JPH02254168A - Production of boron nitride - Google Patents

Production of boron nitride

Info

Publication number
JPH02254168A
JPH02254168A JP7467789A JP7467789A JPH02254168A JP H02254168 A JPH02254168 A JP H02254168A JP 7467789 A JP7467789 A JP 7467789A JP 7467789 A JP7467789 A JP 7467789A JP H02254168 A JPH02254168 A JP H02254168A
Authority
JP
Japan
Prior art keywords
plasma
substrate
boron nitride
gas
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7467789A
Other languages
Japanese (ja)
Inventor
Yukio Ichinose
一ノ瀬 幸雄
Takeshi Hirose
健 広瀬
Hidetoshi Saito
秀俊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP7467789A priority Critical patent/JPH02254168A/en
Publication of JPH02254168A publication Critical patent/JPH02254168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase BN-forming velocity and c-BN content by forming a plasma by using NaBH4 and N2 or NH3 as raw materials and also using high frequency induction heating together with heat filament heating in a plasma CVD method. CONSTITUTION:A raw-material compound consisting of a mixture of NaBN4 and N2 or NH3 is prepared. Boron nitride is deposited on a base material by using the above raw-material compound by a plasma CVD method. At this time, as a means of forming plasma, high frequency induction heating and heat filament heating are combinedly used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はいわゆるcVDtによる窒化ほう素の製造法に
関する。この窒化ほう素(BN)は立方晶窒化ほう素(
以)’c−BNという)又はこれを含むBNであり、半
導体の放熱基板、機械部品の耐食、耐摩耗性被覆材、切
削材などに利用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing boron nitride by so-called cVDt. This boron nitride (BN) is cubic boron nitride (
(hereinafter referred to as c-BN) or BN containing this, and is used for semiconductor heat dissipation substrates, corrosion-resistant and wear-resistant coating materials for mechanical parts, cutting materials, etc.

〔従来の技術〕[Conventional technology]

BNには軟らかい六方晶窒化ほう素(以下hBNという
)と高硬度なc−BNがある。CBNはh−BNを高温
、高圧処理して得る方法が古くから行イつれているか、
近年はほう素含a化合物からCVD法により製法も提案
されている。
BN includes soft hexagonal boron nitride (hereinafter referred to as hBN) and highly hard c-BN. CBN has been obtained by processing h-BN at high temperature and high pressure for a long time.
In recent years, a method of manufacturing from boron-containing a-compounds using the CVD method has also been proposed.

CVD法として従来知られている方法は原料としてポロ
アミノポリマー、ボラン、ジボラン、テトラボラン、B
Cρ3、B3N3H6などか知られ、またCVD法とし
てはマイクロ波、高周波、アーク放電、熱フィラメント
法などが知られている(特開昭60−81009 、同
62−184869、同62−40376、同60−5
874.11i161−174378、同631998
71)。
The method conventionally known as the CVD method uses polyamino polymer, borane, diborane, tetraborane, B
Cρ3, B3N3H6, etc. are known, and microwave, high frequency, arc discharge, hot filament methods, etc. are known as CVD methods (Japanese Unexamined Patent Publications No. 60-81009, No. 62-184869, No. 62-40376, No. 60). -5
874.11i161-174378, 631998
71).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

とはc−BNの含有量を高めること、及びBNの生成速
度を上げること、その他原料化合物の毒性がないことや
取り易いことである。
This means increasing the c-BN content, increasing the BN production rate, and ensuring that the raw material compounds are non-toxic and easy to remove.

また基体上にBNを膜状に析出させ、これを半導体の放
熱基板や切削工具、耐摩耗性機械材料に利用する場合、
基体上BN膜が密着し、容易に剥離しないことか重要で
ある。
In addition, when depositing BN in a film form on a substrate and using it for semiconductor heat dissipation substrates, cutting tools, and wear-resistant mechanical materials,
It is important that the BN film on the substrate adheres closely and does not peel off easily.

前記した従来法ではこれらの点に関して満足すべき結果
か得られていない。
The conventional methods described above have not yielded satisfactory results in these respects.

本発明の1゛1的はBNの生成速度及びその中のc−B
HのaG−率が高く、かつ基体へのBH膜の密着性の高
いBNを製造することにある。
One object of the present invention is the production rate of BN and c-B in it.
The object of the present invention is to produce BN with a high aG-ratio of H and high adhesion of the BH film to the substrate.

