JPH0333085A - Diamond coated combined body - Google Patents

Diamond coated combined body

Info

Publication number
JPH0333085A
JPH0333085A JP1165264A JP16526489A JPH0333085A JP H0333085 A JPH0333085 A JP H0333085A JP 1165264 A JP1165264 A JP 1165264A JP 16526489 A JP16526489 A JP 16526489A JP H0333085 A JPH0333085 A JP H0333085A
Authority
JP
Japan
Prior art keywords
diamond
substrate
diamond film
sintered body
surface smoothness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165264A
Other languages
Japanese (ja)
Inventor
Masanori Yoshikawa
吉川 昌範
Kenji Kadota
健次 門田
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Denki Kagaku Kogyo KK filed Critical Research Development Corp of Japan
Priority to JP1165264A priority Critical patent/JPH0333085A/en
Publication of JPH0333085A publication Critical patent/JPH0333085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a diamond coated combined body useful as a cutting tool, a high performance heat radiating substrate, etc., without requiring post- machining such as polishing by forming a smooth diamond film on the surface of a cubic boron nitride sintered body having prescribed purity, grain size and surface smoothness. CONSTITUTION:A smooth diamond film having <=0.05mum surface roughness Ra is formed by epitaxial growth on the surface of a cubic boron nitride sintered body having >=98mol% purity, <=10mum grain size and <=0.05mum surface roughness Ra to obtain a diamond coated combined body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗性の良好な切削工具や、高性能放熱基
板として有用な、ダイヤモンド被覆複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diamond-coated composite useful as a cutting tool with good wear resistance and a high-performance heat dissipation substrate.

〔従来の技術〕[Conventional technology]

ダイヤモンドの合成法としては、Fe、  Ni。 Diamond synthesis methods include Fe and Ni.

Co等を触媒として黒鉛を5〜7 GPa 、 130
0〜2000°Cの高温高圧で処理する静的超高圧法や
、黒鉛を爆発などの衝撃波により直接ダイヤモンドに転
換する動的超高圧法が知られている。これらのほか比較
的低温低圧で炭素含有ガスを原料として行なう化学蒸着
法が、最近開発され特に注目されている。この化学蒸着
法は、炭素含有ガスと水素との混合ガスを反応槽内に導
入し、熱電子の放射あるいはプラズマにより、炭素含有
ガスと水素との混合ガスを活性状態にし、加熱された基
体上にダイヤモンドを析出させるものである。
5 to 7 GPa of graphite using Co as a catalyst, 130
A static ultra-high pressure method in which the process is carried out at high temperatures and pressures of 0 to 2000°C, and a dynamic ultra-high pressure method in which graphite is directly converted into diamond by shock waves such as explosions are known. In addition to these methods, a chemical vapor deposition method using a carbon-containing gas as a raw material at a relatively low temperature and low pressure has recently been developed and is attracting particular attention. In this chemical vapor deposition method, a gas mixture of carbon-containing gas and hydrogen is introduced into a reaction tank, and the mixture of carbon-containing gas and hydrogen is activated by thermionic radiation or plasma, and then deposited on a heated substrate. It is used to precipitate diamonds.

熱電子の放射を用いた例としては特開昭58−9110
0 号公報、マイクロ波によるプラズマを用いた例とし
て特開昭58−110494号公報などがある。
An example of using thermionic radiation is JP-A-58-9110.
0, and Japanese Patent Application Laid-open No. 110494/1984 as an example using microwave plasma.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ダイヤモンド膜を化学蒸着法により形成する場合、ダイ
ヤモンド単結晶を基体として用いれば、平滑な面をもつ
ダイヤモンド膜を形成させることができるけれども、利
用可能な単結晶ダイヤモンドは、数問角程度であり、し
かも1600°C,6GPa以上の高温高圧処理を必要
とし時間もかかるため高価である。
When forming a diamond film by chemical vapor deposition, it is possible to form a diamond film with a smooth surface by using a diamond single crystal as the substrate, but the available single crystal diamond is only a few squares in size. Moreover, it is expensive because it requires high-temperature and high-pressure treatment at 1600° C. and 6 GPa or more, which takes time.

