
The temperature dependence of the breakdown voltage can be improved by forming a narrow portion in the depletion layer generated based on the PN junction and causing breakdown in this narrow portion. For this purpose, as shown in FIG. 14, an avalanche diode in which an N+ type region 3 is arranged so as to surround the side surface of a P+ type region 2 has already been manufactured. Note that in FIG. 14, parts common to those in FIG. 13 are given the same reference numerals. According to the avalanche diode shown in FIG. 14, since the anode ring i6 extends above the N+ type region 3 via the insulating film 7, a depletion layer is generated due to the electric field effect in addition to all six layers formed by the PN junction. , a depletion layer 8 as shown by the broken line is obtained.

また、空乏層8の拡がりは不純物濃度に関係を有し、低
い不純物濃度のN影領域1で幅広になり、高い不純物濃
度のN+形領領域3幅狭になる。また、N+形領領域3
不純物濃度は表面側で高く、内部側で低いので、N+形
領領域3P+形領領域2のPN接合に基づく空乏層は表
面側で幅狭になる。この結果、第14図に原理的に示す
ようにP1形領域2とN+形領領域3の間のPN接合に
基づく空乏層が半導体基体1の表面よりも僅かに下方に
おいて幅狭になり、ここでブレークダウンが生じる。な
お、N+形領領域3深さがP+形領領域2りも浅いため
に、P+形領領域2(Pl端面の下部とN影領域1との
PN接合に基づく空乏層がN“影領域3とP+形領領域
2のPN接合に基づく空乏層よりも幅広になり、N+形
領領域3内空乏層の幅狭部分が確実に生じる。第14図
の構造を採用することによって半導体基体の内部の幅狭
の空乏層でブレークダウンを生じさせることは可能にな
り、ブレークダウン電圧の温度依存性は良くなる。しか
し、N影領域1と絶縁[7とアノード電極6との組み合
せ部分における電界効果に基づいてN影領域1の表面部
分に生じる空乏層が、絶縁膜7やこの上に被覆される保
護樹脂(図示せず)に含まれるイオンの影響を受けて変
動し、所定のブレークダウン電圧を得ることが困難であ
った。
Further, the spread of the depletion layer 8 is related to the impurity concentration, and becomes wider in the N shadow region 1 with a lower impurity concentration and narrower in the N+ type region 3 with a higher impurity concentration. Also, N+ shape area 3
Since the impurity concentration is high on the surface side and low on the inside side, the depletion layer based on the PN junction of the N+ type region 3P+ type region 2 becomes narrow on the surface side. As a result, as shown in principle in FIG. 14, the depletion layer based on the PN junction between the P1 type region 2 and the N+ type region 3 becomes narrower slightly below the surface of the semiconductor substrate 1. A breakdown occurs. Note that since the depth of the N+ type region 3 is shallower than that of the P+ type region 2, the depletion layer based on the PN junction between the lower part of the P+ type region 2 (Pl end face and the N shadow region 1) is smaller than the N" shadow region 3. The depletion layer is wider than the depletion layer based on the PN junction in the P+ type region 2, and a narrow portion of the depletion layer in the N+ type region 3 is reliably created.By adopting the structure shown in FIG. It becomes possible to cause breakdown in a narrow depletion layer of N, and the temperature dependence of the breakdown voltage becomes better. The depletion layer generated on the surface of the N shadow region 1 based on the voltage changes under the influence of ions contained in the insulating film 7 and the protective resin (not shown) coated thereon, and the depletion layer changes to a predetermined breakdown voltage. was difficult to obtain.

特に、アバランシェダイオードに高温状態において逆方
向電圧を印加する試験を行うと、ブレークダウン電圧の
変動が顕著に生じる。
In particular, when a test is performed in which a reverse voltage is applied to an avalanche diode in a high temperature state, the breakdown voltage varies significantly.

そこで、本発明の目的は、絶縁膜のイオンの影響を受は
難いアバランシェダイオードを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an avalanche diode that is hardly affected by ions in an insulating film.

[課題を解決するための手段] 上記目的を達成するための本発明は、N形又はP形の第
1の導電形を有する第1の半導体領域と、前記第1の導
電形とは反対の導電形の第2の導電形を有し、前記第1
の半導体領域に隣接している第2の半導体領域と、前記
第1の導電形を有し、前記第1の半導体領域に隣接して
いる第3の半導体領域と、前記第2の半導体領域に直接
に又は別の半導体領域を介して電気的に接続された第1
の主電極と、前記第1の半導体領域に直接に又は別の半
導体領域を介して電気的に接続された第2の主電極とを
備え、前記第2の半導体領域及び前記第3の半導体領域
は半導体基体の表面にそれぞれ露出しており、前記第3
の半導体領域は前記第2の半導体領域に隣接して包囲さ
れており、前記半導体基体の表面には前記第2の半導体
領域と前記第3の半導体領域の境界部分の上方を含み前
記第3の半導体領域の露出面の上面の略全部に延在する
絶縁膜が形成されており、前記第1の主電極は前記絶縁
膜を介して前記第3の半導体領域の上面の略全部に延在
し、前記第2の半導体領域に隣接する部分での前記第3
の半導体領域の不純物濃度は前記第2の半導体領域に隣
接する部分での前記第1の半導体領域の不純物濃度より
も高いことを特徴とするアバランシェ降伏型接合を有す
る半導体装置に係わるものである。
[Means for Solving the Problems] The present invention for achieving the above object includes a first semiconductor region having a first conductivity type of N type or P type, and a first semiconductor region having a first conductivity type opposite to the first conductivity type. a second conductivity type of the conductivity type;
a second semiconductor region adjacent to the semiconductor region; a third semiconductor region having the first conductivity type and adjacent to the first semiconductor region; a first electrically connected directly or via another semiconductor region;
and a second main electrode electrically connected to the first semiconductor region directly or through another semiconductor region, the second semiconductor region and the third semiconductor region are respectively exposed on the surface of the semiconductor substrate, and the third
The semiconductor region is adjacent to and surrounded by the second semiconductor region, and the surface of the semiconductor body includes an upper part of the boundary between the second semiconductor region and the third semiconductor region, An insulating film is formed extending over substantially the entire upper surface of the exposed surface of the semiconductor region, and the first main electrode extends over substantially the entire upper surface of the third semiconductor region via the insulating film. , the third semiconductor region in a portion adjacent to the second semiconductor region
The present invention relates to a semiconductor device having an avalanche breakdown junction, wherein the impurity concentration of the semiconductor region is higher than the impurity concentration of the first semiconductor region in a portion adjacent to the second semiconductor region.

なお、第3の半導体領域は、半導体基体の表面を基準に
して第2の半導体領域よりも浅い第1の部分とこれより
も深い第2の部分とを有し、第1の部分が第2の半導体
領域に隣接するように配置されていることが望ましい、
また、第2の部分は第1の部分よりも不純物濃度が高い
方が望ましい。
Note that the third semiconductor region has a first portion shallower than the second semiconductor region and a second portion deeper than this with respect to the surface of the semiconductor substrate, and the first portion is shallower than the second semiconductor region. It is desirable that the semiconductor region is located adjacent to the semiconductor region of
Further, it is desirable that the second portion has a higher impurity concentration than the first portion.

[作 用コ 本発明におけるアバランシェダイオードにおけるブレー
クダウンは第14図の従来のものと同様に、第2の半導
体領域と第3の半導体領域との間で生じる。第2の半導
体領域と第3の半導体領域との間のPN接合に基づく空
乏層の幅は狭いので、ブレークダウン電圧の温度依存性
は比較的小さい。
[Function] Breakdown in the avalanche diode of the present invention occurs between the second semiconductor region and the third semiconductor region, similar to the conventional one shown in FIG. Since the width of the depletion layer based on the PN junction between the second semiconductor region and the third semiconductor region is narrow, the temperature dependence of the breakdown voltage is relatively small.

第3の半導体領域の側端面は第2の半導体領域によって
包囲されているので、第3の半導体領域の表面部分に電
界効果で生じた空乏層は第1の半導体領域の表面部分の
空乏層の影響を受けない、即ち、第1の半導体領域と絶
縁膜と第2の電極とに基づく電界効果作用による空乏層
、又は第1の半導体領域と絶縁膜との関係で生じる空乏
層の幅が絶縁膜のイオンやこの上に設ける保護樹脂のイ
オンで変化しても2.第2の半導体領域と第3の半導体
領域との間の空乏層の拡がり状態が変化しない。
Since the side end face of the third semiconductor region is surrounded by the second semiconductor region, the depletion layer generated by the field effect on the surface portion of the third semiconductor region is the same as the depletion layer on the surface portion of the first semiconductor region. In other words, the depletion layer is not influenced by the field effect effect based on the first semiconductor region, the insulating film, and the second electrode, or the width of the depletion layer generated due to the relationship between the first semiconductor region and the insulating film is insulating. 2. Even if it changes due to the ions of the membrane or the ions of the protective resin provided on it. The spread state of the depletion layer between the second semiconductor region and the third semiconductor region does not change.

請求項2によれば、ブレークダウンによって流れる逆方
向電流の通路の抵抗を小さくすることができる。
According to the second aspect, the resistance of the path of the reverse current flowing due to breakdown can be reduced.

[第1の実施例] 以下、第1図〜第3図を参照して本発明の第1の実施例
に係わるアバランシェダイオードを説明する。
[First Embodiment] Hereinafter, an avalanche diode according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

本実施例のアバランシェダイオードは、第1図に示すよ
うにシリコン半導体から成る半導体基体(サブストレー
ト)11と、半導体基体11の一方の主面に形成された
シリコン酸化膜から成る絶縁膜12と、半導体基体11
の一方の主面側に形成されたAI(アルミニウム)から
成るアノード電極(第1の主電極)13と、半導体基体
11の他方の主面側に形成されたNiにッケル)から成
るカソード′rjh%(第2の主電極)14とを有する
。半導体基体11は出発母材であるN影領域(第1の半
導体領域)15と、その下面に形成されたオーミック接
続用N++形領域16と、その上面を半導体基体11の
一方の主面に露出させてN影領域15に隣接して包囲さ
れた平面円環状のP“影領域(第2の半導体領域)17
と、その上面を半導体基体11の一方の主面に露出させ
てP+形領領域17包囲されたN+形領領域第3の半導
体領域)18とを有する。なお、N影領域15とN++
形領域16とを合せて第1の半導体領域と呼ぶこともで
きる。N+形領領域18側面がP+形領領域17隣接し
、下面がN影領域15の上面に隣接しており、結果とし
てN+形領領域18第2図に示すように、平面的に見て
P+形領領域17内島状に形成される。N+形領領域1
8不純物のイオン注入(プレデポジション)と熱拡散(
ドライブ)を併用して形成され、その不純物濃度はN影
領域15の不純物濃度より高くなっており、且つ表面側
の不純物濃度が内部側よりも高くなっている。N+形領
領域18深さは、P+形領領域17りも浅い0図示の都
合でさほど深さに差がつけられていないが、N+形領領
域18深さをP+形領領域17深さの望ましくは172
以下、更に望ましくは173以下にする。なお、N++
形領域16とP+形領領域17通常の不純物拡散によっ
て形成される。P+形領領域17上方部分の絶縁Jli
12には開口12aが形成されており、アノード電極1
3は開口12aを通じてP+十形領域17隣接する。N
+十形領域18上面にはその全部にわたって絶縁膜12
が形成されている。絶縁v412はP+十形領域17N
+十形領域18境界部分を越えてP+十形領域17上面
にまで延在する。また、アノード電極13はN+十形領
域18上方部分を含んでP+十形領域17外ll!Iま
で延在している。
As shown in FIG. 1, the avalanche diode of this embodiment includes a semiconductor substrate 11 made of a silicon semiconductor, an insulating film 12 made of a silicon oxide film formed on one main surface of the semiconductor substrate 11, and Semiconductor substrate 11
An anode electrode (first main electrode) 13 made of AI (aluminum) formed on one main surface side of the semiconductor substrate 11, and a cathode ′rjh made of Ni (nickel) formed on the other main surface side of the semiconductor substrate 11. % (second main electrode) 14. The semiconductor substrate 11 has an N shadow region (first semiconductor region) 15 which is a starting base material, an N++ type region 16 for ohmic connection formed on the lower surface thereof, and the upper surface thereof is exposed on one main surface of the semiconductor substrate 11. A planar annular P" shadow region (second semiconductor region) 17 adjacent to and surrounded by the N shadow region 15
and an N+ type region (third semiconductor region) 18 surrounded by the P+ type region 17 with its upper surface exposed on one main surface of the semiconductor substrate 11. In addition, N shadow area 15 and N++
The shaped region 16 can also be collectively referred to as a first semiconductor region. The side surface of the N+ shape region 18 is adjacent to the P+ shape region 17, and the lower surface is adjacent to the upper surface of the N shadow region 15. As a result, as shown in FIG. 2, the N+ shape region 18 is P+ in plan view. The shape region 17 is formed in an island shape. N+ shape area 1
8 Impurity ion implantation (pre-deposition) and thermal diffusion (
The impurity concentration is higher than that of the N shadow region 15, and the impurity concentration on the surface side is higher than on the inside side. The depth of the N+ type area 18 is shallower than the P+ type area 17. For convenience of illustration, there is not much difference in depth, but the depth of the N+ type area 18 is the depth of the P+ type area 17. Preferably 172
Below, it is more desirably set to 173 or less. In addition, N++
type region 16 and P+ type region 17 are formed by normal impurity diffusion. Insulation Jli of the upper part of the P+ type area 17
An opening 12a is formed in the anode electrode 12.
3 is adjacent to the P+ cross-shaped region 17 through the opening 12a. N
+An insulating film 12 is formed over the entire upper surface of the 18-shaped region 18.
is formed. Insulation v412 is P + 17N
It extends beyond the boundary of the + ten-shaped region 18 to the upper surface of the P+ ten-shaped region 17 . Further, the anode electrode 13 includes the upper part of the N+ 10-shaped region 18 and the outside of the P+ 10-shaped region 17! It extends to I.

なお、アノード電極13のP+十形領域17ら外側に延
在する部分は周知のフィールドプレートとして作用して
P+十形領域17外周側の耐圧を上昇させる。
Note that the portion of the anode electrode 13 extending outward from the P+ cross-shaped region 17 acts as a well-known field plate to increase the withstand voltage on the outer peripheral side of the P+ cross-shaped region 17.

第1図のアバランシェダイオードのアノード電極13と
カソード電極14との間に、カソード電極14側の電位
が高くなる逆方向電圧を印加すると、P+十形領域17
N影領域15によって形成される第1のPN接合19か
ら点線で示すように第1の空乏層20が拡がり、P+十
形領域17N“影領域18によって形成される第2のP
N接合21から第2の空乏層22が拡がる。また、N+
十形領域18表面側にはアノード電′!f113の電界
効果によって第3の空乏層23が拡がる。なお、第1、
第2及び第3の空乏層20.22.23は互いに連続し
て拡がるので、厳密に区別されるものではない。ここで
、N+十形領域18N影領域15よりも不純物濃度が高
いので、第2の空乏層22は第1の空乏層20よりも幅
狭に形成される。
When a reverse voltage is applied between the anode electrode 13 and the cathode electrode 14 of the avalanche diode shown in FIG.
A first depletion layer 20 expands from the first PN junction 19 formed by the N shadow region 15 as shown by the dotted line, and a second P depletion layer 20 spreads out from the first PN junction 19 formed by the P+ decagonal region 17N" shadow region 18.
A second depletion layer 22 expands from the N junction 21. Also, N+
An anode voltage is provided on the surface side of the ten-shaped region 18! The third depletion layer 23 expands due to the field effect of f113. In addition, the first
The second and third depletion layers 20, 22, and 23 extend continuously from each other and are therefore not strictly distinguishable. Here, since the impurity concentration is higher than that of the N+ decagonal region 18N shadow region 15, the second depletion layer 22 is formed narrower than the first depletion layer 20.

また、N+十形領域18半導体基体11の一方の主面側
からN影領域15側に向って低下する不純O1濃度を有
するから、第1図に示すように、第2の空乏層22は半
導体基体11の一方の主面側で幅狭となる。しかし、N
+十形領域18表面部分には第3の空乏層23があるの
で、最も幅の狭い部分はN+十形領域18表面よりも少
し下に位置する。逆方向電圧がブレークダウン電圧に達
すると、第2の空乏層22の幅狭部分に臨界電界強度E
Critを越える部分(電界集中点)が生じて、この部
分でブレークダウンが起きる。本実施例では、逆方向電
圧印加時にN+十形領域18第2及び第3の空乏層22
.23で一杯にならないようにN“影領域18の直径が
決定されている。このため、ブレークダウンが起きたと
きには、逆方向電流I6はカソード電極14と、N++
形領域16と、N影領域15と、N+十形領域18、第
2の空乏層22の幅狭部分と、P+十形領域17、アノ
ード電極13とから成る通路に流れる。
In addition, since the N+ decadal region 18 has an impurity O1 concentration that decreases from one main surface side of the semiconductor substrate 11 toward the N shadow region 15 side, the second depletion layer 22 is a semiconductor substrate, as shown in FIG. The width becomes narrower on one main surface side of the base body 11. However, N
Since the third depletion layer 23 is present in the surface portion of the + 18-shaped region 18, the narrowest portion is located slightly below the surface of the N+ 18-shaped region 18. When the reverse voltage reaches the breakdown voltage, a critical electric field strength E is applied to the narrow portion of the second depletion layer 22.
A portion exceeding Crit (electric field concentration point) occurs, and breakdown occurs at this portion. In this embodiment, when a reverse voltage is applied, the N+ decagonal region 18 second and third depletion layers 22
.. The diameter of the N'' shadow region 18 is determined so that it does not become full of N++
It flows into a path consisting of the N+ shaped region 16, the N shadow region 15, the N+ 18-shaped region 18, the narrow portion of the second depletion layer 22, the P+ 10-shaped region 17, and the anode electrode 13.

本実施例のアバランシェダイオードは以下の効果を有す
る。
The avalanche diode of this embodiment has the following effects.

(1) N+十形領域18側端面はP十形領域17で包
囲されているなめに、N+十形領域18P+十形領域1
7のPN接合21に基づいて生じる第2の空乏層22の
幅は、N影領域15と絶縁WA12とアノード電極13
とに基づいて生じる空乏層の影響を受けない、従って、
絶縁[12の中のイオンやこの上を被覆する保護樹脂(
図示せず)の中のイオンによってN影領域15の表面の
空乏層が変化しても、N1形領域18とP+十形領域1
7のPN接合21に基づく空乏層22の幅が変化せず、
ブレークダウン電圧の変動が少ない。
(1) Since the side end face of the N+ ten-shaped region 18 is surrounded by the P ten-shaped region 17, the N+ ten-shaped region 18P+ ten-shaped region 1
The width of the second depletion layer 22 generated based on the PN junction 21 of 7 is the width of the N shadow region 15, the insulation WA 12, and the anode electrode 13.
Therefore, it is not affected by the depletion layer caused by
The ions in the insulation [12 and the protective resin that coats it]
Even if the depletion layer on the surface of the N shadow region 15 changes due to ions in the
The width of the depletion layer 22 based on the PN junction 21 of No. 7 does not change,
There is little variation in breakdown voltage.

(2) 本実施例のアバランシェダイオードでは、電界
集中点を通る逆方向電流の電流経路を横切る空乏層、即
ちアバランシェブレークダウンを起こす領域での空乏層
が比較的幅狭に形成される。
(2) In the avalanche diode of this embodiment, the depletion layer that crosses the current path of the reverse current passing through the electric field concentration point, that is, the depletion layer in the region where avalanche breakdown occurs, is formed to be relatively narrow.

従って、ブレークダウン電圧の温度依存性が小さいアバ
ランシェダイオードを実現できる。
Therefore, an avalanche diode whose breakdown voltage is less dependent on temperature can be realized.

(3) 電界集中点が第3図に示すように半導体基体1
1の表面よりも内側(下IJII)に形成されるのでク
リープ現象(逆方向電圧印加時にブレークダウン電圧が
短時間のうちに変動する不安定な現象)が起きない、な
お、第3図では破線によって各領域15.17.18の
境界が示され、実線24によって電界の等しい部分を結
んだ等電界曲線が示されており、内側に位置する等電位
曲線はど電界が強くなっている。
(3) The electric field concentration point is located on the semiconductor substrate 1 as shown in Figure 3.
Since it is formed inside the surface of 1 (lower IJII), the creep phenomenon (an unstable phenomenon in which the breakdown voltage fluctuates in a short time when a reverse voltage is applied) does not occur. The boundaries of each region 15, 17, and 18 are shown by 24, and the equipotential curve connecting the equal electric field parts is shown by the solid line 24, and the equipotential curve located inside has a stronger electric field.

(4) N+十形領域18上面に形成された絶縁膜12
がアノード電極13で覆われているので、アノード電f
!13が絶縁膜12とともに保護膜として作用し、高い
信頼性が得られている。本実施例では生産性のよいシリ
コン酸化膜のみから成る絶縁膜12で、シリコン酸化膜
とシリコン窒化膜やリンシリケートガラス膜等から成る
二層の絶縁膜と同等の信頼性が得られている。
(4) Insulating film 12 formed on the top surface of N+ 10-shaped region 18
is covered with the anode electrode 13, so the anode voltage f
! 13 acts as a protective film together with the insulating film 12, achieving high reliability. In this embodiment, the insulating film 12 made of only a silicon oxide film with good productivity has the same reliability as a two-layer insulating film made of a silicon oxide film, a silicon nitride film, a phosphosilicate glass film, or the like.

[第2の実施例] 次に、第4図及び第5図を参照して本発明の第2の実施
例に係わるアバランシェダイオードを説明する。但し、
第4図及び第5図において符号12〜23で示すものは
第1図及び第2図で同一符号で示すものと実質的に同一
であるので、その説明を省略する。第4図及び第5図の
半導体基体11aは、N影領域15、N++形領域16
、P+形領領域17N+形領領域18他に、新たにN+
+形領域(第4の半導体領域)25を有している。N■
形領領域25側面がN+形領領域18隣接し、下面がN
+形領領域16隣接するようにN影領域15を縦方向に
横切って形成され、第5図に示すように、平面的に見て
N+形領領域18内島状に形成されている。換言すれば
、N++形領域25はN++形領域16から円柱状に立
上り、N影領域15とN+形領゛域18に側面が囲まれ
ている領域である。N++形領域25はP+形領領域1
7びN+形領領域18形成する前にN影領域15に拡散
によって形成される N++形領域25の不純物濃度は
N影領域15及びN+形領領域18不純物濃度よりも高
い、半導体基体11aの表面に露出しているN++形領
域25の表面はN+形領領域18同様にシリコン酸化物
から成る絶縁膜12で被覆されている。なお、N 影領
域25はN+形領領域18同様にN形の不純物濃度が高
い領域であるので、第3の半導体領域の一部と考え、N
+形領領域18第3の半導体領域の第1の部分、N++
形領域25を第2の部分と考えることができる。
[Second Embodiment] Next, an avalanche diode according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. however,
Components denoted by numerals 12 to 23 in FIGS. 4 and 5 are substantially the same as those denoted by the same numerals in FIGS. 1 and 2, and therefore their explanation will be omitted. The semiconductor substrate 11a in FIGS. 4 and 5 includes an N shadow region 15 and an N++ type region 16.
, P+ shape region 17N+ shape region 18, and a new N+
It has a + type region (fourth semiconductor region) 25. N■
The side surface of the shape region 25 is adjacent to the N+ shape region 18, and the bottom surface is N
It is formed vertically across the N shadow region 15 so as to be adjacent to the +-shaped area 16, and as shown in FIG. 5, it is formed in the shape of an island within the N+-shaped area 18 when viewed in plan. In other words, the N++ type area 25 is an area that rises up from the N++ type area 16 in a cylindrical shape and is surrounded on the sides by the N shadow area 15 and the N+ type area 18. N++ type area 25 is P+ type area 1
7. The impurity concentration of the N++ type region 25, which is formed by diffusion in the N shadow region 15 before forming the N+ type region 18, is higher than the impurity concentration of the N shadow region 15 and the N+ type region 18 on the surface of the semiconductor substrate 11a. The exposed surface of the N++ type region 25 is covered with an insulating film 12 made of silicon oxide like the N+ type region 18. Note that, like the N+ type region 18, the N shadow region 25 is a region with a high N type impurity concentration, so it is considered to be a part of the third semiconductor region, and the N
+ shaped region 18 first portion of third semiconductor region, N++
Shape region 25 can be considered a second part.

第4図のアバランシェダイオードのアノード電極13と
カソード電極14との間に、カソード電極14側の電位
がアノード電極13よりも高くなる逆方向電圧を印加す
ると、P+形領領域17N影領域15によって形成され
る第1のPN接合19から点線で示丈ように第1の空乏
層20が拡がり、P+形領領域17N+形領領域18よ
って形成される第2のPN接合21から第2の空乏層2
2が拡がる。また、N+形領領域18表面側にはアノー
ドt[i13の電界効果によって第3の空乏層23が拡
がる。N++形領域25の表面には、Nll領領域25
不純物濃度が十分に高いので空乏層が実質的に発生しな
い。なお、N++形領域25の不純物濃度がN+形領領
域18不純物濃度に近づくと、N++形領域25の表面
に僅かに空乏層が拡がる。
When a reverse voltage is applied between the anode electrode 13 and the cathode electrode 14 of the avalanche diode shown in FIG. The first depletion layer 20 expands from the first PN junction 19 as shown by the dotted line, and the second depletion layer 2 spreads from the second PN junction 21 formed by the P+ type region 17N+ type region 18.
2 expands. Furthermore, a third depletion layer 23 is expanded on the surface side of the N+ type region 18 due to the electric field effect of the anode t[i13. On the surface of the N++ type region 25, an Nll region 25 is formed.
Since the impurity concentration is sufficiently high, virtually no depletion layer is generated. Note that when the impurity concentration of the N++ type region 25 approaches the impurity concentration of the N+ type region 18, a depletion layer slightly expands on the surface of the N++ type region 25.

本実施例においても、空乏層20.22.23の中で最
も幅の狭い部分は半導体基体11aの上面よりも少し下
のN+形領領域18中生じる。従って、アノード13と
カソード14との間に逆方向電圧を印加した時、この幅
狭部分が電界集中点とな1す、ブレークダウンがこの幅
狭部分で生じる。
Also in this embodiment, the narrowest portion of the depletion layers 20, 22, 23 occurs in the N+ type region 18 slightly below the upper surface of the semiconductor substrate 11a. Therefore, when a reverse voltage is applied between the anode 13 and the cathode 14, this narrow portion serves as an electric field concentration point, and breakdown occurs at this narrow portion.

第2の空乏層22の幅狭部分は不純物濃度が大きいN+
形領領域18あり、このN+形領領域18隣接して不純
物濃度が更に大きいN++形領域25があり、このN+
+形領域25がらう−っのN++形領域16に連続して
いるので、逆方向電流IRは第7図に、示すようにカソ
ード14、N++形領域16、N++形領域25、N+
形領kA18、P+形領領域17アノード13の経路で
流れる。
The narrow portion of the second depletion layer 22 has a high impurity concentration of N+
Adjacent to this N+ type region 18 is an N++ type region 25 with an even higher impurity concentration.
Since the +-type region 25 is continuous with the N++-type region 16, the reverse current IR flows from the cathode 14, the N++-type region 16, the N++-type region 25, and the N+
It flows through the path of the shape region kA18, the P+ shape region 17 and the anode 13.

第2の実施例のアバランシェダイオードは、第1の実施
例と同様な利点を有する他に、逆方向電流IRの通路の
抵抗値を小さくできる利点を有する。即ち、このアバラ
ンシェダイオードは逆方向電流■□の通路に抵抗値の低
いN++形領域25を含んでいるので、逆方向電流■1
の電流経路の抵抗値が小さくなる。このため、アバラン
シェをブレークダウン領域における動作抵抗が小さくな
る。
The avalanche diode of the second embodiment has the same advantages as the first embodiment, and also has the advantage that the resistance value of the path for the reverse current IR can be reduced. That is, since this avalanche diode includes an N++ type region 25 with a low resistance value in the path of the reverse current ■□, the reverse current ■1
The resistance value of the current path becomes smaller. Therefore, the operating resistance in the avalanche breakdown region is reduced.

[第3の実施例] 第6図及び第7図を参照して本発明の第3の実施例に係
わるアバランシェダイオードを内蔵した過電圧動作サイ
リスタを説明する。第6図においては、P+形領領域3
1N影領域32とP影領域33とN+形領領域34よっ
て縦方向にサイリスタ35が形成されており、N影領域
32とP影領域33とN+形列域36とによってアバラ
ンシェダイオード37が形成されている。サイリスタ3
5はアノード電極38とカソード電極39とゲート電i
4oを有ルており、アバランシェダイオード37はサイ
リスタ35のゲート@i4oをアノード電極、アノード
電極38をカソード電極としている0本願発明とこの実
施例との対応関係を示すと、第1の半導体領域はN影領
域32、第2の半導体領域はP影領域33、第3の半導
体領域はN+形領領域36第1の主電極はアノード電極
38、第2の主電極はゲート電極40である。第1図と
第6図との対応関係を示すと、N影領域32はN影領域
15、P影領域33はP+形領領域17N+形領領域3
6N+形領領域18それぞれ対応する。なお、N+形領
領域36P影領域33によって環状に包囲されている。
[Third Embodiment] An overvoltage operation thyristor incorporating an avalanche diode according to a third embodiment of the present invention will be described with reference to FIGS. 6 and 7. In FIG. 6, P+ shape region 3
A thyristor 35 is formed in the vertical direction by the 1N shadow region 32, the P shadow region 33, and the N+ type region 34, and an avalanche diode 37 is formed by the N shadow region 32, the P shadow region 33, and the N+ type array region 36. ing. Thyristor 3
5 is an anode electrode 38, a cathode electrode 39, and a gate electrode i.
4o, and the avalanche diode 37 uses the gate @i4o of the thyristor 35 as an anode electrode, and the anode electrode 38 as a cathode electrode.To show the correspondence between the present invention and this embodiment, the first semiconductor region is The N shadow region 32 is the second semiconductor region, the P shadow region 33 is the second semiconductor region, the N+ type region 36 is the third semiconductor region, the anode electrode 38 is the first main electrode, and the gate electrode 40 is the second main electrode. To show the correspondence between FIG. 1 and FIG. 6, N shadow area 32 is N shadow area 15, P shadow area 33 is P + shape area 17N + shape area 3.
6N+ shape areas 18 correspond to each other. Note that it is surrounded in an annular manner by the N+ shaped area 36P and the shadow area 33.

まなN+形領領域41チャンネルストヅバとして機能す
る。
Mana N+ type area 41 functions as a channel stopper.

第6図の過電圧動作サイリスタは第7図に示すように、
サイリスタ35のアノードを極38とゲート電@40の
間にアバランシェダイオード37が電気的に並列に接続
されたのと等価である。アノード電極38とゲート電極
40との間にアノード電極38向を高い電位とする電圧
が印加され、この電圧がアバランシェダイオード37の
ブレークダウン電圧を越えるとアバランシェダイオード
に逆方向電流が流れてサイリスタ35が導通する。
The overvoltage operation thyristor shown in Fig. 6 is as shown in Fig. 7.
This is equivalent to an avalanche diode 37 being electrically connected in parallel between the anode of the thyristor 35 and the pole 38 and the gate voltage @40. A voltage is applied between the anode electrode 38 and the gate electrode 40 so that the potential toward the anode electrode 38 is high, and when this voltage exceeds the breakdown voltage of the avalanche diode 37, a reverse current flows through the avalanche diode and the thyristor 35 is activated. Conduct.

第6図の過電圧動作型サイリスタはアバランシェダイオ
ード37のブレークダウン電圧の温度依存性が小さいか
ら、ターンオン電圧の温度依存性が小さい過電圧動作サ
イリスタになっている。
The overvoltage type thyristor shown in FIG. 6 has a small temperature dependence of the breakdown voltage of the avalanche diode 37, so the overvoltage type thyristor has a small temperature dependence of the turn-on voltage.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1) 第3の半導体領域として機能するN+形領領域
18は36の不純物濃度は要求されるアバランシェ電圧
に応じて設定されるが、本発明の効果が十分に得られる
ように、第1の半導体領域としてのN影領域15又は3
2の不純物濃度の5倍以上、望ましくは10@以上とす
るのがよい。
(1) The impurity concentration of the N+ type region 18 functioning as the third semiconductor region is set according to the required avalanche voltage. N shadow region 15 or 3 as a semiconductor region
It is preferable that the impurity concentration is 5 times or more than the impurity concentration of No. 2, preferably 10@ or more.

(2) 第6図のサイリスタにおいて、P影領域33の
中にN+、影領域又はP+形領領域設け、ここにゲート
電極40を接続してもよい。
(2) In the thyristor shown in FIG. 6, an N+, shadow region or P+ type region may be provided in the P shadow region 33, and the gate electrode 40 may be connected thereto.

(3) 第4図のアバランシェダイオードを第6図のサ
イリスタに適用することができる。
(3) The avalanche diode shown in FIG. 4 can be applied to the thyristor shown in FIG. 6.

(4) 第8図に示すように、第1図のN++形領域1
6をP+形領領域26置き換えたPNPから成る三層構
造の半導体素子にも本発明を適用することかできる。な
お、第8図において、第1図と実質的に同一部分には同
一の符号が付されている。
(4) As shown in Figure 8, N++ type region 1 in Figure 1
The present invention can also be applied to a semiconductor element having a three-layer structure made of PNP in which the P+ type region 26 is replaced with the P+ type region 26. Note that in FIG. 8, substantially the same parts as in FIG. 1 are given the same reference numerals.

〈5) 実施例では、第3の半導体領域としてのN+形
領領域18第2の半導体領域としてのP1形領域、17
内に島状に1個のみ形成されているが、第9図に示すよ
うにN+形領領域18島状に複数個形成してもよい。
<5) In the embodiment, the N+ type region 18 as the third semiconductor region, the P1 type region 17 as the second semiconductor region
Although only one N+ type region 18 is formed in the shape of an island, as shown in FIG. 9, a plurality of N+ type regions 18 may be formed in the shape of islands.

(6) 第4図のN++形領域25の代りに、第10図
に示すN++形領域25a、25bの一方又は両方を設
けてもよい、要するに、逆方向電流I3の通路中の少な
くとも一部に高い不純物濃度(低い抵抗率)のN++形
領域25a、25bを設けることによって第4図と同様
にアバランシェダイオードの逆方向特性の非直線性を大
きくすることができる。なお、第10図におけるN++
形領域25bは、N++形領域16にN++形の埋め込
み層を設け、この埋め込み層の不純物をN影領域15に
拡散させることによって得ることができる。第10図に
おいて、第4図と共通する部分には同一の符号が付され
ている。
(6) Instead of the N++ type region 25 in FIG. 4, one or both of the N++ type regions 25a and 25b shown in FIG. 10 may be provided.In other words, at least a part of the path of the reverse current I3 By providing N++ type regions 25a and 25b with high impurity concentration (low resistivity), the nonlinearity of the reverse characteristic of the avalanche diode can be increased as in FIG. 4. In addition, N++ in FIG.
The shaped region 25b can be obtained by providing an N++ type buried layer in the N++ type region 16 and diffusing impurities in this buried layer into the N shadow region 15. In FIG. 10, parts common to those in FIG. 4 are given the same reference numerals.

(7) 第4図のN++形領域25の不純物濃度をN+
形領領域18実質的に同一にしても、それなりの効果が
得られる。
(7) The impurity concentration of the N++ type region 25 in FIG.
Even if the shape regions 18 are made substantially the same, a certain effect can be obtained.

(8) 第1の実施例の場合、アノード電極13はN+
形領領域18上方の全面に延在させなくてもそれなりの
効果は得られる。しかしながら、イオンによるブレーク
ダウン電圧の変動やクリープ現象を効果的に防止するに
は、アノード電f!13をN+形領領域上方の全面に延
在させるのが望ましい、第2の実施例の場合、N++形
領域25の不純物濃度を十分に高くして、N++形領域
25の表面に第3の空乏層が実質的に拡がらないように
したときは、アノード電極13を第3の空乏層の終端よ
りも外側まで延在させれば本発明の効果がそれなりに得
られる。従って、N++形領域25の全面にわたってア
ノード電極13を延在させる必要はない、しかしながら
、ブレークダウン電圧の変動、クリープ現象を確実に防
止するには、N十+形領域25の上面の略全面に延在さ
せるのがよい。
(8) In the case of the first embodiment, the anode electrode 13 is N+
Even if it does not extend over the entire surface above the shape area 18, a certain effect can be obtained. However, in order to effectively prevent breakdown voltage fluctuations and creep phenomena caused by ions, the anode voltage f! In the case of the second embodiment, in which it is desirable to extend the impurity 13 over the entire surface above the N+ type region, the impurity concentration of the N++ type region 25 is made sufficiently high to form a third depletion layer on the surface of the N++ type region 25. When the layer is not substantially expanded, the effects of the present invention can be obtained to a certain degree by extending the anode electrode 13 beyond the termination of the third depletion layer. Therefore, it is not necessary to extend the anode electrode 13 over the entire surface of the N++ type region 25. However, in order to reliably prevent breakdown voltage fluctuations and creep phenomena, it is necessary to extend the anode electrode 13 over almost the entire upper surface of the N+ type region 25. It is better to extend it.

なお、N++形領域25の不純物濃度をやや低くしてそ
の表面の略全面に第3の空乏層が拡がるようにしたとき
は、N++形領域25の上面の略全面にアノード電極1
3を形成する。
Note that when the impurity concentration of the N++ type region 25 is slightly lowered so that the third depletion layer spreads over almost the entire surface thereof, the anode electrode 1 is formed over almost the entire upper surface of the N++ type region 25.
form 3.

(9) 第1図のアバランシェダイオードにおいて、N
+形領領域18N++形領域16に隣接するまで下方に
延在させて動作抵抗の低減化を計っても良い、しかしな
がら、所望のアバランシェ電圧を有するアバランシェダ
イオードを歩留り良く得るには、N+形領領域18下面
をP+形領領域17下面よりも上方に位置させるのが良
い、従って、第2の実施例のように、N+形領領域18
その下面がP+形領領域17下面よりも上方に位置する
ようにし、N+“影領域25がP+形領領域17ら離間
してP+形領領域17下面よりも下方に位置するように
設計するのが、所望のアバランシェ電圧を得られる点で
も動作抵抗の低減化構造として望ましい。
(9) In the avalanche diode shown in Figure 1, N
+-type region 18N++-type region 18 may be extended downward until it is adjacent to N++-type region 16 in order to reduce the operating resistance. It is preferable that the lower surface of 18 is located above the lower surface of P+ type area 17. Therefore, as in the second embodiment, N+ type area 18
The design is such that its lower surface is located above the bottom surface of the P+ shape region 17, and the N+" shadow region 25 is spaced apart from the P+ shape region 17 and located below the bottom surface of the P+ shape region 17. However, it is also desirable as a structure for reducing operating resistance in that a desired avalanche voltage can be obtained.

(10) 第11図及び第12図に示すように、N+形
領領域環状に形成し、これに隣接して包囲されるP+形
領領域17a設け、このP+形領領域17aアノード電
極13を接続してもよい。
(10) As shown in FIGS. 11 and 12, an N+ type area is formed in an annular shape, a P+ type area 17a surrounded by the N+ type area is provided, and this P+ type area 17a is connected to the anode electrode 13. You may.

[発明の効果] 上述から明らかなように、請求項1及び2の発明によれ
ば不純物濃度が低い第1の半導体領域と絶縁膜と第2の
電極とに基づいて生じる空乏層がブレークダウン電圧に
影響しないアバランシェ接合を有する半導体装置を提供
することができる。
[Effects of the Invention] As is clear from the above, according to the inventions of claims 1 and 2, the depletion layer generated based on the first semiconductor region with a low impurity concentration, the insulating film, and the second electrode has a breakdown voltage. Accordingly, it is possible to provide a semiconductor device having an avalanche junction that does not affect performance.

請求項2によれば動作抵抗の小さいアバランシェ接合を
有する半導体装置を提供することができる。
According to the second aspect, it is possible to provide a semiconductor device having an avalanche junction with low operating resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のアバランシェダイオー
ドを第2図のI−I線に対応して示す断面図、 第2図は第1図の半導体基体の表面、を示す平面図、 第3図は第1図のアバランシェダイオードのN影領域と
P+形領領域N+形領領域の境界部分における電界強度
の分布を示す図、 第4図は第2の実施例のアバランシェダイオードを第5
図のIV −IV線に対応して示す断面図、第5図は第
4図の半導体基体の表面を示す平面図、 第6図は第3の実施例のサイリスタを示す断面図、 第7図は第6図のサイリスタの等価回路図、第8図は変
形例のアバランシェダイオードを第1図に対応する部分
で示す断面図、 第9図は別の変形例のアバランシェダイオードの半導体
基体の表面を示す平面図、 第10図は更に別の変形例のアバランシェダイオードを
第1図に対応する部分で示す断面図、第11図は変形例
のアバランシェダイオードを示す断面図、 第12図ば第11図のアバランシェダイオードの平面図
、 第13図及び第14図は従来のアバランシェダイオード
をそれぞれ示す断面図である。 11・・・半導体基体、12・・・絶縁膜、13・・・
アノード電極、14・・・カソード電極、15・・・N
影領域、16・・・N++形領域、17・・・P+形領
領域18・・・N1形領域。
1 is a sectional view showing an avalanche diode according to a first embodiment of the present invention, corresponding to the line II in FIG. 2; FIG. 2 is a plan view showing the surface of the semiconductor substrate in FIG. 1; 3 is a diagram showing the electric field strength distribution at the boundary between the N shadow region and the P+ type region and the N+ type region of the avalanche diode of FIG. 1. FIG.
5 is a plan view showing the surface of the semiconductor substrate in FIG. 4; FIG. 6 is a sectional view showing the thyristor of the third embodiment; FIG. is an equivalent circuit diagram of the thyristor in FIG. 6, FIG. 8 is a cross-sectional view of a modified avalanche diode at a portion corresponding to FIG. 1, and FIG. 9 shows the surface of the semiconductor substrate of another modified avalanche diode. FIG. 10 is a cross-sectional view of another modification of the avalanche diode corresponding to FIG. 1, FIG. 11 is a cross-section of the modification of the avalanche diode, and FIG. 13 and 14 are cross-sectional views showing conventional avalanche diodes, respectively. 11... Semiconductor base, 12... Insulating film, 13...
Anode electrode, 14... Cathode electrode, 15...N
Shadow area, 16...N++ type area, 17...P+ type area 18...N1 type area.

Claims (1)

【特許請求の範囲】 [1] N形又はP形の第1の導電形を有する第1の半
導体領域と、 前記第1の導電形とは反対の導電形の第2の導電形を有
し、前記第1の半導体領域に隣接している第2の半導体
領域と、 前記第1の導電形を有し、前記第1の半導体領域に隣接
している第3の半導体領域と、 前記第2の半導体領域に直接に又は別の半導体領域を介
して電気的に接続された第1の主電極と、前記第1の半
導体領域に直接に又は別の半導体領域を介して電気的に
接続された第2の主電極とを備え、前記第2の半導体領
域及び前記第3の半導体領域は半導体基体の表面にそれ
ぞれ露出しており、前記第3の半導体領域は前記第2の
半導体領域に隣接して包囲されており、前記半導体基体
の表面には前記第2の半導体領域と、前記第3の半導体
領域の境界部分の上方を含み前記第3の半導体領域の露
出面の上面の略全部に延在する絶縁膜が形成されており
、前記第1の主電極は前記絶縁膜を介して前記第3の半
導体領域の上面の略全部に延在し、前記第2の半導体領
域に隣接する部分での前記第3の半導体領域の不純物濃
度は前記第2の半導体領域に隣接する部分での前記第1
の半導体領域の不純物濃度よりも高いことを特徴とする
アバランシェ降伏型接合を有する半導体装置。 [2]前記第3の半導体領域は、前記半導体基体の表面
を基準にした前記第2の半導体領域の深さよりも浅い第
1の部分と前記第2の半導体領域の深さよりも深い第2
の部分とを有し、前記第1の部分は前記第2の半導体領
域に隣接するように配置され、前記第2の部分は平面的
に見て前記第1の部分に包囲されるように配置されてい
ることを特徴とする請求項1記載の半導体装置。
[Scope of Claims] [1] A first semiconductor region having a first conductivity type of N type or P type, and a second conductivity type having a conductivity type opposite to the first conductivity type. , a second semiconductor region adjacent to the first semiconductor region; a third semiconductor region having the first conductivity type and adjacent to the first semiconductor region; a first main electrode electrically connected to the semiconductor region directly or through another semiconductor region; and a first main electrode electrically connected to the first semiconductor region directly or through another semiconductor region. a second main electrode, the second semiconductor region and the third semiconductor region are each exposed on the surface of the semiconductor substrate, and the third semiconductor region is adjacent to the second semiconductor region. The surface of the semiconductor substrate includes a portion extending over substantially the entire upper surface of the exposed surface of the third semiconductor region, including above the boundary between the second semiconductor region and the third semiconductor region. An insulating film is formed therein, and the first main electrode extends over substantially the entire upper surface of the third semiconductor region via the insulating film, and extends in a portion adjacent to the second semiconductor region. The impurity concentration of the third semiconductor region is greater than the impurity concentration of the first semiconductor region in a portion adjacent to the second semiconductor region.
A semiconductor device having an avalanche breakdown junction characterized in that the impurity concentration is higher than that of a semiconductor region. [2] The third semiconductor region includes a first portion shallower than the depth of the second semiconductor region and a second portion deeper than the depth of the second semiconductor region with respect to the surface of the semiconductor substrate.
, the first part is arranged so as to be adjacent to the second semiconductor region, and the second part is arranged so as to be surrounded by the first part when viewed in a plan view. 2. The semiconductor device according to claim 1, wherein:
JP1208900A 1988-12-30 1989-08-11 Semiconductor device having avalanche breakdown type junction Granted JPH02256279A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1208900A JPH02256279A (en) 1988-12-30 1989-08-11 Semiconductor device having avalanche breakdown type junction
KR1019890019078A KR920010676B1 (en) 1988-12-30 1989-12-21 Avalanche breakdown diode
US07/458,398 US4999683A (en) 1988-12-30 1989-12-28 Avalanche breakdown semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-333952 1988-12-30
JP33395288 1988-12-30
JP1208900A JPH02256279A (en) 1988-12-30 1989-08-11 Semiconductor device having avalanche breakdown type junction

Publications (2)

Publication Number Publication Date
JPH02256279A true JPH02256279A (en) 1990-10-17
JPH0582072B2 JPH0582072B2 (en) 1993-11-17

Family

ID=18271816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208900A Granted JPH02256279A (en) 1988-12-30 1989-08-11 Semiconductor device having avalanche breakdown type junction

Country Status (2)

Country Link
JP (1) JPH02256279A (en)
KR (1) KR920010676B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778970A (en) * 1993-06-18 1995-03-20 Sanken Electric Co Ltd Semiconductor device
KR100483612B1 (en) * 2002-08-19 2005-04-19 삼성전기주식회사 Photo Diode for Optical Pick-Up
JP2007059800A (en) * 2005-08-26 2007-03-08 Fuji Electric Device Technology Co Ltd Vertical zener diode and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778970A (en) * 1993-06-18 1995-03-20 Sanken Electric Co Ltd Semiconductor device
KR100483612B1 (en) * 2002-08-19 2005-04-19 삼성전기주식회사 Photo Diode for Optical Pick-Up
JP2007059800A (en) * 2005-08-26 2007-03-08 Fuji Electric Device Technology Co Ltd Vertical zener diode and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0582072B2 (en) 1993-11-17
KR920010676B1 (en) 1992-12-12
KR910013587A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
JP2671886B2 (en) Power integrated circuit
US4412242A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
KR100326222B1 (en) Semiconductor device
JP2003174169A (en) Semiconductor device
US4999683A (en) Avalanche breakdown semiconductor device
US7535075B2 (en) Semiconductor device
JPH02256279A (en) Semiconductor device having avalanche breakdown type junction
JPH05259479A (en) Semiconductor device
JPH11204789A (en) Insulating gate type transistor
JP2002246610A (en) Semiconductor element
JP3297087B2 (en) High voltage semiconductor device
JP3551154B2 (en) Semiconductor element
JP2002184988A (en) Semiconductor device
JP2802970B2 (en) Planar type two-terminal bidirectional thyristor
US3453508A (en) Pinch-off shunt for controlled rectifiers
JPH07249737A (en) Planar semiconductor and its fabrication
US4398206A (en) Transistor with integrated diode and resistor
JP2596312B2 (en) Semiconductor device
JPH0642556B2 (en) Semiconductor device having avalanche breakdown junction
JPS6335112B2 (en)
JPH09181335A (en) Semiconductor device
CN114497191A (en) Electrostatic protection device
JP2940377B2 (en) Two-way two-terminal thyristor
CN112825328A (en) Semiconductor device with a plurality of semiconductor chips

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees