JPH0642556B2 - Semiconductor device having avalanche breakdown junction - Google Patents

Semiconductor device having avalanche breakdown junction

Info

Publication number
JPH0642556B2
JPH0642556B2 JP20656489A JP20656489A JPH0642556B2 JP H0642556 B2 JPH0642556 B2 JP H0642556B2 JP 20656489 A JP20656489 A JP 20656489A JP 20656489 A JP20656489 A JP 20656489A JP H0642556 B2 JPH0642556 B2 JP H0642556B2
Authority
JP
Japan
Prior art keywords
semiconductor region
region
semiconductor
type region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20656489A
Other languages
Japanese (ja)
Other versions
JPH0370181A (en
Inventor
明生 清村
隆美 寺島
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP20656489A priority Critical patent/JPH0642556B2/en
Publication of JPH0370181A publication Critical patent/JPH0370181A/en
Publication of JPH0642556B2 publication Critical patent/JPH0642556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アバランシェ降伏型接合を有する半導体装置
に関する。
TECHNICAL FIELD The present invention relates to a semiconductor device having an avalanche breakdown type junction.

[従来例及び発明が解決しようとする課題] アバランシェブレークダウン(なだれ降伏)現像を利用
した定電圧ダイオードは一般にアバランシェダイオード
と呼ばれ、基準電圧回路や保護回路等の種々の電子回路
に広く使用されている。
[Conventional Example and Problems to be Solved by the Invention] A constant voltage diode utilizing avalanche breakdown (avalanche breakdown) development is generally called an avalanche diode and is widely used in various electronic circuits such as a reference voltage circuit and a protection circuit. ing.

ところで、アバランシェダイオード及びツェナーダイオ
ードにおいてブレークダウン電圧を所定値にするために
は、可能な限り半導体基体(サブストレート)の内部で
ブレークダウンを生じさせることが望ましい。このため
に、第7図に示すようにN形領域1の内にP形領域2
を形成すると共に、P形領域2の外周にN形領域3
を配置し、N形領域1にはN++形領域4を介しカソード
電極5を接続し、P形領域2にはアノード電極6を接
続すると共に、アノード電極6を絶縁膜7の上に延在さ
せたアバランシェダイオードが知られている。
By the way, in order to set the breakdown voltage to a predetermined value in the avalanche diode and the Zener diode, it is desirable to cause breakdown within the semiconductor substrate (substrate) as much as possible. Therefore, P + form region 2 to the N type region 1 as shown in FIG. 7
And the N + -type region 3 is formed on the outer periphery of the P + -type region 2.
, The cathode electrode 5 is connected to the N type region 1 through the N ++ type region 4, the anode electrode 6 is connected to the P + type region 2, and the anode electrode 6 is placed on the insulating film 7. An extended avalanche diode is known.

第7図のアバランシェダイオードによれば、アノード電
極6が絶縁膜7を介してN形領域3の上方に延在して
いるので、PN接合に基づく空乏層の他に電界効果に基
づく空乏層が生じ、破線で示すような空乏層8が得られ
る。また、空乏層8の拡がりは不純物濃度に関係を有
し、低い不純物濃度のN形領域1に幅広に生じ、高い不
純物濃度のN形領域3に幅狭に生じる。また、N
領域3の不純物濃度は表面側で高く、内部側で低いので
形領域3とP形領域2とのPN接合に基づく空乏
層は表面側に幅狭になる。この結果、第7図に原理的に
示すようにP形領域2とN形領域3との間のPN接
合に基づく空乏層が半導体基体1の表面よりも僅かに下
方において幅狭になり、ここでブレークダウンが生じ
る。なお、N形領域3の深さがP形領域2よりも浅
いために、P形領域2の側端面の下部とN形領域1と
のPN接合に基づく空乏層N形領域3とP形領域2
とのPN接合に基づく空乏層よりも幅広になり、N
領域3内に空乏層の幅狭部分が確実に生じる。第7図の
構造を採用することによって半導体基体の内部の幅狭の
空乏層でブレークダウンを生じさせることは可能にな
り、ブレークダウン電圧の温度依存性は良くなる。しか
し、N形領域1と絶縁膜7とアノード6との組み合せ部
分における電界効果に基づいてN形領域1の表面部分に
生じる空乏層が、絶縁膜7やこの上に被覆される保護樹
脂(図示せず)に含まれるイオンの影響を受けて変動
し、所定のブレークダウン電圧を得ることが困難であっ
た。特に、アバランシェダイオードに高温状態において
逆方向電圧を印加する試験を行うと、ブレークダウン電
圧の変動が顕著に生じる。
According to the avalanche diode of FIG. 7, since the anode electrode 6 extends above the N + -type region 3 through the insulating film 7, the depletion layer based on the field effect as well as the depletion layer based on the PN junction is formed. Occurs, and the depletion layer 8 as shown by the broken line is obtained. Further, the spread of the depletion layer 8 is related to the impurity concentration, and widely occurs in the N type region 1 having a low impurity concentration and narrowly in the N + type region 3 having a high impurity concentration. Further, since the impurity concentration of the N + -type region 3 is high on the surface side and low on the inner side, the depletion layer based on the PN junction between the N + -type region 3 and the P + -type region 2 becomes narrower on the surface side. As a result, as shown in principle in FIG. 7, the depletion layer based on the PN junction between the P + type region 2 and the N + type region 3 becomes narrower slightly below the surface of the semiconductor substrate 1. , Where breakdown occurs. In order depth of the N + form region 3 is shallower than the P + region 2, a depletion layer N + forms a region 3 based on the PN junction between the lower and the N-type region 1 of the side end surface of the P + region 2 And P + type area 2
The width of the depletion layer is wider than that of the depletion layer based on the PN junction with, and a narrow portion of the depletion layer is surely generated in the N + type region 3. By adopting the structure shown in FIG. 7, it becomes possible to cause breakdown in the narrow depletion layer inside the semiconductor substrate, and the temperature dependence of the breakdown voltage is improved. However, the depletion layer generated on the surface portion of the N-type region 1 based on the electric field effect in the combined portion of the N-type region 1, the insulating film 7, and the anode 6 is the insulating film 7 and the protective resin (FIG. It fluctuates under the influence of ions contained in (not shown), and it is difficult to obtain a predetermined breakdown voltage. In particular, when a test in which a reverse voltage is applied to the avalanche diode in a high temperature state is performed, the breakdown voltage changes remarkably.

