JPH02256106A - Copper paste for thick film - Google Patents

Copper paste for thick film

Info

Publication number
JPH02256106A
JPH02256106A JP7516789A JP7516789A JPH02256106A JP H02256106 A JPH02256106 A JP H02256106A JP 7516789 A JP7516789 A JP 7516789A JP 7516789 A JP7516789 A JP 7516789A JP H02256106 A JPH02256106 A JP H02256106A
Authority
JP
Japan
Prior art keywords
glass
film
powder
paste
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7516789A
Other languages
Japanese (ja)
Other versions
JP2649081B2 (en
Inventor
Eiichi Asada
榮一 浅田
Kazutoshi Hamada
浜田 一利
Kenji Okamura
岡村 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP1075167A priority Critical patent/JP2649081B2/en
Publication of JPH02256106A publication Critical patent/JPH02256106A/en
Application granted granted Critical
Publication of JP2649081B2 publication Critical patent/JP2649081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve adhesion strength especially after aging without degrading wettability to solders by composing the title paste with a copper powder, a glass powder, titanium nonoxide, and an organic vehicle. CONSTITUTION:The title paste is comprised of a copper powder, a glass powder, titanium monoxide (TiO), and an organic vehicle. Since TiO suppresses fluidity of fuses glass properly in Cu paste firing process, glass does not all move to a substrate side a proper amount of the glass is retained in a Cu film. Consequently, after firing the paste, glassy material is little in the surface area of the conductive film and between a Cu metal layer in the inside of the film and a glass layer close to the substrate, a metal-glass matrix structure where the glassy material is inserted density in the sintered Cu powder is formed. By this method, without degrading wettability to solders on the surface of the conductive film and conductivity of the film, adhesion strength of the film to the substrate is improved and especially the strength does not degrade even after the film is aged after firing process, and a high quality Cu conductive film is formed.

Description

【発明の詳細な説明】 1110皿里列1 本発明は、絶縁基板上に密着性の優れた厚膜銅導体を焼
付形成するための、導電性銅ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive copper paste for forming a thick film copper conductor with excellent adhesion on an insulating substrate by baking.

良木立韮韮 電子回路の配線導体やコンデンサ、抵抗等の電極を製造
するための厚膜導体として、近年、N2雰囲気などの不
活性雰囲気中で焼成を行うCu、Ni等の卑金属系が注
目されている。特にCuはその物理的、電気的特性から
いっても優れた導体材料であり、貴金属系の代替材料と
して実用化されているが、導電性、接着強度等に改善の
余地がある。特に焼成されたCuとガラス質結合剤から
なる導体上に半田付けし、高温放置試験を行った後の接
着強度(エージング強度)の低下が大きく、信顆性の点
で問題があった。又通常接着強度とは半田濡れ性は相反
する性質であり、接着強度を上げようとすると半田濡れ
性が損われる傾向がある。
In recent years, base metals such as Cu and Ni, which are fired in an inert atmosphere such as an N2 atmosphere, have attracted attention as thick film conductors for manufacturing wiring conductors for electronic circuits and electrodes for capacitors, resistors, etc. ing. In particular, Cu is an excellent conductive material in terms of its physical and electrical properties, and has been put to practical use as a substitute material for noble metals, but there is still room for improvement in conductivity, adhesive strength, and the like. In particular, after soldering onto a conductor made of fired Cu and a glassy binder and performing a high-temperature storage test, the adhesive strength (aging strength) decreased significantly, which caused problems in terms of reliability. Furthermore, solder wettability is usually a contradictory property to adhesive strength, and attempts to increase adhesive strength tend to impair solder wettability.

従って、半田濡れ性を低下させずに接着強度を改善する
ことも一つの課題である。
Therefore, one of the challenges is to improve adhesive strength without reducing solder wettability.