〔課題を解決するための1段〕 本発明はブラスマCVD法により、BNを製造するに当
り、原料化合物を種々探索し、またプラズマ化法につい
て研究した結果開発し、たちので、その要旨は原料化ご
物とl、てN a B H4とN2又はN H3の混合
物を用い、プラズマ化法として高周波誘導加熱と熱フィ
ラメント加熱を併用することからなるプラズマCVD法
により基体I−にBNを析出させる方法である。
[First Step to Solve the Problems] The present invention was developed as a result of searching for various raw material compounds and researching the plasma conversion method for producing BN by the plasma CVD method. BN is deposited on the substrate I- by a plasma CVD method that uses a mixture of NaB H4 and N2 or N H3 and a combination of high-frequency induction heating and hot filament heating as a plasma conversion method. It's a method.

N a B H4は融点が約4()0°Cで、これを加
熱蒸発させ、これにN2又はNH3ガスを混合し、プラ
ズマ化する。その混合の割合はBとNの原子比で表わし
て0,1〜0.9の範囲であり、好ましくは03〜0.
7である。N2ガスを用いる場合は、N a B H4
との混合ガスにさらに水素ガスをNとHの原子比か1対
3程度になるぐらい混合することか望ましい。N H3
ガスは分解して発生期の水素ガスが発生し、これがBN
の生成に関与していることが考えられ、そのため、N2
あるいはN2とN2の混合ガスを用いるより、BNの生
成L1が高まるなと良好な結果か得られている。
NaBH4 has a melting point of about 4()0°C, and is heated to evaporate, mixed with N2 or NH3 gas, and turned into plasma. The mixing ratio expressed as the atomic ratio of B and N is in the range of 0.1 to 0.9, preferably 0.3 to 0.9.
It is 7. When using N2 gas, N a B H4
It is desirable to further mix hydrogen gas into the mixed gas so that the atomic ratio of N and H is about 1:3. N H3
The gas decomposes and generates nascent hydrogen gas, which is BN.
It is thought that N2 is involved in the production of N2.
Alternatively, better results have been obtained in that the production L1 of BN is higher than when using a mixed gas of N2 and N2.

混合ガス圧は1.0〜640Paが適当である。A suitable mixed gas pressure is 1.0 to 640 Pa.

プラズマを発生させる高周波誘導加熱は公知のもので周
波数は例えば13.5GMIIz、出力は装置の大きさ
によって変るが、後述する実施例の装置では50〜20
0Wが適する。そして熱フィラメントの加熱と合せてプ
ラズマの温度は高温に維持される。
High-frequency induction heating for generating plasma is a well-known method, and the frequency is, for example, 13.5 GMIIz, and the output varies depending on the size of the device, but in the device of the example described later, it is 50 to 20
0W is suitable. Together with the heating of the hot filament, the plasma temperature is maintained at a high temperature.

熱フィラメントは通常タングステンフィラメントが用い
られ、その温度は1300〜2100℃か適し、好まし
くは1500〜1900℃である。熱フィラメントは原
料ガス中の水素を原子状水素などの1.ζ性な水素にす
るために必要なもので、この水素の作用は定かでないが
、熱フィラメントを使用しないと、BN特にc−BNの
含台率の高いBNが生成しない。又、熱フィラメントの
みではプラズマの発イ1:が十分でなく、同様にBNの
生成が少ない。
A tungsten filament is usually used as the hot filament, and its temperature is suitably 1300 to 2100°C, preferably 1500 to 1900°C. The hot filament converts hydrogen in the raw material gas into atomic hydrogen, etc. This is necessary to make zeta-like hydrogen, and although the effect of this hydrogen is not clear, unless a hot filament is used, BN, especially BN with a high content of c-BN, will not be produced. In addition, the hot filament alone does not generate enough plasma, and similarly the generation of BN is small.

BNを析出させる基体はSt 、 W、 Mo 、 T
aなどの金属、SiC焼結体、Si3N4焼結体などの
セラミックス、超硬合金チップ、ザーメットなどが使用
でき、その形状も板状(基板)、湾曲状、円柱状なと制
限なく用いることができる。
The substrates on which BN is deposited are St, W, Mo, and T.
Metals such as a, ceramics such as SiC sintered bodies, Si3N4 sintered bodies, cemented carbide chips, cermet, etc. can be used, and the shape can be plate-shaped (substrate), curved, or cylindrical without any restriction. can.

基体の温度は300〜1000℃か適するが、好ましく
は500〜900°Cである。
The temperature of the substrate is suitably 300-1000°C, preferably 500-900°C.

次に本発明を実施するための装置の1例を示し、具体的
に説明する。図1は概略の断面図で石英管1内に原料4
 (N a B H4) 、S i基板6が設けられて
いる。図ではフィラメント2でN a B H4を加熱
蒸発させているが、蒸発のための加熱装置を別に設け、
フィラメントを基板側に寄せてもよい。
Next, one example of an apparatus for implementing the present invention will be shown and specifically explained. Figure 1 is a schematic cross-sectional view showing a raw material 4 in a quartz tube 1.
(N a B H4), an Si substrate 6 is provided. In the figure, N a B H4 is heated and evaporated using the filament 2, but a separate heating device for evaporation is provided.
The filament may be brought closer to the substrate.

石英管の外側に加熱炉7か設けられ、基板の温度及び石
英管内の温度を調節する。3はi4%周波コイルでガス
をプラズマ化する。このコイルも図示のものより基板側
に移すこともi+J能である。8は高周波電源、9,1
0は交流電源である。
A heating furnace 7 is provided outside the quartz tube to adjust the temperature of the substrate and the temperature inside the quartz tube. 3 converts gas into plasma using an i4% frequency coil. It is also possible to move this coil closer to the substrate than the one shown. 8 is a high frequency power supply, 9, 1
0 is an AC power source.

石英’=gは所定の圧力に調整されたケース内に収めら
れている。NH3等のガスはケースのガス導入口5より
石英管内に流され、蒸発するN a B H4のガスと
混合し、プラズマ化され、BNとして基板に析出する。
Quartz'=g is housed in a case adjusted to a predetermined pressure. A gas such as NH3 is flowed into the quartz tube from the gas inlet 5 of the case, mixed with the evaporated NaBH4 gas, turned into plasma, and deposited on the substrate as BN.

排気ガスは石英管の他端から出て、ケースの排M、hり
放出される。
Exhaust gas exits from the other end of the quartz tube and is discharged through the exhaust gas of the case.

本発明の方法により、BNの生成速度は膜厚で】口0〜
300人/分となり、これは従来最も多く用いられてい
る原料のB2H6の場合の数倍に達する。またc−BN
の3打率は平均的には50〜80%で、従来法に較べて
高く、また高周波の出力を上げることにより、さらに8
0%を」二回ることも可能である。
By the method of the present invention, the production rate of BN is determined by the film thickness from 0 to 0.
The number of people per minute is several times that of B2H6, which is the most commonly used raw material. Also c-BN
The average 3-hitting rate is 50-80%, which is higher than that of conventional methods, and by increasing the high-frequency output, it can be further improved to 80%.
It is also possible to go back to 0% twice.

また本発明のもう1つの特徴は基体とBNの膜の密稲゛
度が高いことである。これは基体に膜をつけたまま利用
するとき有利である。その池水発明のBNを基体から分
離し、粉砕して研削砥粒として利用することもできる。
Another feature of the present invention is that the density between the substrate and the BN film is high. This is advantageous when the film is used with the film attached to the substrate. The BN of the Ikemizu invention can also be separated from the substrate, crushed, and used as grinding abrasive grains.

〔実施例、比較例〕[Example, comparative example]

図1の装置を用い実験した。石英管は直径2.7cm5
長さ18cmである。N H3ガスは3fl1分CNT
P換算)で供給し、た。タングステシフ5イラメントの
温度を1800℃と12、高周波の出力を150Wとし
た。基板にSi ウェハーを用い、その温度を800℃
とした。N a B I(4の蒸発カス量は、実験前後
の減量から、3f!/分(N T P換弁)と考えられ
、N/B原子比にすると1である。なお、ゲース内全体
の圧力は2[]Paである。
An experiment was conducted using the apparatus shown in FIG. The quartz tube has a diameter of 2.7cm5
The length is 18cm. N H3 gas is 3 fl 1 minute CNT
(converted to P). The temperature of the Tangste Schiff 5 filament was 1800°C, and the high frequency output was 150W. A Si wafer is used as the substrate, and its temperature is 800℃.
And so. The amount of evaporated residue of N a B I (4) is thought to be 3 f!/min (N T P replacement valve) from the weight loss before and after the experiment, and the N/B atomic ratio is 1. is 2[]Pa.

この条件で0.51.Ii間大実験継続した。比較とし
て石英管からNaBHを除き、代って821:’i63
0% SN H8096、H21,09b(夫々容量9
6)の混合ガスを石英管に6fl1分(NTP換算)供
給した外は実施例1と同様にして実験した。これらの結
果を表1に示す。
Under this condition 0.51. The large-scale experiment continued during Ii. For comparison, NaBH was removed from the quartz tube and 821:'i63 was used instead.
0% SN H8096, H21,09b (capacity 9 each
The experiment was carried out in the same manner as in Example 1, except that 6 fl 1 minute (NTP equivalent) of the mixed gas of 6) was supplied to the quartz tube. These results are shown in Table 1.

(以下余白) 表 表中0はひっかき試験で剥離が見られないことを示し、
△は同試験で多少剥離かあったことを示す。
(Margins below) 0 in the table indicates that no peeling was observed in the scratch test.
△ indicates that there was some peeling in the same test.

〔効  果〕〔effect〕

本発明によればBNの生成速度か人である。 According to the present invention, the rate of BN generation is variable.

BH中のc−BHの含有率が高い。BH膜と基体との密
着度が大きい。又BH膜が緻密である。そのため超硬ボ
ールペンてO・っかいても傷がつかない。
The c-BH content in BH is high. The degree of adhesion between the BH film and the substrate is high. Moreover, the BH film is dense. Therefore, it will not get scratched even if you scratch it with a carbide ballpoint pen.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明方法の実施に用いられる装置の1例を示す
概略断面図である。 1・・石英管       2・・フィラメン]・3・
・高周波コ・イル 6・・Si基板
FIG. 1 is a schematic cross-sectional view showing one example of an apparatus used to carry out the method of the present invention. 1. Quartz tube 2. Filamen] 3.
・High frequency coil 6...Si substrate

Claims (1)

【特許請求の範囲】[Claims]  プラズマCVD法により原料化合物から基体上に窒化
ほう素を析出させる方法において、原料化合物としてN
aBH_4とN_2又はNH_3を用い、プラズマ化法
として高周波誘導加熱及び熱フィラメント加熱を併用す
ることを特徴とする方法。
In a method of depositing boron nitride on a substrate from a raw material compound by plasma CVD method, N is used as a raw material compound.
A method characterized by using aBH_4 and N_2 or NH_3 and using high frequency induction heating and hot filament heating together as a plasma generation method.
JP7467789A 1989-03-27 1989-03-27 Production of boron nitride Pending JPH02254168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7467789A JPH02254168A (en) 1989-03-27 1989-03-27 Production of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7467789A JPH02254168A (en) 1989-03-27 1989-03-27 Production of boron nitride

Publications (1)

Publication Number Publication Date
JPH02254168A true JPH02254168A (en) 1990-10-12

Family

ID=13554099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7467789A Pending JPH02254168A (en) 1989-03-27 1989-03-27 Production of boron nitride

Country Status (1)

Country Link
JP (1) JPH02254168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035623A (en) * 2005-07-22 2007-02-08 Sandvik Intellectual Property Ab Apparatus in which plasma activity is raised

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081009A (en) * 1983-10-05 1985-05-09 Teikoku Chem Ind Corp Ltd Manufacture of cubic-crystal boron nitride compound
JPS63128179A (en) * 1986-11-18 1988-05-31 Sumitomo Electric Ind Ltd Method and apparatus for synthesizing hard boron nitride
JPS63199871A (en) * 1987-02-12 1988-08-18 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081009A (en) * 1983-10-05 1985-05-09 Teikoku Chem Ind Corp Ltd Manufacture of cubic-crystal boron nitride compound
JPS63128179A (en) * 1986-11-18 1988-05-31 Sumitomo Electric Ind Ltd Method and apparatus for synthesizing hard boron nitride
JPS63199871A (en) * 1987-02-12 1988-08-18 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035623A (en) * 2005-07-22 2007-02-08 Sandvik Intellectual Property Ab Apparatus in which plasma activity is raised

Similar Documents

Publication Publication Date Title
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JPS61124573A (en) Diamond-coated base material and its production
JP2001511219A (en) Coating of cemented carbide substrate or carbide-containing cermet substrate with hard material
JPH04214869A (en) Annular product coated with cvd diamond and its manufacture
JPH02254168A (en) Production of boron nitride
JP2679067B2 (en) Manufacturing method of substrate with diamond film
JPS61261480A (en) Diamond coated member
JPH06184750A (en) Composite body and its production
JP3397849B2 (en) Diamond coated cemented carbide tool
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH02250969A (en) Production of boron nitride
JPS61174378A (en) Production of rigid material coated with boron nitride
JPS60152677A (en) Cubic boron nitride coated hard material and its production
JPS61153279A (en) Production of material coated with hard boron nitride
JP3160399B2 (en) Diamond film manufacturing method
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
JPS61266576A (en) Production of member coated with high-hardness boron nitride
JPH0333085A (en) Diamond coated combined body
JPH0557508A (en) Vapor-phase synthetic diamond coated cutting tool
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPH04305095A (en) Symmetrical chemically deposited diamond article and method of manufacturing same
JPH0523903A (en) Diamond coating cutting tool
TW443989B (en) Structure of a material containing SixCyNz and the method for manufacturing the same