さらにはダイヤモンド膜を切削工具および放熱基板とし
て用いる場合は、基体をそれらの形状に加工しなければ
ならないが、そのように加工するには多大な時間を要す
る。
Furthermore, when a diamond film is used as a cutting tool and a heat dissipating substrate, the base must be processed into those shapes, but such processing requires a great deal of time.

一方、基体にダイヤモンド単結晶以外の物質として、シ
リコン、モリブデン、炭化タングステンなどを用いた場
合は、形成された膜はいずれの場合も多核発生による多
結晶膜であり、膜表面は、表面平滑度Ra  :  0
.1μm−数μmの凹凸を持つため、切削工具および放
熱基板として用いるには表面の凹凸を加工研磨して平滑
にする必要があった。
On the other hand, when silicon, molybdenum, tungsten carbide, etc. are used for the substrate as a material other than diamond single crystal, the formed film is a polycrystalline film due to multinucleation generation, and the film surface has a surface smoothness. Ra: 0
.. Since it has irregularities of 1 μm to several μm, it was necessary to process and polish the surface irregularities to make it smooth in order to use it as a cutting tool or a heat dissipation substrate.

例えば、特開昭62−278181号公報は、立方晶窒
化はう素を含有した焼結体からなる基材の表面に0.1
〜40μm厚さのダイヤモンド及び/又はダイヤモンド
状カーボンからなる被覆層を形成させたダイヤモンド被
覆工具部材を開示するが、このダイヤモンド状カーボン
からなるる被覆層は、多核発生により形成されるため平
滑なダイヤモンド膜を形成することができない。
For example, Japanese Patent Application Laid-Open No. 62-278181 discloses that the surface of a base material made of a sintered body containing cubic boron nitride is
A diamond-coated tool member is disclosed in which a coating layer made of diamond and/or diamond-like carbon is formed with a thickness of ~40 μm, but the coating layer made of diamond-like carbon is formed by multinucleation, so it is not a smooth diamond. Unable to form a film.

また、表面を平滑にするため、従来からダイヤモンドは
鋳鉄を用いて機械的に研磨(いわゆるスカイフ研磨)さ
れていたが、この方法は、基体との結合力が弱いダイヤ
モンド膜には不向きであり、なおかつ長時間を要した。
Furthermore, in order to smooth the surface, diamonds have traditionally been mechanically polished using cast iron (so-called scaife polishing), but this method is not suitable for diamond films, which have weak bonding strength with the substrate. Moreover, it took a long time.

さらに最近、熱化学反応を利用したダイヤモンド膜の研
磨方法も提案されてはいるが、研磨に時間がかかり根本
的な問題の解決には至っていない。
Furthermore, a method of polishing a diamond film using a thermochemical reaction has recently been proposed, but polishing takes a long time and the fundamental problem has not been solved.

そこで研磨等の後加工を必要と廿ずして表面平滑なダイ
ヤモンド被覆複合体を提案することが本発明の目的であ
る。
Therefore, it is an object of the present invention to propose a diamond-coated composite having a smooth surface without requiring post-processing such as polishing.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、純度98モル%以上、粒径101
!Il+以上、表面平滑度Ra : 0.05μm以下
の立方晶窒化ほう素焼結体を基体とし、その表面にRa
: 0.05μm以下の平滑なダイヤモンド膜を有する
ことを特徴とするダイヤモンド被覆複合体である。
That is, the present invention has a purity of 98 mol% or more and a particle size of 101
! The substrate is a cubic boron nitride sintered body with a surface smoothness Ra of 0.05 μm or less, and a surface smoothness Ra of 0.05 μm or less.
: A diamond-coated composite characterized by having a smooth diamond film of 0.05 μm or less.

以下、さらに詳しく本発明を説明する。The present invention will be explained in more detail below.

ダイヤモンド単結晶上のダイヤモンド膜が、エピタキシ
ャルに成長するのは、基体とダイヤモンド膜が同し物質
であり、格子定数が、−敗しているためである。
The reason why a diamond film on a diamond single crystal grows epitaxially is that the substrate and the diamond film are made of the same material and have a negative lattice constant.

立方晶窒化はう素(以下cBNと記す)の格子定数は、
0.36162 nmであり、ダイヤモンドの格子定数
0.35667 nmと非常に近い。c B N (1
00)面とダイヤモンド(100)面の格子定数の不整
合度(ミスフィツトファクター)は、L4%である。
The lattice constant of cubic boron nitride (hereinafter referred to as cBN) is
It has a lattice constant of 0.36162 nm, which is very close to the lattice constant of diamond, which is 0.35667 nm. c B N (1
The degree of mismatch (misfit factor) between the lattice constants of the diamond (00) plane and the diamond (100) plane is L4%.

このように格子不整合が小さいため、cBN単結晶上に
はダイヤモンドをヘテロエピタキシャルに成長させるこ
とが可能となる。
Since the lattice mismatch is small in this way, it becomes possible to grow diamond heteroepitaxially on the cBN single crystal.

また、cBNとダイヤモンドの熱膨脹係数は、それぞれ
4.5xlO−’に一’および4.3X10−hK−’
(750″C)と非常に近いため、切削工具として用い
た場合は、切削時に生じる熱膨張率の差による界面剥離
や亀裂が発生し難い。
Also, the thermal expansion coefficients of cBN and diamond are 4.5xlO-' and 4.3x10-hK-', respectively.
(750″C), so when used as a cutting tool, interfacial peeling or cracking due to the difference in thermal expansion coefficient that occurs during cutting is unlikely to occur.

本発明においては、純度98モル%以上、粒径10μm
以上で、表面平滑度Ra : 0.05μm以下のcB
N焼結体を基体として用いることにより、平滑な面を持
つダイヤモンド膜の形成が可能となることを見いだした
ものである。
In the present invention, the purity is 98 mol% or more and the particle size is 10 μm.
Above, surface smoothness Ra: cB of 0.05 μm or less
It has been discovered that by using a N sintered body as a substrate, it is possible to form a diamond film with a smooth surface.

(作 用) cBN焼結体の純度が98モル%未満である場合、粒界
に合成触媒などが残存しており、焼結体の粒子と粒子が
粒界の触媒で分離されて形成されるダイヤモンドの多核
発生の原因となり平滑な面を持つダイヤモンド膜の形成
ができないばかりか、基体cBNと形成されるダイヤモ
ンド膜との密着性を低下させる。
(Function) If the purity of the cBN sintered body is less than 98 mol%, the synthesis catalyst remains at the grain boundaries, and the particles of the sintered body are separated by the catalyst at the grain boundaries. This causes multinucleation of diamond, making it impossible to form a diamond film with a smooth surface, and also reduces the adhesion between the cBN substrate and the diamond film to be formed.

基体の大きさが同じ場合、粒径が小さくなると粒界が多
くなり形成するダイヤモンドの多核発生が起きやすくな
るので、本発明では粒径10μm以上と限定した。粒径
10μm未満では平滑な面を持つダイヤモンド膜の形成
ができない。
When the size of the substrate is the same, as the grain size becomes smaller, the number of grain boundaries increases and multi-nucleation of the formed diamond is likely to occur. Therefore, in the present invention, the grain size is limited to 10 μm or more. If the particle size is less than 10 μm, a diamond film with a smooth surface cannot be formed.

さらに、ダイヤモンドは基体cBN焼結体表面に成長し
ていくため、ダイヤモンド膜の表面平滑度は、基体表面
平滑度の影響を受け、基体と同程度となる。基体である
cBN焼結体の表面平滑度と形成されるダイヤモンド膜
の平滑度の関係を検討した結果、基体の表面平滑度がR
a : 0.05μmを越えると形成されるダイヤモン
ド膜表面の平滑度が顕著に低下することが見いだされた
ので、基体の表面平滑度をRa : 0.05μm以下
に限定した。
Furthermore, since diamond grows on the surface of the cBN sintered body, the surface smoothness of the diamond film is influenced by the surface smoothness of the base and becomes comparable to that of the base. As a result of examining the relationship between the surface smoothness of the cBN sintered body that is the base and the smoothness of the diamond film formed, it was found that the surface smoothness of the base is R.
It has been found that when a exceeds 0.05 μm, the smoothness of the surface of the diamond film formed decreases markedly, so the surface smoothness of the substrate is limited to Ra: 0.05 μm or less.

本発明に係るcBN焼結体を得るには、たとえば、熱分
解窒化はつ素(P−BN)板を、三塩化はう素、三臭化
はう素などのほう化物とアンモニアなどの窒素含有ガス
を原料ガスとして化学気相蒸着(CVD)法により合成
し、そのP−BNにMgzBI’hのようなアルカリ土
類金属のはう窒化物を合成触媒とし、熱処理によって拡
散含浸させ、それを高温高圧処理(例えば特開昭63−
260865号公報所載)すればよい。
In order to obtain the cBN sintered body according to the present invention, for example, a pyrolytic boron nitride (P-BN) plate is mixed with boron trichloride, boron tribromide, and other borides and ammonia and other nitrogen. The P-BN is synthesized by chemical vapor deposition (CVD) using the contained gas as a raw material gas, and the resulting P-BN is diffused and impregnated by heat treatment using an alkaline earth metal nitride such as MgzBI'h as a synthesis catalyst. high-temperature, high-pressure treatment (e.g., JP-A-63-
260865)).

こうして得られたcBN焼結体を切削工具部材あるいは
放熱基板などの目的とする形状に加工し、表面平滑度を
Ra : 0.05μm以下に加工研磨して基体とする
The cBN sintered body thus obtained is processed into a desired shape such as a cutting tool member or a heat dissipating substrate, and processed and polished to a surface smoothness of Ra: 0.05 μm or less to obtain a base body.

本発明のダイヤモンド被覆複合体を製造するには、上記
cBN焼結体基体を反応層内に設置し、メタン、プロパ
ン、アセチレン、メタノール、エタノールなどの炭素含
有ガスと水素との混合ガスを反応槽内に導入し、タング
ステンなどのフィラメントからの熱電子の放射あるいは
マイクロ波や高周波プラズマにより、炭素含有ガスと水
素との混合ガスを活性状態にし、工00〜tooo℃に
加熱されたcBN焼結焼結体上体上イヤモンドを析出さ
せる。析出するダイヤモンド膜は、表面平滑度がRa 
: 0.05μm以下の平滑な面であるため、そのまま
切削工具部材あるいは放熱基板として使用することがで
きる。
In order to produce the diamond-coated composite of the present invention, the cBN sintered body substrate is placed in a reaction layer, and a mixed gas of hydrogen and a carbon-containing gas such as methane, propane, acetylene, methanol, or ethanol is introduced into the reaction tank. CBN sintering is carried out by introducing a mixed gas of carbon-containing gas and hydrogen into an activated state by thermionic radiation from a filament such as tungsten, microwaves, or high-frequency plasma, and heating the mixture to 00 to 00°C. Diamonds are deposited on the upper body. The surface smoothness of the deposited diamond film is Ra
: Since it has a smooth surface of 0.05 μm or less, it can be used as it is as a cutting tool member or a heat dissipation substrate.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明を更に詳しく
説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実1津0− 三塩化はう素とアンモニアを原料ガスとし温度1900
°C1圧力200 Pa 、蒸着速度1100tt/h
rの条件でCVDを行いP−BN板を得、それをMgJ
z粉末中に埋め、N2気流中1200°Cで8時間保持
し、0.5モル%のMgJNlを拡散含浸させた。これ
をベルト型高圧発生装置内で、1.600″C15,8
GPaで30分間高温高圧処理を行い焼結体を得た。
Fruit 1 Tsu0- Temperature 1900 using boron trichloride and ammonia as raw material gas
°C1 pressure 200 Pa, deposition rate 1100tt/h
CVD was performed under the conditions of r to obtain a P-BN plate, which was then coated with MgJ
z powder and held at 1200°C for 8 hours in a N2 stream to diffusely impregnate 0.5 mol% MgJNl. This is heated in a belt-type high pressure generator using a 1.600″C15,8
A sintered body was obtained by performing high temperature and high pressure treatment at GPa for 30 minutes.

この焼結体についてXvA回折法により生成相の同定を
おこなったところcBN焼結体であることが確かめられ
た。また、反射電子顕微鏡観察および不純物分析により
、粒径50μm、純度99.3モル%であることが確か
められた。
When the generated phase of this sintered body was identified by XvA diffraction method, it was confirmed that it was a cBN sintered body. Further, by reflection electron microscopy and impurity analysis, it was confirmed that the particle size was 50 μm and the purity was 99.3 mol%.

このcBN焼結体を5mm角X0.5mmに切断し、表
面平滑度をRa : 0.030μmにラッピング研磨
した。
This cBN sintered body was cut into 5 mm squares and 0.5 mm squares, and lapped to a surface smoothness of Ra: 0.030 μm.

、上記cBN焼結体を基体として、マイクロ波プラズマ
CVD装置内でダイヤモンド膜を底膜した。
Using the cBN sintered body as a substrate, a diamond film was formed as a bottom film in a microwave plasma CVD apparatus.

メタンおよび水素を原料ガスとして全流量を200cm
’/min (標準状態;0°C−1気圧:以下r S
CCM Jで示す)、メタン分圧67 Pa 、水素メ
タン分圧比を59とし、マイクロ波発振機から2.45
GIlzのマイクロ波を400Wで発振させ導波管で反
応室へ導き、基体のまわりにプラズマを発生させ基体温
度を850°Cに保った。5時間後基体全体に厚さ5μ
mの平滑なダイヤモンド膜が形成された。形成されたダ
イヤモンド膜の表面平滑度は、Ra : 0.035μ
mであった。
The total flow rate is 200cm using methane and hydrogen as raw material gases.
'/min (Standard condition; 0°C-1 atm: Below r S
CCM J), methane partial pressure 67 Pa, hydrogen methane partial pressure ratio 59, and 2.45 from a microwave oscillator.
GIlz microwave was oscillated at 400 W and guided into the reaction chamber through a waveguide to generate plasma around the substrate and maintain the substrate temperature at 850°C. After 5 hours, the entire substrate has a thickness of 5 μm.
A smooth diamond film of m was formed. The surface smoothness of the formed diamond film is Ra: 0.035μ
It was m.

尖施■斐 実施例1と同様の方法で作製したcBN焼結体の基体表
面に、熱電子法によりダイヤモンド膜を形成させた。
A diamond film was formed on the substrate surface of a cBN sintered body produced in the same manner as in Example 1 by thermionic method.

すなわち、メタン及び水素を原料ガスとして全流量を2
005CCM 、メタン分圧67 Pa 、水素メタン
分圧比を59とし、熱電子放射用フィラメント温度を2
000°C1基体の温度を850°Cにたもった。
In other words, using methane and hydrogen as raw material gases, the total flow rate is 2
005CCM, methane partial pressure 67 Pa, hydrogen methane partial pressure ratio 59, and filament temperature for thermionic emission 2.
000°C1 The temperature of the substrate was maintained at 850°C.

5時間後基体全面に厚さ5μmの平滑なダイヤモンド膜
が形成された。
After 5 hours, a smooth diamond film with a thickness of 5 μm was formed on the entire surface of the substrate.

形成されたダイヤモンド膜の表面平滑度は、Ra : 
0.040 tttaであった。
The surface smoothness of the formed diamond film is Ra:
It was 0.040 tta.

実益奥主 実施例1と同様の方法で作製したcBN焼結体の基体表
面にマイクロ波プラズマCVD装置内でダイヤモンド膜
を形成させた。
A diamond film was formed on the substrate surface of a cBN sintered body produced in the same manner as in Example 1 in a microwave plasma CVD apparatus.

すなわち、メタンおよび水素を原料ガスとして全流量を
200 SCCM 、メタン分圧67 Pa 、水素メ
タン分圧比を59とし、マイクロ波発振機から2.45
 GHzのマイクロ波を400Wで発振させ導波管で反
応室へ導き、基体のまわりにプラズマを発生させ基体温
度を950°Cに保った。5時間後基体全面に厚さ5μ
mの平滑なダイヤモンド膜が形成された。
That is, using methane and hydrogen as raw material gases, the total flow rate was 200 SCCM, the methane partial pressure was 67 Pa, the hydrogen-methane partial pressure ratio was 59, and the microwave oscillator was used to generate 2.45
A GHz microwave was oscillated at 400 W and guided into the reaction chamber through a waveguide to generate plasma around the substrate and maintain the substrate temperature at 950°C. After 5 hours, a thickness of 5μ is applied to the entire surface of the substrate.
A smooth diamond film of m was formed.

形威されたダイヤモンド膜の表面平滑度は、Ra: 0
.040tImであった。
The surface smoothness of the shaped diamond film is Ra: 0
.. It was 040tIm.

北較班工 炭化タングステンを5mm角X 0.5mm、表面平滑
度Ra : 0.035μmに加工して基体としたこと
以外は実施例1と同様にしてダイヤモンド膜の形成を行
なった。
A diamond film was formed in the same manner as in Example 1, except that the substrate was made of polished tungsten carbide having a size of 5 mm x 0.5 mm and a surface smoothness Ra of 0.035 μm.

その結果、5時間後には基体全面に厚さ5μmのダイヤ
モンド膜が形威され、その表面平滑度は、Ra : 0
.55μmであった。
As a result, after 5 hours, a diamond film with a thickness of 5 μm was formed on the entire surface of the substrate, and the surface smoothness was Ra: 0.
.. It was 55 μm.

止較明呈 シリコン単結晶を5 n+m角X 0.5+aa+、表
面平滑度Ra : 0.030μmに加工して基体とし
たこと以外は実施例1と同様にしてダイヤモンド膜の形
成を行なった。
A diamond film was formed in the same manner as in Example 1, except that a non-glare silicon single crystal was processed to have a 5 n+m square x 0.5+aa+ and a surface smoothness Ra of 0.030 μm as a substrate.

その結果、5時間後には基体全面に厚さ5μmのダイヤ
モンド膜が形威され、その表面平滑度はRa : 0.
52ttmであった。
As a result, after 5 hours, a diamond film with a thickness of 5 μm was formed on the entire surface of the substrate, and its surface smoothness was Ra: 0.
It was 52ttm.

此(石組よ 表面平滑度がRa : 0.070 ttmであるcB
N焼結体を基体したこと以外は実施例1と同様にしてダ
イヤモンド膜の形成を行なった。その結果、5時間後に
は基体全面に厚さ5μmのダイヤモンド膜が形成され、
その表面平滑度はRa : O,I51zmであった。
This (Iwagumi) has a surface smoothness of Ra: 0.070 ttm.
A diamond film was formed in the same manner as in Example 1 except that a N sintered body was used as the substrate. As a result, a diamond film with a thickness of 5 μm was formed on the entire surface of the substrate after 5 hours.
Its surface smoothness was Ra: O, I51zm.

且(和糺生 実施例1と同様にしてMgi BH3を拡散含浸させた
P−BN板を得、それをベルト型高圧発生装置内で、1
.400℃、4.5 GPaで30分間高温高圧処理を
行って、粒径5μm、純度99.3モル%のcBN焼結
体を製造した。
(Wadasu) A P-BN plate diffused and impregnated with Mgi BH3 was obtained in the same manner as in Example 1, and it was heated in a belt-type high pressure generator for 1
.. High temperature and high pressure treatment was performed at 400° C. and 4.5 GPa for 30 minutes to produce a cBN sintered body with a particle size of 5 μm and a purity of 99.3 mol%.

それを5111Il角X0.5+nn+ 、表面平滑度
Ra : 0.05μmに加工して基体とした。
It was processed to have a 5111Il angle X0.5+nn+ and a surface smoothness Ra: 0.05 μm to obtain a substrate.

この基体を用いたこと以外は実施例1と同様にしてダイ
ヤモンド膜の形成を行なったところ、5時間後には基体
全面に厚さ5μmのダイヤモンド膜が形威されたがcB
N焼結体の粒径が小さすぎるためダイヤモンド膜の表面
平滑度はRa : 0.10μmであった。
A diamond film was formed in the same manner as in Example 1 except that this substrate was used. After 5 hours, a diamond film with a thickness of 5 μm was formed on the entire surface of the substrate, but cB
Since the grain size of the N sintered body was too small, the surface smoothness of the diamond film was Ra: 0.10 μm.

此1u糺i 実施例1において触媒の含浸時間を変えて2.5モル%
のMgz BNsを拡散含浸させたP−BN板を得た後
、それを実施例1と同じ条件で高温高圧処理を行ったと
ころ、粒径45μm、純度96.5モル%のcBN焼結
体が得られた。
This 1 u glue was 2.5 mol% by changing the catalyst impregnation time in Example 1.
After obtaining a P-BN plate diffused and impregnated with MgzBNs of Obtained.

これを5nIIII角X0.5mm、表面平滑度Ra 
: 0.040μmに加工して基体とし、以下、実施例
1と同様にしてダイヤモンド膜の形成を行なったところ
、5時間後には基体全面に厚さ5μmのダイヤモンド膜
が形威されたが、cBN焼結体の純度が低かったのでダ
イヤモンドの表面平滑度はRa : 0.10μmであ
った。
This is 5nIII angle x 0.5mm, surface smoothness Ra
: Processed to 0.040 μm as a substrate, a diamond film was formed in the same manner as in Example 1. After 5 hours, a diamond film with a thickness of 5 μm was formed on the entire surface of the substrate, but cBN Since the purity of the sintered body was low, the surface smoothness of the diamond was Ra: 0.10 μm.

尖施班土 上記実施例1.2の本発明品および比較例1の比較品を
用いて、被削材80% Af−20%Siを、切削速度
350III/ll1n、切込み0.5mm 、送り速
度0.1mm/rev 、切削時間10 minの条件
で切削試験を試みた。
Using the inventive product of Example 1.2 and the comparative product of Comparative Example 1, a workpiece material of 80% Af-20% Si was cut at a cutting speed of 350III/ll1n, a depth of cut of 0.5 mm, and a feed rate. A cutting test was attempted under the conditions of 0.1 mm/rev and cutting time of 10 min.

比較品は、被覆層の剥離を伴う微小チッピングを起こし
ていたのに対し、本発明品は正常摩耗であった。また、
比較品で切削した被削材の表面平滑度は、Ra : 0
.55μmであったのに対し、本発明品でも切削した被
削材の表面平滑度は0.05μmであった。
The comparison product had minute chipping accompanied by peeling of the coating layer, whereas the product of the present invention showed normal wear. Also,
The surface smoothness of the workpiece cut with the comparison product is Ra: 0
.. In contrast, the surface smoothness of the workpiece cut with the product of the present invention was 0.05 μm.

実施明工 上記実施例3の本発明品にイオンビームスペンタ法によ
り第1層Ni、第2層Auのメタライズ層を形威し放熱
基板として使用した。
Practical Works Metallized layers of a first layer of Ni and a second layer of Au were shaped by the ion beam penta method on the product of the present invention in Example 3 and used as a heat dissipation substrate.

50 mW半導体レーザを1000時間作動させた後、
レーザ出力の劣化は認められなかった。一方、比較例2
.3,4.5は後加工なしには放熱基板として用いるこ
とができなかった。
After operating the 50 mW semiconductor laser for 1000 hours,
No deterioration of laser output was observed. On the other hand, comparative example 2
.. No. 3, 4.5 could not be used as a heat dissipation substrate without post-processing.

〔発明の効果〕〔Effect of the invention〕

本発明は、cBN焼結体を基体とする平滑なダイヤモン
ド膜を有する被覆複合体であって後加工を要しないため
製造時間は著しく短縮されるにも拘らず、基体とダイヤ
モンド膜の密着性が強固であるという効果がある。本発
明は、切削工具あるいは高熱伝導率の放熱基板としての
利用が期待できる。
The present invention is a coated composite having a smooth diamond film on a cBN sintered body as a base, and although the manufacturing time is significantly shortened because no post-processing is required, the adhesion between the base and the diamond film is It has the effect of being strong. The present invention can be expected to be used as a cutting tool or a heat sink with high thermal conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1.純度98モル%以上、粒径10μm以上、表面平滑
度Ra:0.05μm以下の立方晶窒化ほう素焼結体を
基体とし、その表面にRa:0.05μm以下の平滑な
ダイヤモンド膜を有することを特徴とするダイヤモンド
被覆複合体。
1. The substrate is a cubic boron nitride sintered body with a purity of 98 mol% or more, a grain size of 10 μm or more, and a surface smoothness Ra of 0.05 μm or less, and a smooth diamond film with an Ra of 0.05 μm or less on the surface. Features a diamond-coated composite.
JP1165264A 1989-06-29 1989-06-29 Diamond coated combined body Pending JPH0333085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165264A JPH0333085A (en) 1989-06-29 1989-06-29 Diamond coated combined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165264A JPH0333085A (en) 1989-06-29 1989-06-29 Diamond coated combined body

Publications (1)

Publication Number Publication Date
JPH0333085A true JPH0333085A (en) 1991-02-13

Family

ID=15809028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165264A Pending JPH0333085A (en) 1989-06-29 1989-06-29 Diamond coated combined body

Country Status (1)

Country Link
JP (1) JPH0333085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066492A1 (en) * 2000-03-08 2001-09-13 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
JP2001322884A (en) * 2000-03-08 2001-11-20 Sumitomo Electric Ind Ltd Coated cubic boron nitride sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066492A1 (en) * 2000-03-08 2001-09-13 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
JP2001322884A (en) * 2000-03-08 2001-11-20 Sumitomo Electric Ind Ltd Coated cubic boron nitride sintered compact
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride

Similar Documents

Publication Publication Date Title
EP0442304B1 (en) Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
Liu et al. Diamond chemical vapor deposition: nucleation and early growth stages
US7645513B2 (en) Cubic boron nitride/diamond composite layers
JP3938361B2 (en) Carbon composite material
JPH0535221B2 (en)
JPH04226826A (en) Drill covered with cvd diamond
EP0819184A1 (en) Enhanced adherence of diamond coatings employing pretreatment process
Shintani Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: A possibility of heteroepitaxy
US20090286352A1 (en) Diamond Bodies Grown on SIC Substrates and Associated Methods
JPS61124573A (en) Diamond-coated base material and its production
WO2006048957A1 (en) Single-crystal diamond
US7435296B1 (en) Diamond bodies grown on SiC substrates and associated methods
JP4294140B2 (en) Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method
JP2006348388A (en) Carbon composite material
JPH08239752A (en) Thin film of boron-containing aluminum nitride and its production
JPH04214869A (en) Annular product coated with cvd diamond and its manufacture
JPS62138395A (en) Preparation of diamond film
JPH0333085A (en) Diamond coated combined body
Kikuchi et al. Characteristics of thin film growth in the synthesis of diamond by chemical vapour deposition and application of the thin film synthesis technology for tools
GB2257427A (en) Ivsotopically-pure carbon 12 or carbon 13 polycrystalline diamond
JPH01157412A (en) Substrate with diamond film
US5488232A (en) Oriented diamond film structures on non-diamond substrates
JP3397849B2 (en) Diamond coated cemented carbide tool
Schreck Growth of single crystal diamond wafers for future device applications
US20040161609A1 (en) Cubic boron nitride/diamond composite layers