銅導体の接着強度、特にエージング強度の向上のため、
従来より種々の検討がなされている。例えば特公昭61
−51361号公報には、導電性組成物にBi2O3と
ZnOを添加することにより半田濡れ性、強度を改善す
ることが示されている。又特公昭62−46588号公
報は、合金粉末を併用することにより接着強度の低下を
抑制しており、特開昭63−232201号公報では使
用する粉末の粒径や配合量に検討を加えている。
To improve the adhesion strength of copper conductors, especially aging strength,
Various studies have been made in the past. For example, special public service in Showa 61
JP-A-51361 discloses that adding Bi2O3 and ZnO to a conductive composition improves solder wettability and strength. In addition, Japanese Patent Publication No. 62-46588 suppresses the decrease in adhesive strength by using alloy powder in combination, and Japanese Patent Publication No. 63-232201 considers the particle size and blending amount of the powder used. There is.

更に特開昭6:3−131405号公報にはCuとカラ
スからなるCuペーストにFe01Mn05v203、
Cr2O3、CeO2,5b2o3、As2O5、Ni
O,SnO,Cu2Oなどの多原子価金属の低次酸化物
を添加することにより、Cu粉末の表面酸化を抑えて、
半田濡れ性を改善することも記載されている。
Furthermore, in Japanese Patent Application Laid-Open No. 6:3-131405, Fe01Mn05v203,
Cr2O3, CeO2, 5b2o3, As2O5, Ni
By adding low-order oxides of polyvalent metals such as O, SnO, and Cu2O, surface oxidation of Cu powder is suppressed,
It is also described that it improves solder wettability.

特開昭63−15866号公報は、二酸化チタンTi 
02を添加した、レーザ穿孔されたスルーホール内壁と
の密着性の良好なCuペーストを開示している。
JP-A-63-15866 discloses titanium dioxide Ti
The present disclosure discloses a Cu paste doped with 02 that has good adhesion to the inner wall of a laser-drilled through hole.

が解決しようと る課題 近年、回路の小形化及びコストダウンの要求が強く、電
極や導体パターンの面積をますます小さく、しかも導体
の膜厚を薄くすることが要求されており、このため接着
強度がより強く、かつ経時劣化が少なく、又導電性もよ
り一層良好なCu導体が望まれている。しかし上記従来
技術を以てしても、いまな充分満足いく特性のものが得
られていないのが現状である。
In recent years, there has been a strong demand for circuit miniaturization and cost reduction, and there has been a demand for smaller and smaller electrodes and conductor patterns, as well as thinner conductor films. There is a demand for a Cu conductor that has stronger properties, less deterioration over time, and even better conductivity. However, even with the above-mentioned conventional techniques, the current situation is that fully satisfactory characteristics have not yet been obtained.

本発明は、半田濡れ性等他の特性を損うことなく、基板
との接着強度、1、νにエージング後の接着強度が更に
改善された、信頼性の高いCuペーストを提供すること
を目的とする。
The purpose of the present invention is to provide a highly reliable Cu paste that has further improved adhesive strength with a substrate after aging to 1,v without impairing other properties such as solder wettability. shall be.

0題を解決−るための手段 本発明は、銅粉末と、ガラス粉末と、一酸化チタンと、
有機ビヒクルとからなる厚膜銅ペースト、及び一酸化チ
タンの配合量が、Cu粉末100重量部に対して3,0
重量部以下である請求項1に記載された厚膜銅ペースト
である。
Means for Solving Problem 0 The present invention provides copper powder, glass powder, titanium monoxide,
The amount of thick film copper paste consisting of an organic vehicle and titanium monoxide is 3.0 parts by weight per 100 parts by weight of Cu powder.
2. The thick film copper paste according to claim 1, wherein the thick film copper paste is less than or equal to parts by weight.

Cu粉末、カラス、有機ビヒクルは、この種の厚膜導電
性ペーストに通常使用されているものであれば特に制限
はない。ガラス粉末の配合量は、Cu粉末100重量部
に対して0.5〜10重量部程度である。
The Cu powder, glass, and organic vehicle are not particularly limited as long as they are commonly used for this type of thick film conductive paste. The blending amount of the glass powder is about 0.5 to 10 parts by weight per 100 parts by weight of the Cu powder.

尚、本発明のペーストには、更に酸化ビスマス、酸化銅
、酸化マンガン、酸化バナジウムなど、通常のCuペー
ストに使用される添加剤を適宜配合してもよい。
The paste of the present invention may further contain additives used in ordinary Cu pastes, such as bismuth oxide, copper oxide, manganese oxide, and vanadium oxide.

色囲 Cuペーストに一酸化チタンTiOを配合することによ
り、半田濡れ性、導電性をほとんど低下させることなく
接着強度、特にエージング強度が著しく向上する。
By blending titanium monoxide TiO into the color gamut Cu paste, adhesive strength, especially aging strength, is significantly improved without substantially reducing solder wettability and conductivity.

TiOは、Cuペーストを焼成する際、溶融したガラス
の流動性を適度に抑制する作用を有すると考えられる。
TiO is considered to have the effect of appropriately suppressing the fluidity of molten glass when firing the Cu paste.

このためガラスが基板側にすべて移動せず、適切な量が
焼結したCu層膜中保持される。従って焼成後は、ガラ
ス質が導体膜の表面付近には少なく、膜内部のCu金属
層と基板付近のガラス層の間の部分では、焼結したCu
粉末の間にガラス質が緻密に食込んだ強固な金属−ガラ
スマトリックス構造が形成され、ガラス層と金属層の接
触面積が大きく、しかも両者が強固に接着している理想
的な導体膜構造となる。
Therefore, all of the glass does not move toward the substrate, and an appropriate amount is retained in the sintered Cu layer. Therefore, after firing, there is less glass near the surface of the conductor film, and the part between the Cu metal layer inside the film and the glass layer near the substrate contains sintered Cu.
A strong metal-glass matrix structure is formed in which the glass is densely embedded between the powders, and the contact area between the glass layer and the metal layer is large, and the two are firmly bonded together, creating an ideal conductor film structure. Become.

これにより、導体表面の半田濡れ牲や導電性にはほとん
ど影響を与えることなく、基板との接着強度が大きく改
善され、特に焼成後に熱エージングを受けても従来に比
して強度の劣化が起こりにくい、非常に優れたCu導体
膜が形成される。又膜厚が薄い場合にも、このような構
造を容易に作るので、接着強度の大きい導体を形成する
ことができる。
As a result, the adhesive strength with the substrate is greatly improved with almost no effect on the solder wettability or conductivity of the conductor surface, and the strength does not deteriorate compared to conventional methods, especially when subjected to thermal aging after baking. A very good Cu conductor film is formed. Further, even when the film thickness is small, such a structure can be easily created, so that a conductor with high adhesive strength can be formed.

しかもTiOは、酸素捕捉剤として焼成雰囲気中に僅か
に存在する02の量を調節する働きをし、プロセス感受
性を低下させる効果もある。従ってTi 02を配合し
ても効果はない。尚、TiOは焼成後は一部TlO2や
Ti 20aに変化することが確認されている。
Furthermore, TiO functions as an oxygen scavenger to adjust the amount of O2 present in the firing atmosphere, and has the effect of reducing process sensitivity. Therefore, there is no effect even if Ti 02 is added. It has been confirmed that a portion of TiO changes to TlO2 and Ti 20a after firing.

TiOの配合量は、粒度が小さく充填性に富むCu粉末
を使用しなときは、焼結体のS造が緻密になり、膜中の
空隙が小さくなるため、必要とするガラスの量が減り、
TiOも少なくてすむか、嵩の大きいCu粉末を使用す
ると、Cuの焼結体の空隙も大きくなるため、カラスの
必要量が増加し、十分な効果を得るためにはTiOも多
く配合しなくてはならない。しかし、TiOは多すぎる
と半田ぬれ性が悪化する傾向がでてくるので、添加量は
Cu粉末100重量部に対して3.0重量部以下が望ま
しい。
Regarding the amount of TiO mixed, if Cu powder with small particle size and high filling properties is not used, the S structure of the sintered body will become denser and the voids in the film will become smaller, reducing the amount of glass required. ,
If less TiO is used, or if a bulky Cu powder is used, the voids in the Cu sintered body will become larger, increasing the amount of glass required, and in order to obtain a sufficient effect, it is not necessary to mix a large amount of TiO. must not. However, if too much TiO is added, solder wettability tends to deteriorate, so the amount added is desirably 3.0 parts by weight or less per 100 parts by weight of Cu powder.

笈嵐週 各実施例及び比較例で使用したガラスは、次に示す組成
の結晶化ガラスである。
The glass used in each Example and Comparative Example is a crystallized glass having the composition shown below.

8203    20.4重量% zno23.8II B120354.3tノ MOO31,2I+ Mn○20.1ツノ T1020.2ツノ 実施例1 平均粒径1.2IJIn(B、E、T、法で測定)のC
u粉末        ioo、 o重量部ガラス粉末
      6.0重量部 TiO粉末      0.5重量部 有機ビヒクル     11.0重量部上記組成のペー
ストを、アルミナ基板上に焼成膜厚が約15μmとなる
ように1.5rnmX 1.5+++mのパタンにスク
リーン印刷し、140℃で10分乾燥した後、遠赤外線
焼成炉を用いて、N2雰囲気中ピク温度900℃、60
分サイクルで焼成してCu導体を形成し、次の試験を行
った。結果を表1に示した。
8203 20.4% by weight zno23.8II B120354.3tNOMOO31,2I+ Mn○20.1 horn T1020.2 horn Example 1 C of average particle size 1.2IJIn (measured by B, E, T, method)
u powder ioo, o parts by weight glass powder 6.0 parts by weight TiO powder 0.5 parts by weight organic vehicle 11.0 parts by weight A paste having the above composition was spread on an alumina substrate so that the fired film thickness was about 15 μm. After screen printing a pattern of 5rnm x 1.5+++m and drying it at 140℃ for 10 minutes, using a far-infrared firing oven, it was printed at a printing temperature of 900℃ and 60℃ in an N2 atmosphere.
A Cu conductor was formed by firing in a minute cycle, and the following tests were conducted. The results are shown in Table 1.

半田濡れ性:導体股上に直径2.0mmの半田ボールを
載せ、230℃で30秒間放置した後の半田ボールの拡
がり率を調べた。
Solder wettability: A solder ball with a diameter of 2.0 mm was placed on the crotch of the conductor, and the spread rate of the solder ball was examined after being left at 230° C. for 30 seconds.

初期接着強度:導体膜に半田めっき銅線を5n−pb手
半田半田付けした後、このリード線を基板に対して垂直
に引張り、導体が基板から剥離したときの強度を測定し
た。
Initial adhesion strength: After a solder-plated copper wire was hand-soldered with 5n-PB to the conductor film, the lead wire was pulled perpendicularly to the substrate, and the strength was measured when the conductor was peeled off from the substrate.

エージング強度二半田付は後、150℃で100時間エ
ージングした後の接着強度を初期強度と同様にして測定
した。
Aging Strength (2) After soldering, the adhesive strength after aging at 150° C. for 100 hours was measured in the same manner as the initial strength.

尚、抵抗値は幅0.6111mX長さ60柵のパターン
で測定し、膜厚15μmに換算した値である。
The resistance value was measured using a pattern of 0.6111 m wide x 60 long fences, and was converted to a film thickness of 15 μm.

実施例2〜3 TiOの配合量をそれぞれ1.0重量部、1.5重量部
とする以外は実施例1と同様にしてCuペーストを作製
し、アルミナ基板上に焼付けた。得られたCu導体につ
いて抵抗値、半田濡れ性、初期接着強度、エージング後
の接着強度を測定し、結果を表1に併せて示した。
Examples 2 to 3 Cu pastes were prepared in the same manner as in Example 1 except that the amounts of TiO were 1.0 parts by weight and 1.5 parts by weight, respectively, and baked on an alumina substrate. The resistance value, solder wettability, initial adhesive strength, and adhesive strength after aging of the obtained Cu conductor were measured, and the results are also shown in Table 1.

比較例l Ti0を配合しない以外は実施例1と同様にしてCuペ
ーストを作製し、アルミナ基板上に焼付けた。得られた
Cu導体の特性を表1に示す。
Comparative Example 1 A Cu paste was prepared in the same manner as in Example 1 except that Ti0 was not mixed, and baked onto an alumina substrate. Table 1 shows the characteristics of the obtained Cu conductor.

表1 表1から明らかなように、TiOを添加することにより
初期強度、エージング強度ともに著しく改善され、しか
も導電性、半田濡れ性にはほとんど影響がない。
Table 1 As is clear from Table 1, the addition of TiO significantly improves both initial strength and aging strength, and has almost no effect on conductivity and solder wettability.

実施例4 平均粒径0.8. (B、E、T、法で測定)のCu粉
末        100.0重量部ガラス粉末   
   3,3重量部 TiO粉末      0.2重量部 有機ビヒクル     16.0重量部上記組成のペー
ストを実施例1と同様にしてアルミナ基板上に焼付して
、Cu導体を形成した。
Example 4 Average particle size 0.8. Cu powder (measured by B, E, T method) 100.0 parts by weight Glass powder
3.3 parts by weight TiO powder 0.2 parts by weight Organic vehicle 16.0 parts by weight A paste having the above composition was baked onto an alumina substrate in the same manner as in Example 1 to form a Cu conductor.

得られたCu導体について抵抗値、半田濡れ性、初期接
着強度及びエージング強度を測定し、結果を表2に示し
た。
The resistance value, solder wettability, initial adhesive strength, and aging strength of the obtained Cu conductor were measured, and the results are shown in Table 2.

実施例5〜7 TiOの配合量を表2の通りとする以外は実施例4と同
様にして、Cuペーストを作製した。それぞれアルミナ
基板上に焼付けて得られたCu導体について、抵抗値、
半田濡れ性、初期接着強度及びエージング後の接着強度
を測定し、結果を表2に併せて示した。
Examples 5 to 7 Cu pastes were produced in the same manner as in Example 4, except that the amount of TiO was as shown in Table 2. For each Cu conductor obtained by baking on an alumina substrate, the resistance value,
Solder wettability, initial adhesive strength, and adhesive strength after aging were measured, and the results are also shown in Table 2.

比較例2 TiOを配合しない以外は実施例4と同様にしてCuペ
ーストを作製し、アルミナ基板上に焼付けた。得られた
Cu導体の特性を表1に示す。
Comparative Example 2 A Cu paste was produced in the same manner as in Example 4 except that TiO was not mixed, and baked on an alumina substrate. Table 1 shows the characteristics of the obtained Cu conductor.

比較例3〜7 TiOの代わりに表2に示される金属酸化物を使用する
以外は、実施例5と同様にしてCuペーストを作製した
。アルミナ基板上に焼付けして得られたCu導体の特性
を、表2に併せて示す。
Comparative Examples 3 to 7 Cu pastes were produced in the same manner as in Example 5, except that the metal oxides shown in Table 2 were used instead of TiO. Table 2 also shows the characteristics of the Cu conductor obtained by baking on the alumina substrate.

表2から明らかなように、TiOを添加した本発明のC
uペーストは、添加しない比較例2と比べて初期強度、
エージング強度ともに大幅に向上している。又、従来使
用されているCu2O、NiOlMNlol、Coo等
の金属の低次酸化物やPbOなどを添加した場合と比較
しても、極めて優れていることがわかる。
As is clear from Table 2, the C of the present invention added with TiO
The u-paste has lower initial strength and
Both aging strength has been significantly improved. Furthermore, it can be seen that it is extremely superior when compared to the case where conventionally used lower oxides of metals such as Cu2O, NiOlMNlol, Coo, etc., or PbO are added.

北甥ノと丸米 以上の通り、本発明のCuペーストは、半田濡れ性及び
基板との接着強度、特に熱エージング後の接着強度が、
従来のものに比べて非常に優れており、ス膜厚が薄くて
も良好な密着性を示すので、高密度回路用の導体材料と
して極めて信頼性の高いものである。
As described above in Kitanene and Marume, the Cu paste of the present invention has excellent solder wettability and adhesive strength with the substrate, especially adhesive strength after heat aging.
It is extremely superior to conventional materials and exhibits good adhesion even when the film thickness is thin, making it extremely reliable as a conductor material for high-density circuits.

Claims (1)

【特許請求の範囲】 1 銅粉末と、ガラス粉末と、一酸化チタンと、有機ビ
ヒクルとからなる厚膜銅ペースト。 2 一酸化チタンの配合量が、Cu粉末100重量部に
対して3.0重量部以下である請求項1に記載された厚
膜銅ペースト。
[Claims] 1. A thick film copper paste consisting of copper powder, glass powder, titanium monoxide, and an organic vehicle. 2. The thick film copper paste according to claim 1, wherein the content of titanium monoxide is 3.0 parts by weight or less per 100 parts by weight of Cu powder.
JP1075167A 1989-03-29 1989-03-29 Thick film copper paste Expired - Lifetime JP2649081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075167A JP2649081B2 (en) 1989-03-29 1989-03-29 Thick film copper paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075167A JP2649081B2 (en) 1989-03-29 1989-03-29 Thick film copper paste

Publications (2)

Publication Number Publication Date
JPH02256106A true JPH02256106A (en) 1990-10-16
JP2649081B2 JP2649081B2 (en) 1997-09-03

Family

ID=13568374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075167A Expired - Lifetime JP2649081B2 (en) 1989-03-29 1989-03-29 Thick film copper paste

Country Status (1)

Country Link
JP (1) JP2649081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303854B2 (en) 2003-02-14 2007-12-04 E.I. Du Pont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225360A (en) * 1984-04-20 1985-11-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPS6315866A (en) * 1986-07-07 1988-01-22 Copal Co Ltd Electrically conductive composition for thick-film paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225360A (en) * 1984-04-20 1985-11-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPS6315866A (en) * 1986-07-07 1988-01-22 Copal Co Ltd Electrically conductive composition for thick-film paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303854B2 (en) 2003-02-14 2007-12-04 E.I. Du Pont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition

Also Published As

Publication number Publication date
JP2649081B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR970008549B1 (en) Silver-rich conductor compositions for high thermal cycled and aged adhesion
JP2001243836A (en) Conductive paste and printed circuit board using it
JP4431052B2 (en) Resistor manufacturing method
US20010042854A1 (en) Electroconductive composition and printed circuit board using the same
JP2000048642A (en) Conductive paste and glass circuit substrate
JP4423832B2 (en) Glass composition and thick film paste using the same
JP3754748B2 (en) Conductor paste for filling through holes, ceramic circuit boards and package boards
JP2002100526A (en) Conductive paste for laminated ceramic component terminal electrode
JPH08315634A (en) Conductive paste and ceramic electronic component using it
JP2631010B2 (en) Thick film copper paste
JP2795467B2 (en) Good adhesive metal paste
JPH02256106A (en) Copper paste for thick film
JP2898121B2 (en) Conductor paste and wiring board
JPS635842B2 (en)
JP2537007B2 (en) Copper composition for low temperature firing
JP2842711B2 (en) Circuit board
JP2931450B2 (en) Conductor paste
JP2941002B2 (en) Conductor composition
JPH0349108A (en) Copper conductor composition material
JPH01201090A (en) Metallizing composition for ceramic
JP2531023B2 (en) Conductive paste
JP4254136B2 (en) Conductive paste and ceramic electronic components
JP2004119561A (en) Resistive paste and resistor
JPH0465010A (en) Copper conductive paste
JPH06349316A (en) Conductive paste

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term