そこで、本発明の目的は、絶縁膜のイオンの影響を受け
難いアバランシェダイオードを提供することにある。
Therefore, an object of the present invention is to provide an avalanche diode that is not easily affected by ions in the insulating film.

[課題を解決するための手段] 上記目的を達成するための本発明は、半導体基体内に含
まれている第1の導電形の第1の半導体領域と、第1の
導電形とは反対の第2の導電形を有し、前記第1の半導
体領域に隣接し、且つ前記半導体基体の表面に露出する
ように配置されている第2の半導体領域と、前記第1の
半導体領域の不純物濃度よりも高い不純物濃度を有する
第1の導電形の領域であって、前記第1の半導体領域に
隣接しており、且つ前記半導体基体の表面において前記
第2の半導体領域を隣接して包囲するように配置されて
いる第3の半導体領域と、前記第3の半導体領域の不純
物濃度よりも高い不純物濃度を有する第1の導電形の領
域であって、前記半導体基体の表面において前記第3の
半導体領域を隣接して包囲するように配置され、且つ前
記第1の半導体領域に隣接する部分を有するように形成
されている第4の半導体領域と、前記半導体基体の表面
において少なくとも前記第2の半導体領域と前記第3の
半導体領域の境界部分及び前記第3の半導体領域を覆う
ように形成された絶縁膜と、前記第2の半導体領域に直
接に又は別の半導体領域を介して電気的に接続され、且
つ前記絶縁膜を介して少なくとも前記第3の半導体領域
の上に延在している第1の主電極と、前記第1の半導体
領域に直接に又は別の半導体領域を介して電気的に接続
されている第2の主電極とを備えたアバランシェ降伏型
接合を有する半導体装置に係わるものである。
[Means for Solving the Problem] The present invention for achieving the above object is directed to a case where a first semiconductor region of a first conductivity type included in a semiconductor substrate and a first conductivity type are opposite to each other. A second semiconductor region having a second conductivity type, which is adjacent to the first semiconductor region and is disposed so as to be exposed at the surface of the semiconductor substrate; and an impurity concentration of the first semiconductor region. A first conductivity type region having a higher impurity concentration, adjacent to the first semiconductor region, and adjacently surrounding the second semiconductor region on a surface of the semiconductor substrate. A third semiconductor region disposed in the first semiconductor region and a region of the first conductivity type having an impurity concentration higher than that of the third semiconductor region, the third semiconductor being formed on the surface of the semiconductor substrate. Place areas adjacent to each other to enclose And a fourth semiconductor region formed so as to have a portion adjacent to the first semiconductor region, and at least a boundary between the second semiconductor region and the third semiconductor region on the surface of the semiconductor substrate. An insulating film formed so as to cover the portion and the third semiconductor region, and electrically connected to the second semiconductor region directly or via another semiconductor region, and at least via the insulating film. A first main electrode extending above the third semiconductor region, and a second main electrode electrically connected to the first semiconductor region directly or through another semiconductor region. The present invention relates to a semiconductor device having an avalanche breakdown type junction including:

なお、請求項2に示すように、請求項1における第4の
半導体領域を第2の導電形の領域に置き換えても請求項
1と同様な作用効果を得ることができる。
As described in claim 2, even if the fourth semiconductor region in claim 1 is replaced with the region of the second conductivity type, the same effect as in claim 1 can be obtained.

[作用] 本発明の第4の半導体領域の表面には空乏層が実質的に
生じない。従って、第1及び第3の半導体領域と第2の
半導体領域とのPN接合に基づく空乏層に連続する半導
体基体の表面に生じる空乏層の外周縁は第3の半導体領
域の外周縁にほぼ対応して制限される。この結果、絶縁
膜や保護樹脂のイオンによる空乏層の拡がりの変化及び
ブレークダウン電圧変化が発生しない。
[Operation] A depletion layer is not substantially formed on the surface of the fourth semiconductor region of the present invention. Therefore, the outer peripheral edge of the depletion layer formed on the surface of the semiconductor substrate that is continuous with the depletion layer based on the PN junction between the first and third semiconductor regions and the second semiconductor region substantially corresponds to the outer peripheral edge of the third semiconductor region. And be restricted. As a result, changes in the spread of the depletion layer and changes in the breakdown voltage due to the ions of the insulating film and the protective resin do not occur.

[実施例] 以下、第1図〜第3図を参照して本発明の実施例に係わ
るアバランシェダイオードを説明する。
[Embodiment] An avalanche diode according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

本実施例のアバランシェダイオードは、第1図に示すよ
うにシリコン半導体から成る半導体基体(サブスレー
ト)11と半導体基体11の一方の主面に形成されたシ
リコン酸化膜から成る絶縁膜12と、半導体基体11の
一方の主面側に形成されたA1(アルミニウム)から成
るアノード電極(第1の主電極)13と、半導体基体1
1の他方の主面側に形成されたNi(ニッケル)から成
るカソード電極(第2の主電極)14とを有する。半導
体基体11は出発母材であるN形領域(第1の半導体領
域)15と、その下面に形成されたオーミック接続用N
++形領域16と、その上面を半導体基体11の一方の主
面に露出させてN形領域15に隣接して包囲された平面
円形状のP形領域(第2の半導体領域)17と、その
上面を半導体基体11の一方の主面に露出させてP
領域17を包囲するように形成されたN形領域(第3
の半導体領域)18と、N形領域18を包囲するよう
に形成されたN++形領域(第4の半導体領域)19とを
有する。なお、N形領域15とN++形領域16とを合せ
て第1の半導体領域と呼ぶこともできる。N形領域1
8はP形領域17の側端面に隣接し、下面がN形領域
15の上面に隣接しており、第2図に示すように平面的
に見てP形領域17を環状に包囲している。N形領
域18は不純物のイオン注入(プレデポジション)と熱
拡散(ドライブ)を併用して形成され、その不純物濃度
はN形領域15の不純物濃度より高くなっており、且つ
表面側の不純物濃度が内部側よりも高くなっている。N
形領域18の深さは、P形領域17よりも浅い。図
示の都合でさほど深さに差がつけられていないが、N
形領域18の深さをP形領域17の深さの望ましくは
1/2以下、更に望ましくは1/3以下にする。N++
領域19はN形領域18を環状に包囲するように配置
され、且つN形領域18よりも深く形成され、その下
面がN++形領域16に接続されている。このN++形領域
19はP形領域17及びN形領域18を形成する前
に、N形領域15に不純物を拡散することによって形成
され、その不純物濃度はN形領域15及びN形領域1
8の不純物濃度よりも高い。N++形領域19はP形領
域17の側端面とN形領域15との間のPN接合に基づ
く空乏層がN++形領域19に達しない範囲でできるだけ
形領域17に近づけることが望ましい。なお、N++
形領域16とP形領域17は通常の不純物拡散によっ
て形成されている。P形領域17の上方部分の絶縁膜
12には開口が形成されており、アノード電極13は開
口を通じてP形領域17に接続されている。N形領
域18及びN++形領域19の上面にはその全部にわたっ
て絶縁膜12が形成されている。この絶縁膜12はP
形領域17とN形領域18の境界部分を越えてP
領域17の上面にまで延在している。アノード電極13
は、絶縁膜12を介してN形領域18の上の全域に形
成され、更にN++形領域19の中間まで達している。な
お、アノード電極13のP形領域17から外側に延在
する部分は周知のフィールドプレートとして作用する。
As shown in FIG. 1, the avalanche diode of this embodiment includes a semiconductor substrate (subslate) 11 made of a silicon semiconductor, an insulating film 12 made of a silicon oxide film formed on one main surface of the semiconductor substrate 11, and a semiconductor. Anode electrode (first main electrode) 13 made of A1 (aluminum) formed on one main surface side of the base 11, and the semiconductor base 1
1 and a cathode electrode (second main electrode) 14 made of Ni (nickel) formed on the other main surface side. The semiconductor substrate 11 includes an N-type region (first semiconductor region) 15 as a starting base material and an N for ohmic connection formed on the lower surface thereof.
A + -type region 16 and a plane circular P + -type region (second semiconductor region) 17 which is surrounded by the upper surface of the + -type region 16 adjacent to the N-type region 15 by exposing the upper surface thereof to one main surface of the semiconductor substrate 11. , An N + -type region (third part) formed so as to expose its upper surface to one main surface of the semiconductor substrate 11 and surround the P + -type region 17.
Semiconductor region) 18 and an N ++ type region (fourth semiconductor region) 19 formed so as to surround the N + type region 18. The N-type region 15 and the N ++-type region 16 can be collectively referred to as a first semiconductor region. N + type area 1
8 is adjacent to the side end surface of the P + -type region 17 and its lower surface is adjacent to the upper face of the N-type region 15 and surrounds the P + -type region 17 in an annular shape when viewed in plan as shown in FIG. ing. The N + type region 18 is formed by using both ion implantation (predeposition) of impurities and thermal diffusion (drive), and the impurity concentration thereof is higher than the impurity concentration of the N type region 15 and the impurity concentration on the surface side. Is higher than the inside. N
The depth of the + type region 18 is shallower than that of the P + type region 17. For the sake of illustration, the depth is not so different, but N +
The depth of the shaped region 18 is preferably 1/2 or less, more preferably 1/3 or less of the depth of the P + -shaped region 17. N ++ type region 19 is disposed the N + form region 18 so as to surround annularly, is and deeper than N + form region 18, its lower surface is connected to the N ++ type region 16. The N ++ type region 19 is formed by diffusing impurities into the N type region 15 before forming the P + type region 17 and the N + type region 18, and the impurity concentration thereof is N type region 15 and N +. Shape area 1
8 is higher than the impurity concentration. The N ++ type region 19 is brought as close as possible to the P + type region 17 within a range in which the depletion layer based on the PN junction between the side end surface of the P + type region 17 and the N type region 15 does not reach the N ++ type region 19. Is desirable. In addition, N ++
The shape region 16 and the P + -type region 17 are formed by ordinary impurity diffusion. An opening is formed in the insulating film 12 above the P + -type region 17, and the anode electrode 13 is connected to the P + -type region 17 through the opening. The insulating film 12 is formed over the entire upper surfaces of the N + type region 18 and the N ++ type region 19. This insulating film 12 is P +
It extends beyond the boundary between the shape region 17 and the N + -type region 18 to the upper surface of the P + -type region 17. Anode electrode 13
Are formed over the N + -type region 18 through the insulating film 12 and reach the middle of the N ++ -type region 19. The portion of the anode electrode 13 extending from the P + type region 17 to the outside functions as a well-known field plate.

第1図のアバランシェダイオードのアノード電極13と
カソード電極14との間にカソード電極14側の電位が
高くなる逆方向電圧を印加すると、P形領域17とN
形領域15によって形成される第1のPN接合20から
点線で示すように第1の空乏層21が拡がり、P形領
域17とN形領域18によって形成される第2のPN
接合22から第2の空乏層23が拡がる。また、N
領域18の表面側にはアノード電極13の電界効果によ
って第3の空乏層24が拡がる。但し、N形領域18
の表面の空乏層24の延長でわずかに空乏層がN++形領
域19に入り込んでいる。なお、第1、第2及び第3の
空乏層21、23、24は互いに連続して拡がるので厳
密に区別されるものではない。ここで、N形領域18
がN形領域15よりも不純物濃度が高いので、第2の空
乏層23は第1の空乏層21よりも幅狭に形成される。
また、N形領域18は半導体基体11の一方の主面側
からN形領域15側に向って低下する不純物濃度を有す
るから、第1図に示すように第2の空乏層23は半導体
基体11の一方の主面側で幅狭となる。しかし、N
領域18の表面部分には第3の空乏層24があるので、
もっとも幅の狭い部分はN形領域18の表面よりも少
し下に位置する。逆方向電圧がブレークダウン電圧に達
すると、第2の空乏層23の幅狭部分に臨界電界強度Ec
ritを越える部分(電界集中点)が生じて、この部分で
ブレークダウンが起きる。本実施例では、逆方向電圧印
加時にN形領域18が第2及び第3の空乏層23、2
4で一杯にならないようにN形領域18の幅が決定さ
れている。ブレークダウン時の逆方向電流Iの電流通
路は、カソード電極14と、N++形領域16と、N++
領域19と、N形領域18と、第2の空乏層23の幅
狭部分と、P形領域17と、アノード電極13とから
成る。
When the potential of the cathode electrode 14 side is reverse voltage is applied becomes higher between the anode electrode 13 and the cathode electrode 14 of the avalanche diode of FIG. 1, P + form region 17 and N
A first depletion layer 21 extends from the first PN junction 20 formed by the N-type region 15 as shown by a dotted line, and a second PN formed by the P + -type region 17 and the N + -type region 18 is formed.
The second depletion layer 23 extends from the junction 22. In addition, the third depletion layer 24 expands on the surface side of the N + type region 18 due to the electric field effect of the anode electrode 13. However, N + type region 18
The depletion layer slightly extends into the N + + type region 19 by the extension of the depletion layer 24 on the surface of the. Note that the first, second, and third depletion layers 21, 23, and 24 are not distinguished strictly because they extend continuously from each other. Where the N + type region 18
Since the impurity concentration is higher than that of the N-type region 15, the second depletion layer 23 is formed narrower than the first depletion layer 21.
Further, since the N + -type region 18 has an impurity concentration that decreases from one main surface side of the semiconductor substrate 11 toward the N-type region 15 side, the second depletion layer 23 is formed on the semiconductor substrate 11 as shown in FIG. The width becomes narrower on one main surface side of 11. However, since there is the third depletion layer 24 in the surface portion of the N + type region 18,
The narrowest part is located slightly below the surface of the N + type region 18. When the reverse voltage reaches the breakdown voltage, the critical electric field strength Ec is generated in the narrow portion of the second depletion layer 23.
A portion (electric field concentration point) that exceeds rit occurs, and breakdown occurs in this portion. In this embodiment, the N + -type region 18 causes the second and third depletion layers 23, 2 to be applied when a reverse voltage is applied.
The width of the N + type region 18 is determined so as not to be filled with four. The current path of the reverse current I R at the time of breakdown is the width of the cathode electrode 14, the N ++ type region 16, the N ++ type region 19, the N + type region 18, and the second depletion layer 23. It is composed of a narrow portion, a P + -type region 17, and an anode electrode 13.

本実施例のアバランシェダイオードは以下の効果を有す
る。
The avalanche diode of this embodiment has the following effects.

(1)N形領域18の側端面は空乏層が形成されない
++形領域19で包囲され、且つPN接合に基づく空乏
層に連続する半導体基体11の表面の空乏層がN形領
域18の全表面に限定的に生じるように構成されている
ために、絶縁膜12やこの上に設けられる保護樹脂(図
示せず)に含まれているイオンによって空乏層21、2
3、24の拡りが変化しない。もし、N++形領域19の
所に従来例の第7図に示すように空乏層が生じると、絶
縁膜12の中のイオンやこの上を被覆する保護樹脂(図
示せず)の中のイオンによってこの空乏層が変化し、N
形領域18とP形領域17とのPN接合22に基づ
く空乏層23の幅も変化し、ブレークダウン電圧の変動
が生じるが、本実施例ではこの様な変動が抑制される。
(1) The side end surface of the N + -type region 18 is surrounded by the N ++ -type region 19 in which the depletion layer is not formed, and the depletion layer on the surface of the semiconductor substrate 11 continuous with the depletion layer based on the PN junction is the N + -type region. The depletion layers 21 and 2 are formed by the ions contained in the insulating film 12 and the protective resin (not shown) provided on the insulating film 12 because they are formed so as to be limited to the entire surface of 18.
The spread of 3 and 24 does not change. If a depletion layer is formed at the N ++ type region 19 as shown in FIG. 7 of the conventional example, the ions in the insulating film 12 and the protective resin (not shown) covering this ion This depletion layer is changed by the ions, and N
+ Vary the width of the PN junction 22 in based depletion 23 of the form region 18 and the P + region 17, although variations in the breakdown voltage occurs, in the present embodiment such variations are suppressed.

(2)本実施例のアバランシェダイオードでは、電界集
中点を通る逆方向電流の電流経路を横切る空乏層、即ち
アバランシェブレークダウンを起こす領域での空乏層が
比較的幅狭に形成される。したがって、ブレークダウン
電圧の温度依存性が小さいアバランシェダイオードを実
現できる。
(2) In the avalanche diode of this embodiment, the depletion layer that crosses the current path of the reverse current passing through the electric field concentration point, that is, the depletion layer in the region where the avalanche breakdown occurs is formed relatively narrow. Therefore, it is possible to realize an avalanche diode in which the temperature dependence of the breakdown voltage is small.

(3)電界集中点が第3図に示すように、半導体基体1
1の表面よりも内側(下側)に形成されるので、クリー
プ現象(逆方向電圧印加時にブレークダウン電圧が短時
間のうちに変動する不安定な現象)が起きない。なお、
第3図では各領域15、17、18、19の境界が破線
で示され、実線25によって電界の等しい部分を結んだ
等電界曲線が示されており、内側に位置する等電界曲線
ほど電界が強くなっている。
(3) The electric field concentration point is as shown in FIG.
Since it is formed on the inner side (lower side) of the surface of No. 1, the creep phenomenon (an unstable phenomenon in which the breakdown voltage fluctuates within a short time when a reverse voltage is applied) does not occur. In addition,
In FIG. 3, boundaries of the regions 15, 17, 18, and 19 are indicated by broken lines, and a solid line 25 indicates an isoelectric field curve connecting portions having the same electric field. It's getting stronger.

(4)絶縁膜12の上方がアノード電極13で覆われて
いるので、アノード電極13が絶縁膜12とともに保護
膜として作用し、高い信頼性が得られている。本実施例
では、生産性のよいシリコン酸化膜のみから成る絶縁膜
12でシリコン酸化膜とシリコン窒化膜やリンシリケー
ドガラス膜等から成る二層の絶縁膜と同様の信頼性が得
られている。
(4) Since the upper part of the insulating film 12 is covered with the anode electrode 13, the anode electrode 13 acts as a protective film together with the insulating film 12, and high reliability is obtained. In this embodiment, the insulating film 12 made of only the silicon oxide film having high productivity has the same reliability as that of the two-layer insulating film made of the silicon oxide film, the silicon nitride film, and the phosphosilicate glass film. .

(5)逆方向電流Iの電流経路に不純物濃度が充分に
高いN++形領域19があるため、逆方向電流Iの電流
径路の抵抗値を小さくできる。このため、動作抵抗の小
さいアバランシェダイオードを実現できる。即ち、本実
施例のアバランシェダイオードによれば、アバランシェ
ブレークダウン特性において逆方向電圧変化分に対する
逆方向電流の変化分が大きいアバランシェダイオードを
実現できる。
(5) Since the current path of the reverse current I R has the N ++ type region 19 having a sufficiently high impurity concentration, the resistance value of the current path of the reverse current I R can be reduced. Therefore, an avalanche diode having a low operating resistance can be realized. That is, according to the avalanche diode of the present embodiment, it is possible to realize an avalanche diode in which the amount of change in the reverse current with respect to the change in reverse voltage is large in the avalanche breakdown characteristic.

(6)N形領域18の深さがP形領域17の深さよ
りも浅く、P形領域17の側端面にはN形領域18
とN形領域15との両方が隣接している。従って、N
形領域18に幅狭の空乏層23を安定的に形成するこ
とができる。
(6) N + forms the depth of the region 18 is shallower than the depth of the P + region 17, P + is the side end face of the form area 17 N + form region 18
And the N + type region 15 are adjacent to each other. Therefore, N
The narrow depletion layer 23 can be stably formed in the + type region 18.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modification] The present invention is not limited to the above-described embodiments, and the following modifications are possible, for example.

(1)第3の半導体領域としてのN形領域18の不純
物濃度は要求されるアバランシェ電圧に応じて設定され
るが、本発明の効果が十分に得られるように、第1の半
導体領域としてのN形領域15の不純物濃度の5倍以
上、望ましくは10倍以上とするのがよい。
(1) The impurity concentration of the N + -type region 18 as the third semiconductor region is set according to the required avalanche voltage, but as the first semiconductor region, the impurity concentration is set so that the effect of the present invention can be sufficiently obtained. The impurity concentration of the N-type region 15 is 5 times or more, preferably 10 times or more.

(2)第1図のN++形領域16を第4図に示すようにP
形領域26に置き換えたPNP三層構造の半導体素子
にも本発明を適用することができる。なお、第4図にお
いて第1図と共通する部分には同一の符号が付されてい
る。
(2) P the N ++ type region 16 in FIG. 1 as shown in FIG.
The present invention can be applied to a semiconductor device having a PNP three-layer structure in which the + type region 26 is replaced. Incidentally, in FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals.

(3)第1図のN++形領域19の代りに、第5図に示す
++形領域19a、19bを設けてもよい。なお、第5
図におけるN++形領域19bは、N++形領域16にN++
形の埋め込み層を設け、この埋め込み層の不純物をN形
領域15に拡散させることによって得ることができる。
第5図において、第1図と共通する部分には同一の符号
が付されている。
(3) instead of the first view of the N ++ type region 19, N ++ type region 19a shown in FIG. 5, may be provided 19b. The fifth
The N ++ type region 19b in the figure is added to the N ++ type region 16 by N ++.
It is possible to obtain it by providing a buried layer having a rectangular shape and diffusing impurities in the buried layer into the N-type region 15.
In FIG. 5, the same parts as those in FIG. 1 are designated by the same reference numerals.

(4)第5図におけるN++形領域19bを省いた構成に
することもできる。
(4) It is also possible to omit the N ++ type region 19b in FIG.

(5)第6図に示すように、第1図のN++形領域19の
代りに、P形領域29を設けてもよい。P形領域2
9の表面には空乏層が形成されないので、空乏層24が
外周側へ延びて行くことを阻ぐことができる。
(5) As shown in FIG. 6, a P + type region 29 may be provided instead of the N ++ type region 19 of FIG. P + type area 2
Since the depletion layer is not formed on the surface of 9, the depletion layer 24 can be prevented from extending to the outer peripheral side.

(6)アノード電極13はN++形領域19の上方の途中
まで延在させれば十分であるが、N++形領域19の全面
又はこれよりも外側まで延在させてもよい。
(6) The anode electrode 13 is it is sufficient extended to the middle of the upper N ++ type region 19 may be extended to the entire surface or outer than this of N ++ type region 19.

[発明の効果] 上述のように本発明によれば、ブレークダウン電圧の変
動の少ないアバランシェ降伏型接合を有する半導体装置
を提供することができる。
[Effect of the Invention] As described above, according to the present invention, it is possible to provide a semiconductor device having an avalanche breakdown type junction in which the fluctuation of the breakdown voltage is small.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係わるアバランシェダイオー
ドを第2図のI−I線に対応して示す断面図、 第2図は第1図の半導体基体の表面を示す平面図、 第3図は第1図のアバランシェダイオードのN形領域と
形領域とN形領域との境界部分における電界強度
の分布を示す図、 第4図、第5図及び第6図は変形例のアバランシェダイ
オードを第1図に対応する部分でそれぞれ示す断面図、 第7図は従来のアバランシェダイオードを示す断面図で
ある。 11…半導体基体、12…絶縁膜、13…アノード電
極、14…カソード電極、15…N形領域、16…N++
形領域、17…P形領域、18…N形領域、19…
++形領域。
1 is a sectional view showing an avalanche diode according to an embodiment of the present invention, taken along the line I--I of FIG. 2, FIG. 2 is a plan view showing the surface of the semiconductor substrate of FIG. 1, and FIG. Is a diagram showing the distribution of the electric field intensity at the boundary portion between the N-type region, the P + -type region and the N + -type region of the avalanche diode of FIG. 1, and FIGS. 4, 5, and 6 are the avalanche of the modified example. FIG. 7 is a sectional view showing a diode in a portion corresponding to FIG. 1, and FIG. 7 is a sectional view showing a conventional avalanche diode. 11 ... Semiconductor substrate, 12 ... Insulating film, 13 ... Anode electrode, 14 ... Cathode electrode, 15 ... N-type region, 16 ... N ++
Shape region, 17 ... P + type region, 18 ... N + type region, 19 ...
N ++ type area.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基体内に含まれている第1の導電形
の第1の半導体領域と、 第1の導電形とは反対の第2の導電形を有し、前記第1
の半導体領域に隣接し、且つ前記半導体基体の表面に露
出するように配置されている第2の半導体領域と、 前記第1の半導体領域の不純物濃度よりも高い不純物濃
度を有する第1の導電形の領域であって、前記第1の半
導体領域に隣接しており、且つ前記半導体基体の表面に
おいて前記第2の半導体領域を隣接して包囲するように
配置されている第3の半導体領域と、 前記第3の半導体領域の不純物濃度よりも高い不純物濃
度を有する第1の導電形の領域であって、前記半導体基
体の表面において前記第3の半導体領域を隣接して包囲
するように配置され、且つ前記第1の半導体領域に隣接
する部分を有するように形成されている第4の半導体領
域と、 前記半導体基体の表面において少なくとも前記第2の半
導体領域と前記第3の半導体領域の境界部分及び前記第
3の半導体領域を覆うように形成された絶縁膜と、 前記第2の半導体領域に直接に又は別の半導体領域を介
して電気的に接続され、且つ前記絶縁膜を介して少なく
とも前記第3の半導体領域の上に延在している第1の主
電極と、 前記第1の半導体領域に直接に又は別の半導体領域を介
して電気的に接続されている第2の主電極と、 を備えたアバランシェ降伏型接合を有する半導体装置。
1. A first semiconductor region of a first conductivity type contained within a semiconductor body, and a second conductivity type opposite to the first conductivity type,
A second semiconductor region adjacent to the semiconductor region of the semiconductor substrate and exposed to the surface of the semiconductor substrate, and a first conductivity type having an impurity concentration higher than that of the first semiconductor region. A third semiconductor region which is adjacent to the first semiconductor region and is arranged so as to surround the second semiconductor region on the surface of the semiconductor substrate. A region of the first conductivity type having an impurity concentration higher than that of the third semiconductor region, the second conductivity type region being arranged so as to surround the third semiconductor region adjacently on the surface of the semiconductor substrate; A fourth semiconductor region formed so as to have a portion adjacent to the first semiconductor region, and at least the second semiconductor region and the third semiconductor region on the surface of the semiconductor substrate. An insulating film formed so as to cover the boundary portion of the second semiconductor region and the third semiconductor region, and electrically connected to the second semiconductor region directly or via another semiconductor region, and via the insulating film. A first main electrode extending at least above the third semiconductor region, and a second main electrode electrically connected to the first semiconductor region directly or via another semiconductor region. A semiconductor device having an avalanche breakdown type junction including a main electrode.
【請求項2】半導体基体内に含まれている第1の導電形
の第1の半導体領域と、 前記第1の導電形とは反対の第2の導電形を有し、前記
第1の半導体領域に隣接し、且つ前記半導体基体の表面
に露出するように配置されている第2の半導体領域と 前記第1の半導体領域の不純物濃度よりも高い不純物濃
度を有する第1の導電形の領域であって、前記第1の半
導体領域に隣接しており、且つ前記半導体基体の表面に
おいて前記第2の半導体領域を隣接して包囲するように
配置されている第3の半導体領域と、 第2の導電形を有し、且つ前記半導体基体の表面におい
て前記第3の半導体領域を隣接して包囲するように配置
され、且つ前記第1の半導体領域に隣接する部分を有す
るように形成されている第4の半導体領域と、 前記半導体基体の表面において少なくとも前記第2の半
導体領域と前記第3の半導体領域の境界部分及び前記第
3の半導体領域を覆うように形成された絶縁膜と、 前記第2の半導体領域に直接に又は別の半導体領域を介
して電気的に接続され、且つ前記絶縁膜を介して少なく
とも前記第3の半導体領域の上に延在している第1の主
電極と、 前記第1の半導体領域に直接又は別の半導体領域を介し
て電気的に接続されている第2の主電極と、 を備えたアバランシェ降伏型接合を有する半導体装置。
2. A first semiconductor region of a first conductivity type contained in a semiconductor body, and a second conductivity type opposite to the first conductivity type, the first semiconductor A second semiconductor region adjacent to the region and arranged to be exposed at the surface of the semiconductor substrate, and a region of the first conductivity type having an impurity concentration higher than that of the first semiconductor region. A third semiconductor region which is adjacent to the first semiconductor region and is arranged so as to surround the second semiconductor region adjacently on the surface of the semiconductor substrate; A first semiconductor region having a conductivity type and arranged so as to surround the third semiconductor region adjacently on the surface of the semiconductor substrate and having a portion adjacent to the first semiconductor region; 4 of the semiconductor region and the surface of the semiconductor substrate. An insulating film formed so as to cover at least the boundary portion between the second semiconductor region and the third semiconductor region and the third semiconductor region on the surface, and directly or in another semiconductor in the second semiconductor region. A first main electrode that is electrically connected via a region and extends at least above the third semiconductor region via the insulating film; and directly or separately from the first semiconductor region. A second main electrode electrically connected through a semiconductor region, and a semiconductor device having an avalanche breakdown type junction including:
JP20656489A 1989-08-09 1989-08-09 Semiconductor device having avalanche breakdown junction Expired - Fee Related JPH0642556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20656489A JPH0642556B2 (en) 1989-08-09 1989-08-09 Semiconductor device having avalanche breakdown junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20656489A JPH0642556B2 (en) 1989-08-09 1989-08-09 Semiconductor device having avalanche breakdown junction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP35405892A Division JPH0770742B2 (en) 1992-12-15 1992-12-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0370181A JPH0370181A (en) 1991-03-26
JPH0642556B2 true JPH0642556B2 (en) 1994-06-01

Family

ID=16525483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20656489A Expired - Fee Related JPH0642556B2 (en) 1989-08-09 1989-08-09 Semiconductor device having avalanche breakdown junction

Country Status (1)

Country Link
JP (1) JPH0642556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373897A (en) * 2001-06-14 2002-12-26 Nippon Inter Electronics Corp Method for fabricating diode
JP4094012B2 (en) 2005-02-21 2008-06-04 松下電器産業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH0370181A (en) 1991-03-26

Similar Documents

Publication Publication Date Title
US4412242A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US4686551A (en) MOS transistor
CA1037160A (en) Semiconductor device having at least one pn junction and channel stopper surrounded by a protective conducting layer
US8637952B2 (en) Semiconductor device with zener diode and method for manufacturing same
JP2000049360A (en) Semiconductor device
US7598587B2 (en) Semiconductor device
JPH0736440B2 (en) Semiconductor device and manufacturing method thereof
US4999683A (en) Avalanche breakdown semiconductor device
JPH04332173A (en) Planar type semiconductor device and its manufacture
KR100374243B1 (en) Semiconductor device, a method of manufacturing the same, and a semiconductor device protective circuit
US20080135969A1 (en) Semiconductor Device
JPH05259479A (en) Semiconductor device
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
EP0083060B1 (en) Semiconductor device including overvoltage protection diode
JPH0642556B2 (en) Semiconductor device having avalanche breakdown junction
US4758872A (en) Integrated circuit fabricated in a semiconductor substrate
US5466959A (en) Semiconductor device for influencing the breakdown voltage of transistors
JPH07249737A (en) Planar semiconductor and its fabrication
JP4029549B2 (en) Semiconductor device
JPS6239547B2 (en)
US6262466B1 (en) Lateral semiconductor structure for forming a temperature-compensated voltage limitation
JPH0582072B2 (en)
JP2650180B2 (en) Two-way two-terminal thyristor
JP2937100B2 (en) Semiconductor device
JP2940377B2 (en) Two-way two-terminal thyristor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees