JPH08239752A - Thin film of boron-containing aluminum nitride and its production - Google Patents

Thin film of boron-containing aluminum nitride and its production

Info

Publication number
JPH08239752A
JPH08239752A JP4168795A JP4168795A JPH08239752A JP H08239752 A JPH08239752 A JP H08239752A JP 4168795 A JP4168795 A JP 4168795A JP 4168795 A JP4168795 A JP 4168795A JP H08239752 A JPH08239752 A JP H08239752A
Authority
JP
Japan
Prior art keywords
single crystal
boron
aluminum nitride
thin film
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4168795A
Other languages
Japanese (ja)
Other versions
JP3716440B2 (en
Inventor
Yoshiharu Uchiumi
慶春 内海
Takahiro Imai
貴浩 今井
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP04168795A priority Critical patent/JP3716440B2/en
Priority to DE69521409T priority patent/DE69521409T2/en
Priority to EP95308297A priority patent/EP0730044B1/en
Priority to US08/565,027 priority patent/US5766783A/en
Publication of JPH08239752A publication Critical patent/JPH08239752A/en
Application granted granted Critical
Publication of JP3716440B2 publication Critical patent/JP3716440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To easily produce a thin film of boron-containing aluminum nitride having high hardness and excellent in crystal-linity by forming a thin aluminum nitride single crystal film as an intermediate layer on a single crystal substrate and further forming a thin film of boron-containing aluminum nitride single crystal on the intermediate layer. CONSTITUTION: A thin film 2 of aluminum nitride single crystal is formed as an intermediate layer on a single crystal substrate 1 (diamond, sapphire, etc.) to about 1mm-1μm thickness. On this intermediate layer, a thin film 3 of boron- containing aluminum nitride single crystal is formed. At this time, this thin single crystal film 3 has a composition represented by Bx Al1-x Ny (where 0.001<=x<=0.3 and 0.85<=y<=1.05 are satisfied) and also has a wurtzitic crystalline structure. By this method, the thin film 3 of boron-containing aluminum nitride single crystal, having wide band gap and high sonic velocity and easy control of valence electron, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】工具、耐摩部品、表面弾性波素
子、発光素子、高熱伝導ヒートシンクなどに用いられる
ホウ素含有窒化アルミニウム薄膜。
[Industrial application] Boron-containing aluminum nitride thin films used for tools, wear resistant parts, surface acoustic wave devices, light emitting devices, high thermal conductive heat sinks, etc.

【0002】[0002]

【従来の技術】窒化ホウ素や窒化アルミニウムなどの高
い硬度を有する窒化物は天然には存在せず粉体や薄膜の
合成が試みられてきた。窒化アルミニウムはウルツ鉱型
の結晶構造をもち、高い硬度、速い音速、広いバンドギ
ャップを有し、粉体とその焼結体および薄膜が製造され
ている。大型単結晶が製造できないために配向性の薄膜
または薄膜として工具、高周波用表面弾性波フィルタ
ー、短波長発光素子などとして実用化あるいは開発研究
が進められてきた。
2. Description of the Related Art Nitride having a high hardness such as boron nitride and aluminum nitride does not exist in nature, and attempts have been made to synthesize powders and thin films. Aluminum nitride has a wurtzite type crystal structure, high hardness, fast sound velocity, and wide band gap, and powder, its sintered body, and a thin film are manufactured. Since large single crystals cannot be manufactured, practical thin films or thin films with orientation have been put into practical use or development research as tools, high frequency surface acoustic wave filters, short wavelength light emitting devices and the like.

【0003】窒化ホウ素は窒素とホウ素がsp2型混成軌
道で結合した六方晶型を代表とする低圧相と、窒素とホ
ウ素がsp3型混成軌道で結合した立方晶型またはウルツ
鉱型の結晶構造を有する高圧相とがあるが、高圧相窒化
ホウ素は良質な結晶としてはこれまで微細な粒子が静的
高圧法や爆縮法で合成されてきたのみであった。このよ
うな高圧相窒化ホウ素の薄膜を高圧発生装置を用いずに
合成する試みがこれまで多数成されてきたが、半導体や
高周波フィルターに必要とされる高い結晶性を持つ高圧
相窒化ホウ素膜は得られていない。
Boron nitride has a low-pressure phase typified by a hexagonal type in which nitrogen and boron are bonded in an sp2 hybrid orbital, and a cubic or wurtzite type crystal structure in which nitrogen and boron are bonded in an sp3 hybrid orbital. The high-pressure phase boron nitride has a high-pressure phase, but fine particles of high-pressure phase boron nitride have heretofore been synthesized only by a static high-pressure method or an implosion method. Many attempts have been made to synthesize such a thin film of high-pressure phase boron nitride without using a high-pressure generator, but a high-pressure phase boron nitride film with high crystallinity required for semiconductors and high-frequency filters has been developed. Not obtained.

【0004】特開平1-232695号公報には、薄膜EL素子の
誘電体層としてAlNとBNからなるコンポジット薄膜を用
いることによって、位相が異なる交流パルスや、正、逆
方向の振幅が異なる交流パルスで駆動しても、長時間に
渡り安定したB/V特性を持つ薄膜素子が記載されてい
る。しかしながらコンポジットがどのような結晶構造を
有しているかについては記載がない。
Japanese Laid-Open Patent Publication No. 1-232695 uses an AC pulse having different phases and an AC pulse having different amplitudes in the forward and reverse directions by using a composite thin film made of AlN and BN as a dielectric layer of a thin film EL element. It describes a thin film element that has stable B / V characteristics for a long time even when driven by. However, there is no description about what kind of crystal structure the composite has.

【0005】[0005]

【発明が解決しようとする課題】本願発明は、前記した
問題点を解決するために窒化アルミニウムよりも高い硬
度、広いバンドギャップ、大きな音速、を有し価電子制
御が容易で、結晶性のよいホウ素含有窒化アルミニウム
単結晶薄膜を提供することを目的とするものである。
In order to solve the above-mentioned problems, the present invention has a higher hardness, a wider bandgap, and a higher sound velocity than aluminum nitride, is easy to control valence electrons, and has good crystallinity. It is intended to provide a boron-containing aluminum nitride single crystal thin film.

【0006】発明者等はホウ素を含有する窒化アルミニ
ウム薄膜(ホウ素含有窒化アルミニウム(BAlN)単結晶
薄膜)が、ウルツ鉱型窒化ホウ素およびウルツ鉱型窒化
アルミニウムと同じ結晶構造を有し、窒化アルミニウム
(AlN)よりも硬度、音速、バンドギャップなどの点で
優れ、ウルツ鉱型窒化ホウ素よりも高品質の結晶性を持
つ薄膜が容易に合成できるのではないかと考えて、検討
および実験の結果以下の結論を得た。
The inventors have found that an aluminum nitride thin film containing boron (boron-containing aluminum nitride (BAlN) single crystal thin film) has the same crystal structure as wurtzite type boron nitride and wurtzite type aluminum nitride, AlN) is superior in hardness, speed of sound, band gap, etc., and it is possible to easily synthesize a thin film with higher quality crystallinity than wurtzite type boron nitride. I got a conclusion.

【0007】[0007]

【課題を解決するための手段】ホウ素、アルミニウム、
窒素からなり、BxAl1-xNy (0.001≦x≦0.7、0.85≦y≦
1.05)なる組成と、ウルツ鉱型の結晶構造を有する3元
系薄膜が、その結晶性を高品質に保つように形成された
ならば、窒化アルミニウム薄膜より高い硬度、速い音
速、広いバンドギャップを有する高い機能性を示し、高
圧相窒化ホウ素薄膜よりもX線回折のロッキングカーブ
の半価幅が狭く、結晶性および結晶の配向性が優れた高
品質な結晶性をもつ薄膜を提供するものである。
[Means for Solving the Problems] Boron, aluminum,
Consisting of nitrogen, B x Al 1-x N y (0.001 ≤ x ≤ 0.7, 0.85 ≤ y ≤
1.05), and a ternary thin film having a wurtzite crystal structure, if it is formed so as to maintain its crystallinity at a high quality, it has higher hardness, faster sound velocity, and wider band gap than the aluminum nitride thin film. It has a high functionality, has a narrower half-width of the rocking curve of X-ray diffraction than the high-pressure phase boron nitride thin film, and provides a high-quality crystalline thin film with excellent crystallinity and crystal orientation. is there.

【0008】このとき特に単結晶基板上に中間層として
窒化アルミニウム単結晶薄膜を形成し、この窒化アルミ
ニウム上にホウ素含有窒化アルミニウム(BAlN)単結晶薄
膜を成長させることによって、直接単結晶基板上にBAlN
薄膜を成長させるよりも高いB/Al組成比(x≦0.3)まで
単結晶を成長させることが可能となる。x>0.3において
は、下地と薄膜との格子のミスマッチが大きくなるた
め、単結晶薄膜を形成することが困難となる。
At this time, in particular, an aluminum nitride single crystal thin film is formed as an intermediate layer on the single crystal substrate, and a boron-containing aluminum nitride (BAlN) single crystal thin film is grown on this aluminum nitride to directly deposit the single crystal substrate. BAlN
It becomes possible to grow a single crystal to a B / Al composition ratio (x ≦ 0.3) higher than that for growing a thin film. When x> 0.3, the lattice mismatch between the underlayer and the thin film becomes large, making it difficult to form a single crystal thin film.

【0009】さらに、単結晶基板上に中間層としてB/Al
組成比を連続的あるいは段階的に増加させたBAlN単結晶
傾斜組成層、あるいは中間層第1層として窒化アルミニ
ウム単結晶層とこの上に中間層第2層としてB/Al組成比
を連続的あるいは段階的に増加させたBAlN単結晶傾斜組
成層BαAl1-αNβ(0.0001≦α≦X、0.85≦β≦1.05)
を用い、これらの上にBAlNを成長させることにより、Bx
Al1-xNy(0.001≦x≦0.7、0.85≦y≦1.05)なる組成域
において、単結晶薄膜を形成することが可能となる。
Further, B / Al is used as an intermediate layer on the single crystal substrate.
A BAlN single crystal gradient composition layer in which the composition ratio is continuously or stepwise increased, or an aluminum nitride single crystal layer as the first intermediate layer and a B / Al composition ratio as the second intermediate layer on the aluminum nitride single crystal layer continuously or Gradually increased BAlN single crystal gradient composition layer B α Al 1 - α N β (0.0001 ≦ α ≦ X, 0.85 ≦ β ≦ 1.05)
By growing BAlN on these using B x
In the composition range of Al 1-x N y (0.001 ≦ x ≦ 0.7, 0.85 ≦ y ≦ 1.05), a single crystal thin film can be formed.

【0010】このようなBAlN単結晶薄膜を作成するに
は、アルミニウム、ホウ素、窒化アルミニウム、窒化ホ
ウ素、アルミニウム−ホウ素合金の中から選ばれた材料
をターゲットとして、すくなくとも窒素またはアンモニ
アを含むガス雰囲気でスパッタ法によってBAlN単結晶薄
膜を形成するか、またはすくなくともホウ素およびアル
ミニウムを含有するハロゲン化物または水素化物または
有機金属化合物、金属アルコキシドを水素または不活性
ガスで希釈して原料として供給しプラズマCVD法によっ
てBAlN単結晶薄膜を形成する方法、あるいはMOCVD法、M
BE法が好ましいことを見いだした。
To form such a BAlN single crystal thin film, a material selected from aluminum, boron, aluminum nitride, boron nitride and aluminum-boron alloy is used as a target in a gas atmosphere containing at least nitrogen or ammonia. A BAlN single crystal thin film is formed by the sputtering method, or at least a halide or hydride containing boron and aluminum or an organometallic compound, a metal alkoxide is diluted with hydrogen or an inert gas and supplied as a raw material, and then the plasma CVD method is used. Method for forming BAlN single crystal thin film, MOCVD method, M
We have found that the BE method is preferable.

【0011】上記の製造方法でダイヤモンドまたはSiま
たはAl2O3またはSiCまたはMgOのいずれかの単結晶上にB
AlN薄膜が適当な条件で形成された場合には、単結晶のB
AlN薄膜をえることができる。このようにして得られたB
AlN単結晶薄膜は、基板上に析出させたままでも、また
必要によっては基板を除去して使用することができる。
By the above manufacturing method, B is formed on a single crystal of diamond, Si, Al 2 O 3, SiC or MgO.
When an AlN thin film is formed under appropriate conditions, B
An AlN thin film can be obtained. B thus obtained
The AlN single crystal thin film can be used as deposited on the substrate or after removing the substrate if necessary.

【0012】[0012]

【作用】[Action]

<成膜方法(プロセス、原料)> 窒化アルミニウムや
窒化ホウ素など合成中に窒素を結晶中に取り込むために
は、窒素は分子状窒素(N2)の形態が非常に安定である
ために、窒素の活性度の高い雰囲気、つまり、窒素の分
圧が高いか窒素が原子やイオンなどの活性の高い状態で
ある必要がある。スパッタ法やプラズマCVD法、イオン
ビーム蒸着法、レーザアブレーション法、MBE法、MOCVD
法などが好ましい。
<Film forming method (process, raw material)> In order to incorporate nitrogen into the crystal during synthesis such as aluminum nitride and boron nitride, nitrogen is extremely stable in the form of molecular nitrogen (N 2 ). It is necessary that the atmosphere is highly active, that is, the partial pressure of nitrogen is high or the nitrogen is in a state of high activity of atoms and ions. Sputtering method, plasma CVD method, ion beam evaporation method, laser ablation method, MBE method, MOCVD
The method is preferred.

【0013】<組成範囲> 膜中の各元素の組成はBAlN
膜の有する機能性および結晶性で有用な範囲が決定され
る。おおよその一般的傾向としてBxAl1-xNyであらわさ
れる組成のうちBとAlの比率を決める値xが0から0.2の範
囲では、結晶性はAlN薄膜と同等で非常に高品質のBAlN
膜が得られる。しかし、xが0.001未満のときはその機能
的な物性もAlNと変わらないのでBAlN膜としての有用性
は無い。xが0.2を越えると合成されたBAlN膜の結晶性は
低下し、xが0.7を越えるとその結晶性は著しく失われBA
lN膜としての機能を発揮することができなくなってしま
う。
<Composition range> The composition of each element in the film is BAlN
The useful range of the functionality and crystallinity of the membrane is determined. In the composition represented by B x Al 1-x N y as a general tendency, when the value x that determines the ratio of B to Al in the range of 0 to 0.2, the crystallinity is the same as that of the AlN thin film, and the crystallinity is very high. BAlN
A film is obtained. However, when x is less than 0.001, its functional properties are not different from those of AlN, so it is not useful as a BAlN film. When x exceeds 0.2, the crystallinity of the synthesized BAlN film decreases, and when x exceeds 0.7, its crystallinity is significantly lost.
The function as the lN film cannot be exerted.

【0014】しかしながら、単結晶基板上に中間層とし
てAlN単結晶薄膜を形成し、このAlN上にBAlN単結晶薄膜
を成長させることにより、xが0.3の組成までBAlN単結晶
薄膜を得ることができる。さらに中間層として、B/Al組
成比を連続的あるいは段階的に増加させたBAlN単結晶傾
斜組成層、あるいは中間層第1層として窒化アルミニウ
ム単結晶層とこの上に中間層第2層としてBαAl1-αNβ
(0.0001≦α≦X、0.85≦β≦1.05)単結晶傾斜組成層
を用い、これらの上にBAlN単結晶薄膜を成長させること
により、BxAl1-xNy(0.001≦x≦0.7、0.85≦y≦1.05)
なる組成域において、単結晶薄膜を形成することが可能
となる。窒素の含有量を決める値yは1に等しいときがも
っともBAlN膜の結晶性が良く欠陥が少ないと考えられる
が、発明者らの研究ではyの値が0.85から1.05の範囲で
はBAlN膜の機能を発現させることができる程度の結晶性
を有していることがわかった。本願に述べる単結晶薄膜
とは、基板上において薄膜の結晶方位が基板と平行な面
方位のみならず、基板と平行な面内の方位も1方向にエ
ピタキシャルにそろっているものを示し、島状成長など
により薄膜中に結晶粒界が存在する場合においても、そ
れぞれの結晶粒の結晶方位がすべて1方向にそろってい
れば、単結晶薄膜に含まれる。
However, by forming an AlN single crystal thin film as an intermediate layer on a single crystal substrate and growing a BAlN single crystal thin film on this AlN, a BAlN single crystal thin film can be obtained up to a composition of x = 0.3. . Further, as an intermediate layer, a BAlN single crystal gradient composition layer in which the B / Al composition ratio is continuously or stepwise increased, or an aluminum nitride single crystal layer as the first intermediate layer and an intermediate layer B as the second intermediate layer thereon. α Al 1 - α N β
(0.0001 ≤ α ≤ X, 0.85 ≤ β ≤ 1.05) using a single crystal gradient composition layer, by growing a BAlN single crystal thin film on them, B x Al 1-x N y (0.001 ≤ x ≤ 0.7, 0.85 ≦ y ≦ 1.05)
In this composition range, it becomes possible to form a single crystal thin film. It is considered that the crystallinity of the BAlN film is the best and the defects are few when the value y that determines the nitrogen content is equal to 1, but in the study of the inventors, when the value of y is 0.85 to 1.05, the BAlN film functions. It was found that the crystallinity was so high that it could be expressed. The single crystal thin film described in the present application means that the crystal orientation of the thin film on the substrate is not only the plane orientation parallel to the substrate but also the orientation in the plane parallel to the substrate in one direction epitaxially. Even when a crystal grain boundary exists in a thin film due to growth or the like, it is included in a single crystal thin film if the crystal orientations of the respective crystal grains are all aligned in one direction.

【0015】<単結晶基板> BAlN膜を形成する際の基
材としては、成膜に必要な700℃以上の温度に耐える材
料ならば何でも使用できるが、B、Al、Nとの反応性に乏
しい材料が好ましく、金属ではMo、W、Ni、Ta、Nb、半
導体ではダイヤモンド、Si、Ge、AlN、SiC、GaN、BP、I
nN、その他の化合物ではAl2O3、SiO2、MgO、BeO、ZnOな
どが好ましい。
<Single-Crystal Substrate> As a base material for forming a BAlN film, any material can be used as long as it can withstand a temperature of 700 ° C. or higher required for film formation. Poor materials are preferred, Mo, W, Ni, Ta, Nb for metals, diamond, Si, Ge, AlN, SiC, GaN, BP, I for semiconductors.
For nN and other compounds, Al 2 O 3 , SiO 2 , MgO, BeO, ZnO and the like are preferable.

【0016】単結晶BAlN薄膜を形成するためには、BAlN
膜が基材の方位に従って成長するような材料を選択する
必要があり、しかも基板材料は単結晶でなければならな
い。このような基板材料としてはダイヤモンド、Si、Al
2O3、SiO2、SiC、MgOなどがある。単結晶を基板とする
場合、薄膜を形成する基板の結晶方位は3回または6回
の対称性をもつ結晶面がBAlN膜の結晶性がよくなりやす
いC面に配向するので好ましい。このような結晶面には
ダイヤモンド、Si、立方晶SiCの(111)面、α-Al2O3、六
方晶SiCのC面<(0001)面>、MgO(111)面がある。上記の
基板材料とBAlN単結晶薄膜との間に中間層を挿入するこ
とによって、BAlN単結晶薄膜の結晶性を高めることがで
きる場合がある。
To form a single crystal BAlN thin film, BAlN
The material must be chosen so that the film grows according to the orientation of the substrate, and the substrate material must be single crystal. Such substrate materials include diamond, Si, Al
2 O 3 , SiO 2 , SiC, MgO and the like. When a single crystal is used as the substrate, the crystal plane of the substrate on which the thin film is formed is preferably 3 or 6 times because the crystal planes having symmetry are oriented to the C plane, which tends to improve the crystallinity of the BAlN film. Such crystal faces include (111) face of diamond, Si, cubic SiC, α-Al 2 O 3 , C face <(0001) face> of MgO (111) face of hexagonal SiC. In some cases, the crystallinity of the BAlN single crystal thin film can be improved by inserting an intermediate layer between the substrate material and the BAlN single crystal thin film.

【0017】<中間層> 中間層としてAlN、SiC、BP、
GaN、ZnOなどのうち1種類以上の単結晶薄膜を基材上に
形成してから、BAlNを成膜すると、基材上に直接成膜す
るよりも結晶性が良いことがある。特にSi単結晶上にBA
lNを形成する場合には、これら5種類の材料はSiとBAlN
の中間の格子定数をもっているので、中間層としてSi上
に形成することによってBAlN単結晶薄膜中の欠陥や歪み
を低減し、より高品質のBAlN単結晶薄膜を得ることがで
きる。Si以外の基板でも効果があることが多い。中間層
としては図1に示すAlNがもっとも好ましく、SiCがこれ
に次ぎ、BP、GaN、ZnOはこれらよりも効果が小さい。中
間層の厚さは1nm以上1μm以下が適当な範囲である。
これ以上薄いと中間層が無い時と同等であり、厚いと中
間層自体に歪みや欠陥が発生するのでかえってBAlN単結
晶薄膜の結晶性を低下させる。また、図2に示すように
AlNのかわりにホウ素含有窒化アルミニウム単結晶傾斜
組成を形成し、その上にホウ素含有窒化アルミニウム単
結晶薄膜を形成することができる。
<Intermediate Layer> As an intermediate layer, AlN, SiC, BP,
When one or more kinds of single-crystal thin films of GaN, ZnO, etc. are formed on a base material and then BAlN is formed, the crystallinity may be better than that directly formed on the base material. BA especially on Si single crystal
When forming lN, these five materials are Si and BAlN.
Since it has an intermediate lattice constant of 1, the defects and strains in the BAlN single crystal thin film can be reduced by forming the intermediate layer on Si, and a higher quality BAlN single crystal thin film can be obtained. Substrates other than Si are often effective. As the intermediate layer, AlN shown in FIG. 1 is the most preferable, SiC is the next most preferable, and BP, GaN, and ZnO are less effective than these. The suitable thickness of the intermediate layer is 1 nm or more and 1 μm or less.
If it is thinner than this, it is the same as when there is no intermediate layer, and if it is thicker, distortion and defects occur in the intermediate layer itself, which rather reduces the crystallinity of the BAlN single crystal thin film. Also, as shown in FIG.
A boron-containing aluminum nitride single crystal gradient composition can be formed instead of AlN, and a boron-containing aluminum nitride single crystal thin film can be formed thereon.

【0018】とくに単結晶基板上にAlN単結晶膜を中間
層として形成した上にBAlN単結晶薄膜を成長させた場合
には、高いホウ素含有組成においても良好な結晶性が保
たれ、単結晶膜を得ることができる。この場合BAlN単結
晶薄膜が得られる組成範囲はx≦0.3であり、AlN単結晶
中間層を用いない場合よりも高B組成までBAlN単結晶が
得られる。さらに中間層として、B/Al組成比を連続的あ
るいは段階的に増加させたBAlN単結晶傾斜組成層、ある
いは図3に示すように中間層第1層として窒化アルミニ
ウム単結晶層とこの上に中間層第2層としてB/Al組成比
を連続的あるいは段階的に増加させたBAlN単結晶傾斜組
成層を用い、これらの上にBAlNを成長させることによ
り、BxAl1-xNy(0.001≦x≦0.7、0.85≦y≦1.05)なる
組成域において、単結晶薄膜を形成することが可能とな
る。BAlN単結晶傾斜組成層にはB/Al組成比を連続的増加
させたものでもB/Al比を段階的に増加させ積層構造とし
たものでも両方用いることができる。
Particularly, when a BAlN single crystal thin film is grown on an AlN single crystal film formed as an intermediate layer on a single crystal substrate, good crystallinity is maintained even in a high boron content composition, and the single crystal film is maintained. Can be obtained. In this case, the composition range in which the BAlN single crystal thin film is obtained is x ≦ 0.3, and a BAlN single crystal can be obtained up to a higher B composition than in the case where the AlN single crystal intermediate layer is not used. Further, as an intermediate layer, a BAlN single crystal graded composition layer in which the B / Al composition ratio is continuously or stepwise increased, or, as shown in FIG. 3, an aluminum nitride single crystal layer as an intermediate layer first layer and an intermediate layer on this layer. As a second layer, a BAlN single crystal gradient composition layer in which the B / Al composition ratio is continuously or stepwise increased is used, and BAlN is grown on these layers to obtain B x Al 1-x N y (0.001 A single crystal thin film can be formed in the composition range of ≦ x ≦ 0.7, 0.85 ≦ y ≦ 1.05). For the BAlN single crystal gradient composition layer, both a B / Al composition ratio with a continuous increase and a B / Al ratio with a stepwise increase in a laminated structure can be used.

【0019】これらの中間層を形成する手法としては、
スパッタ法、MBE法、MOCVD法、プラズマCVD法など公知
の手法から選んで用いることができる。BAlN単結晶傾斜
組成層はMBE法の場合はB用とAl用の2個の蒸着源を用意
し、それぞれの蒸着速度を連続的あるいは段階的に変化
させることにより形成することが可能である。プラズマ
CVDやMOCVDなどのCVD法ではB源、Al源となるガスの流量
比を変化させればよい。
As a method of forming these intermediate layers,
A known method such as a sputtering method, an MBE method, a MOCVD method or a plasma CVD method can be selected and used. In the case of the MBE method, the BAlN single crystal gradient composition layer can be formed by preparing two vapor deposition sources for B and Al and continuously or stepwise changing the vapor deposition rate of each. plasma
In a CVD method such as CVD or MOCVD, the flow rate ratio of the gas serving as the B source and the Al source may be changed.

【0020】<価電子制御> Si、C、S、Seなどの元素
を成膜中にまたはイオン注入などの方法によってドーピ
ングすることによってn型の導電性を有するBAlN膜を得
ることができる。同様にBe、Mg、Zn、Caなどの元素をド
ーピングすることによってp型のBAlN単結晶薄膜を得る
ことができる。これらの元素はBAlN膜の成膜中に各元素
の単体、酸化物、ハロゲン化物、水素化物、有機金属化
合物を原料としてドーピングすることができる。イオン
注入法は注入後の結晶欠陥の回復が困難なので好ましく
ない。
<Control of Valence Electron> A BAlN film having n-type conductivity can be obtained by doping an element such as Si, C, S or Se during film formation or by a method such as ion implantation. Similarly, a p-type BAlN single crystal thin film can be obtained by doping an element such as Be, Mg, Zn, or Ca. These elements can be doped using a simple substance of each element, an oxide, a halide, a hydride, or an organometallic compound as a raw material during the formation of the BAlN film. The ion implantation method is not preferable because it is difficult to recover crystal defects after the implantation.

【0021】[0021]

【実施例】【Example】

(実施例1) 単結晶Si(111)を基板としてスパッタ法
により窒化アルミニウム中間層および中間層上にホウ素
含有窒化アルミニウム薄膜の合成を行った。基板は10mm
角の単結晶Si(111)を、純水で5%に希釈した弗酸中に浸
した後にアセトン洗浄して用いた。スパッタ用のターゲ
ットにはAlN中間層形成用にアルミニウムを、BAlN形成
用に金属アルミニウムを減圧窒素中で溶融して立方晶窒
化ホウ素粉末30重量%を分散した後に固化したものを用
いた。
Example 1 A single crystal Si (111) substrate was used to synthesize an aluminum nitride intermediate layer and a boron-containing aluminum nitride thin film on the intermediate layer by a sputtering method. The board is 10 mm
The square single crystal Si (111) was used after being immersed in hydrofluoric acid diluted with pure water to 5% and washed with acetone. As a target for sputtering, aluminum was used for forming an AlN intermediate layer, and metallic aluminum was used for forming BAlN in vacuum nitrogen, and 30% by weight of cubic boron nitride powder was dispersed and solidified.

【0022】通常の高周波マグネトロンスパッタ装置に
基板とターゲットを設置し、Ar/N2を等量に混合したガ
スを導入して総圧力が0.005Torrになるように調節し
た。基板を1150℃に加熱し、高周波(13.56MHz)出力40
0Wで、アルミニウムターゲットを10分スパッタし、AlN
中間層を形成した後、同一条件でBAlN形成用ターゲット
を1時間スパッタし、厚さ約0.7μmの薄膜を得た。
A substrate and a target were set in a normal high frequency magnetron sputtering apparatus, and a gas in which an equal amount of Ar / N 2 was mixed was introduced to adjust the total pressure to 0.005 Torr. Substrate is heated to 1150 ℃, high frequency (13.56MHz) output 40
At 0W, sputter an aluminum target for 10 minutes,
After forming the intermediate layer, a BAlN forming target was sputtered for 1 hour under the same conditions to obtain a thin film having a thickness of about 0.7 μm.

【0023】この薄膜を2次イオン質量分析法で組成分
析を行うと中間層部分の組成はAlN0.98、中間層より上
部の組成はB0.25Al0.75N0.97で表される組成であること
が判明した。X線回折法で観察したところではC面からの
回折線のみが観察されウルツ鉱型の高配向膜または単結
晶膜であることが予想された。X線回折のロッキングカ
ーブの半値幅は1.5度と高品質高配向性結晶であった。
更に高速反射電子線回折観察を実施することによりこの
膜はウルツ鉱型の単結晶薄膜であることが明かになっ
た。さらに、同一条件で中間層のみを形成したものの膜
厚は約0.1μmであり、高速反射電子線回折で評価したと
ころ、ウルツ鉱型結晶構造であることを示す回折パター
ンが観察され、電子線の入射方向の変化に対応して異な
るパターンが観察されたことから単結晶薄膜であること
が確認された。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer was AlN 0.98 and the composition above the intermediate layer was B 0.25 Al 0.75 N 0.97. did. When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.5 degrees, indicating high quality and highly oriented crystals.
Further high-speed backscattered electron diffraction observation revealed that this film was a wurtzite type single crystal thin film. Furthermore, the film thickness of only the intermediate layer formed under the same conditions was about 0.1 μm, and when evaluated by high-speed reflection electron diffraction, a diffraction pattern showing a wurtzite crystal structure was observed, and the electron beam It was confirmed that the film was a single crystal thin film because different patterns were observed in accordance with the change of the incident direction.

【0024】(実施例2) 基板として3.5mm角の表面
を平坦に研磨した超高圧合成ダイヤモンド単結晶の(11
1)面を用い、有機溶媒による洗浄とそれにつづく10%塩
化水素水溶液による洗浄を行った後、表面水素終端処理
を行った。表面水素終端処理はマイクロ波プラズマCVD
装置を用い、水素ガスのみを装置内に供給し、圧力100T
orr、マイクロ波電力400Wにて10分間行った。
Example 2 As a substrate, a 3.5 mm square surface of an ultrahigh pressure synthetic diamond single crystal having a flat surface was polished (11
Using the 1) surface, after cleaning with an organic solvent and subsequent cleaning with a 10% hydrogen chloride aqueous solution, surface hydrogen termination treatment was performed. Surface hydrogen termination is microwave plasma CVD
Using the device, supply only hydrogen gas into the device, pressure 100T
It was performed for 10 minutes at orr and microwave power of 400W.

【0025】このダイヤモンド単結晶基板上にMBE装置
を用い、窒化アルミニウム中間層および中間層上にBAlN
薄膜の合成を行った。Al源・B源として、それぞれAl・B
を原料とし、別々の蒸発源から電子ビーム蒸発により供
給した。窒素源としてN2ガスを原料としECRイオン源に
より供給した。基板温度900度、ECRイオン源のマイクロ
波電力50W、基板付近のイオン電流密度25μAにて、Al蒸
発源から0.025nm/sの蒸着速度で38分間AlN中間層を成長
させた後、Al蒸着速度0.02nm/s、B蒸着速度0.005nm/sで
150分間BAlN膜を成長させた。トータルの膜厚は約0.25
μmであった。
Using an MBE device on this diamond single crystal substrate, BAlN was formed on the aluminum nitride intermediate layer and the intermediate layer.
A thin film was synthesized. Al source and B source respectively
Was used as a raw material and was supplied by electron beam evaporation from separate evaporation sources. As the nitrogen source, N 2 gas was used as the raw material and was supplied by the ECR ion source. Substrate temperature 900 degrees, microwave power of ECR ion source 50W, ion current density 25μA near the substrate, AlN intermediate layer was grown from Al evaporation source at 0.025nm / s deposition rate for 38 minutes, then Al deposition rate 0.02 nm / s, B deposition rate 0.005 nm / s
The BAlN film was grown for 150 minutes. Total film thickness is about 0.25
It was μm.

【0026】この薄膜を2次イオン質量分析法で組成分
析を行うと中間層部分の組成はAlN0.99、中間層上部の
組成はB0.2Al0.8N0.99で表される組成であることが判明
した。X線回折法で観察したところではC面からの回折線
のみが観察されウルツ鉱型の高配向膜または単結晶膜で
あることが予想された。X線回折のロッキングカーブの
半値幅は1.3度と高品質高配向性結晶であった。更に高
速反射電子線回折観察を実施することによりこの膜はウ
ルツ鉱型の単結晶薄膜であることが明かになった。さら
に、同一条件で中間層のみを形成したものの膜厚は約0.
05μmであり、高速反射電子線回折で評価したところ、
ウルツ鉱型結晶構造であることを示す回折パターンが観
察され、電子線の入射方向の変化に対応して異なるパタ
ーンが観察されたことから単結晶薄膜であることが確認
された。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer portion was AlN 0.99 and the composition of the upper portion of the intermediate layer was B 0.2 Al 0.8 N 0.99 . . When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.3 degrees, indicating high quality and highly oriented crystals. Further high-speed backscattered electron diffraction observation revealed that this film was a wurtzite type single crystal thin film. Furthermore, the film thickness of the case where only the intermediate layer is formed under the same conditions is about 0.
It is 05 μm, and when evaluated by high-speed backscattered electron diffraction,
A diffraction pattern showing a wurtzite crystal structure was observed, and different patterns were observed corresponding to changes in the incident direction of the electron beam, confirming that the film was a single crystal thin film.

【0027】(実施例3) 単結晶六方晶SiC(0001)上
に、MBE装置を用い、中間層としてBAlN傾斜組成層を形
成した上にBAlN薄膜の合成を行った。SiC基板はMBE装置
に導入前に、有機溶媒による洗浄と10%弗酸による酸化
膜除去後、純水中で洗浄を行った。Al源・B源として、
それぞれAl・Bを原料とし別々の蒸発源から電子ビーム
蒸発により供給した。窒素源としてN2ガスを原料としEC
Rイオン源により供給した。基板温度900度、ECRイオン
源のマイクロ波電力50W、基板付近のイオン電流密度25
μAにて、Al蒸着速度を0.025nm/sから0.015nm/sまで、B
蒸着速度を0から0.01nm/sまで75分間かけて同時に連続
的に変化させBAlN傾斜組成層を形成し、Al蒸着速度を0.
015nm/s、B蒸着速度を0.01nm/sに固定して150分間BAlN
膜を成長させた。トータルの膜厚は約0.3μmであった。
Example 3 A BAlN thin film was synthesized on a single-crystal hexagonal SiC (0001) using an MBE apparatus to form a BAlN gradient composition layer as an intermediate layer. Before being introduced into the MBE device, the SiC substrate was washed with an organic solvent, the oxide film was removed with 10% hydrofluoric acid, and then washed in pure water. As Al source and B source,
Each of Al and B was used as a raw material and supplied by electron beam evaporation from different evaporation sources. EC using N 2 gas as a nitrogen source
Supplied by an R ion source. Substrate temperature 900 degrees, microwave power of ECR ion source 50W, ion current density near the substrate 25
At μA, Al deposition rate from 0.025 nm / s to 0.015 nm / s, B
The deposition rate was changed from 0 to 0.01 nm / s continuously over 75 minutes at the same time to form a BAlN gradient composition layer, and the Al deposition rate was set to 0.
015nm / s, B deposition rate is fixed at 0.01nm / s and BAlN for 150 minutes
The film was grown. The total film thickness was about 0.3 μm.

【0028】この薄膜を2次イオン質量分析法で組成分
析を行うと、中間層の組成はAlN0.99からB0.3Al0.7N
0.99までB/Al比が連続的に変化しており、最上層のBAlN
層ではB0.3Al0.7N0.99で一定となっていることが判明し
た。X線回折法で観察したところではC面からの回折線の
みが観察されウルツ鉱型の高配向膜または単結晶薄膜で
あることが予想された。X線回折のロッキングカーブの
半値幅は1.3度と高品質高配向性結晶であった。更に高
速反射電子線回折観察を実施することによりこの膜はウ
ルツ鉱型の単結晶薄膜であることが明かになった。さら
に、同一条件で中間層のみを形成したものの膜厚は約0.
1μmであり、高速反射電子線回折で評価したところ、ウ
ルツ鉱型結晶構造であることを示す回折パターンが観察
され、電子線の入射方向の変化に対応して異なるパター
ンが観察されたことから単結晶薄膜であることが確認さ
れた。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer was AlN 0.99 to B 0.3 Al 0.7 N.
The B / Al ratio changes continuously up to 0.99, and the uppermost layer of BAlN
It was found that B 0.3 Al 0.7 N 0.99 was constant in the layer. When observed by X-ray diffractometry, only diffraction lines from the C plane were observed, and it was expected that the wurtzite-type highly oriented film or single crystal thin film was obtained. The full width at half maximum of the rocking curve of X-ray diffraction was 1.3 degrees, indicating high quality and highly oriented crystals. Further high-speed backscattered electron diffraction observation revealed that this film was a wurtzite type single crystal thin film. Furthermore, the film thickness of the case where only the intermediate layer is formed under the same conditions is about 0.
It was 1 μm, and when evaluated by high-speed reflection electron diffraction, a diffraction pattern showing a wurtzite crystal structure was observed, and different patterns were observed corresponding to changes in the incident direction of the electron beam. It was confirmed to be a crystalline thin film.

【0029】(実施例4) 基板としてサファイア単結
晶のC面を用い、有機溶媒による洗浄とそれにつづく10
%塩化水素水溶液による洗浄を行った。この基板上にMB
E装置を用い、中間層第1層として窒化アルミニウムを
中間層第2層としてBAlN傾斜組成層を形成した上にBAlN
薄膜の合成を行った。Al源・B源として、それぞれAl・B
を原料とし別々の蒸発源から電子ビーム蒸発により供給
した。窒素源としてN2ガスを原料としECRイオン源によ
り供給した。基板温度900度、ECRイオン源のマイクロ波
電力50W、N2ガスを原料とし基板付近のイオン電流密度2
5μAにて、Al蒸発源から0.025nm/sの蒸着速度で38分間A
lN中間層を成長させた後、Al蒸着速度を0.025nm/sから
0.015nm/sまで、B蒸着速度を0から0.01nm/sまで75分間
かけて同時に変化させBAlN傾斜組成層を形成し、Al蒸着
速度を0.015nm/s、B蒸着速度を0.01nm/sに固定して150
分間BAlN膜を成長させた。トータルの膜厚は約0.35μm
であった。
Example 4 Using the C-plane of sapphire single crystal as a substrate, cleaning with an organic solvent and subsequent cleaning 10
% Aqueous solution of hydrogen chloride was used for washing. MB on this board
Using the E equipment, after forming aluminum nitride as the first intermediate layer and a BAlN gradient composition layer as the second intermediate layer, BAlN is formed.
A thin film was synthesized. Al source and B source respectively
Was supplied as a raw material by electron beam evaporation from separate evaporation sources. As the nitrogen source, N 2 gas was used as the raw material and was supplied by the ECR ion source. Substrate temperature 900 degrees, ECR ion source microwave power 50W, N 2 gas as raw material, ion current density near substrate 2
At 5μA, A for 38 minutes at a deposition rate of 0.025nm / s from an Al evaporation source.
After growing lN intermediate layer, Al deposition rate from 0.025nm / s
A BAlN gradient composition layer was formed by simultaneously changing the B deposition rate from 0 to 0.01 nm / s over 75 minutes to 0.015 nm / s, and the Al deposition rate was 0.015 nm / s and the B deposition rate was 0.01 nm / s. Fixed to 150
The BAlN film was grown for a minute. Total film thickness is about 0.35 μm
Met.

【0030】この薄膜を2次イオン質量分析法で組成分
析を行うと中間層第1層部分の組成はAlN0.99、中間層
第2層の組成はAlN0.99からB0.3Al0.7N0.99までB/Al比
が連続的に変化しており、最上層のBAlN層ではB0.3Al
0.7N0.99で一定となっていることが判明した。X線回折
法で観察したところではC面からの回折線のみが観察さ
れウルツ鉱型の高配向膜または単結晶膜であることが予
想された。X線回折のロッキングカーブの半値幅は1.3度
と高品質高配向性結晶であった。更に高速反射電子線回
折観察を実施することによりこの膜はウルツ鉱型の単結
晶薄膜であることが明かになった。さらに、同一条件で
中間層第1層のみを形成したもの、中間層第2層まで形
成したものの膜厚はそれぞれ約0.05μm、約0.15μmであ
り、高速反射電子線回折で評価したところ、ウルツ鉱型
結晶構造であることを示す回折パターンが観察され、電
子線の入射方向の変化に対応して異なるパターンが観察
されたことから単結晶薄膜であることが確認された。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the first layer of the intermediate layer was AlN 0.99 and the composition of the second layer of the intermediate layer was AlN 0.99 to B 0.3 Al 0.7 N 0.99 B / The Al ratio is continuously changing, and B 0.3 Al in the uppermost BAlN layer.
It was found to be constant at 0.7 N 0.99 . When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.3 degrees, indicating high quality and highly oriented crystals. Further high-speed backscattered electron diffraction observation revealed that this film was a wurtzite type single crystal thin film. Furthermore, the film thicknesses of the intermediate layer 1st layer only and the intermediate layer 2nd layer formed under the same conditions were about 0.05 μm and about 0.15 μm, respectively. A diffraction pattern showing that it had a mineral crystal structure was observed, and different patterns were observed corresponding to changes in the incident direction of the electron beam, confirming that it was a single crystal thin film.

【0031】(実施例5) 単結晶Si(111)を基板とし
て用い、成膜前に実施例1と同様にして洗浄を行った。
ダイヤモンドの合成に用いられるマイクロ波プラズマC
VD装置(特開昭59-3098)に基板を設置し、塩化アル
ミニウム(AlCl3)5%、水素45%、アンモニア50%を混合
したガスを導入して総圧力が5Torrになるように調整し
た。マイクロ波(2.45GHz)出力800Wでプラズマを発生さ
せながら基板を1150℃に加熱し、10分間成長を行った
後、ガスをジボラン(B2H6)2.5%、塩化アルミニウム2.5
%、水素45%、アンモニア50%に変更し、他の成膜条件は
変えずに2時間成長させた。トータルの膜厚は2.5μmで
あった。
Example 5 Single crystal Si (111) was used as a substrate and washed in the same manner as in Example 1 before film formation.
Microwave plasma C used for diamond synthesis
The substrate was placed in a VD device (Japanese Patent Laid-Open No. 59-3098), and a mixed gas of aluminum chloride (AlCl 3 ) 5%, hydrogen 45% and ammonia 50% was introduced to adjust the total pressure to 5 Torr. . The substrate was heated to 1150 ° C. while generating plasma with microwave (2.45 GHz) output of 800 W, and growth was performed for 10 minutes. Then, gas was diborane (B 2 H 6 ) 2.5%, aluminum chloride 2.5.
%, Hydrogen 45%, ammonia 50%, and the growth was continued for 2 hours without changing other film forming conditions. The total film thickness was 2.5 μm.

【0032】この薄膜を2次イオン質量分析法で組成分
析を行うと中間層部分の組成はAlN0.99、中間層より上
部の組成はB0.25Al0.75N0.99で表わされる組成であるこ
とが判明した。X線回折法で観察したところではC面から
の回折線のみが観察されウルツ鉱型の高配向膜または単
結晶膜であることが予想された。X線回折のロッキング
カーブの半値幅は1.5度と高品質高配向性結晶であっ
た。更に高速電子線回折で評価したところ、ウルツ鉱型
結晶構造であることを示す回折パターンが観察され、電
子線の入射方向の変化に対応して異なるパターンが観察
されたことから単結晶薄膜であることが確認された。さ
らに、同一条件で中間層のみを形成したものの膜厚は約
0.1μmであり、高速反射電子線回折で評価したとこ
ろ、ウルツ鉱型結晶構造であることを示す回折パターン
が観察され、電子線の入射方向の変化に対応して異なる
パターンが観察されたことから単結晶薄膜であることが
確認された。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer was AlN 0.99 and the composition above the intermediate layer was B 0.25 Al 0.75 N 0.99 . . When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.5 degrees, indicating high quality and highly oriented crystals. Further, when evaluated by high-speed electron beam diffraction, a diffraction pattern showing a wurtzite crystal structure was observed, and different patterns were observed corresponding to changes in the incident direction of the electron beam, indicating that it is a single crystal thin film. It was confirmed. Furthermore, the film thickness of the intermediate layer formed under the same conditions is approximately
It was 0.1 μm, and when evaluated by high-speed backscattered electron diffraction, a diffraction pattern showing a wurtzite crystal structure was observed, and a different pattern was observed corresponding to the change in the incident direction of the electron beam. It was confirmed to be a single crystal thin film.

【0033】(実施例6) 基板としてサファイア単結
晶のC面を用い実施例4と同様に基板洗浄を行った後、
基板を反応室内のグラファイトサセプタ上に設置し、MO
CVD法を用いて中間層としてBAlN傾斜組成層を形成した
上にBAlN膜の合成を行った。アルミニウム源としてはト
リメチルアルミニウム(TMA)を水素ガスによりバブリン
グし反応室内に導入した。ホウ素源としては水素希釈の
濃度1%のジボラン(B2H6)を使用した。窒素源としてはア
ンモニアを使用した。キャリアガスには水素を使用し
た。アンモニア流量31/min、キャリア水素ガス流量100c
cmで一定とし、TMAを水素バブリングガス流量10ccmから
5ccmまで、B2H6を0から5ccmまで10分間かけてそれぞれ
連続的に変化させ、BAlN傾斜組成層を成長させた後、TM
Aを水素パブリングガス流量5ccm、B2H6を5ccmに固定しB
AlNを2時間成長させた。傾斜組成層成長時、BAlN成長
時とも、反応室内の圧力は5Torrで一定とし、成長基板
温度は1200℃になるように高周波加熱によりサセプタを
加熱した。トータルの膜厚は5.5μmであった。
Example 6 After cleaning the substrate in the same manner as in Example 4, using the C plane of sapphire single crystal as the substrate,
Place the substrate on the graphite susceptor in the reaction chamber and
A BAlN gradient composition layer was formed as an intermediate layer by the CVD method, and then a BAlN film was synthesized. Trimethyl aluminum (TMA) was bubbled with hydrogen gas as an aluminum source and introduced into the reaction chamber. As the boron source, diborane (B 2 H 6 ) diluted with hydrogen at a concentration of 1% was used. Ammonia was used as the nitrogen source. Hydrogen was used as the carrier gas. Ammonia flow rate 31 / min, carrier hydrogen gas flow rate 100c
The TMA is fixed at 10 cm and the hydrogen bubbling gas flow rate from 10 ccm
After continuously changing B 2 H 6 from 0 to 5 ccm for 10 minutes up to 5 ccm and growing a BAlN gradient composition layer, TM
A is fixed at a hydrogen publing gas flow rate of 5 ccm and B 2 H 6 is fixed at 5 ccm.
AlN was grown for 2 hours. The pressure in the reaction chamber was kept constant at 5 Torr during both the growth of the graded composition layer and the growth of BAlN, and the susceptor was heated by high-frequency heating so that the growth substrate temperature became 1200 ° C. The total film thickness was 5.5 μm.

【0034】この薄膜を2次イオン質量分析法で組成分
析を行うと、中間層の組成はAlN0.99からB0.3Al0.7N
0.99までB/Al比が連続的に変化しており、最上層のBAlN
層ではB0.3Al0.7N0.9で一定となっていることが判明し
た。X線回折法で観察したところではC面からの回折線の
みが観察されウルツ鉱型の高配向膜または単結晶膜であ
ることが予想された。X線回折のロッキングカーブの半
値幅は1.5度と高品質高配向性結晶であった。更に高速
反射電子線回折観察で評価したところ、ウルツ鉱型結晶
構造であることを示す回折パターンが観察され、電子線
の入射方向の変化に対応して異なるパターンが観察され
たことから単結晶膜であることが確認された。さらに、
同一条件で中間層のみを形成したものの膜厚は約0.5μm
であり、高速反射電子線回折で評価したところ、ウルツ
鉱型の単結晶膜であることが判明した。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer was AlN 0.99 to B 0.3 Al 0.7 N.
The B / Al ratio changes continuously up to 0.99, and the uppermost layer of BAlN
It was found that B 0.3 Al 0.7 N 0.9 was constant in the layer. When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.5 degrees, indicating high quality and highly oriented crystals. Further, when evaluated by high-speed reflection electron diffraction observation, a diffraction pattern showing a wurtzite crystal structure was observed, and a different pattern was observed corresponding to the change in the incident direction of the electron beam. Was confirmed. further,
The thickness is about 0.5 μm when only the intermediate layer is formed under the same conditions.
When evaluated by high speed reflection electron diffraction, it was found to be a wurtzite type single crystal film.

【0035】(実施例7) 基板として単結晶Si(111)
を使用し、実施例1と同様に基板洗浄を行った後、実施
例5と同様のマイクロ波プラズマ装置により、中間層と
してBAlN傾斜組成層を形成した上にBAlN膜の合成を行っ
た。アルミニウム源としてはトリメチルアルミニウム(T
MA)を水素ガスによりバブリングし反応室内に導入し
た。ホウ素源としては水素希釈の濃度0.5%の塩化ホウ素
(BCl3)を使用した。窒素源としてはアンモニアを使用し
た。キャリアガスには水素を使用した。アンモニア流量
31/min、キャリア水素ガス流量100ccmで一定とし、TMA
を水素バブリングガス流量10ccmから5ccmまで、BCl3を0
から5ccmまで10分間かけてそれぞれ連続的に変化させ、
BAlN傾斜組成層を成長させた後、TMAを水素バブリング
ガス流量5ccm、BCl3を5ccmに固定しBAlNを2時間成長さ
せた。傾斜組成層成長時、BAlN成長時とも、反応室内の
圧力は5Torr、マイクロ波(2.45GHz)出力800W、基板温度
は1150℃で成長を行った。トータルの膜厚は2.5μmで
あった。
Example 7 Single crystal Si (111) as a substrate
After cleaning the substrate in the same manner as in Example 1, the same microwave plasma apparatus as in Example 5 was used to form a BAlN gradient composition layer as an intermediate layer and then synthesize a BAlN film. Trimethyl aluminum (T
(MA) was bubbled with hydrogen gas and introduced into the reaction chamber. Boron chloride with a hydrogen concentration of 0.5% as the boron source
(BCl 3 ) was used. Ammonia was used as the nitrogen source. Hydrogen was used as the carrier gas. Ammonia flow rate
31 / min, constant with carrier hydrogen gas flow rate of 100 ccm, TMA
Hydrogen bubbling gas flow rate from 10ccm to 5ccm, BCl 3 0
From 5 to 5 cm, change continuously over 10 minutes,
After the BAlN gradient composition layer was grown, TMA was fixed at a hydrogen bubbling gas flow rate of 5 ccm and BCl 3 was fixed at 5 ccm, and BAlN was grown for 2 hours. During the growth of the graded composition layer and the growth of BAlN, the pressure in the reaction chamber was 5 Torr, the microwave (2.45 GHz) output was 800 W, and the substrate temperature was 1150 ° C. The total film thickness was 2.5 μm.

【0036】この薄膜を2次イオン質量分析法で組成分
析を行うと、中間層の組成はAlN0.99からB0.28Al0.72N
0.99までB/Al比が連続的に変化しており、最上層のBAlN
層ではB0.28Al0.72N0.99で一定となっていることが判明
した。X線回折法で観察したところではC面からの回折線
のみが観察されウルツ鉱型の高配向膜または単結晶膜で
あることが予想された。X線回折のロッキングカーブの
半値幅は1.5度と高品質高配向性結晶であった。更に高
速反射電子線回折観察で評価したところ、ウルツ鉱型結
晶構造であることを示す回折パターンが観察され、電子
線の入射方向の変化に対応して異なるパターンが観察さ
れたことから単結晶膜であることが確認された。さら
に、同一条件で中間層のみを形成したものの膜厚は約0.
1μmであり、高速反射電子線回折で評価したところ、ウ
ルツ鉱型の単結晶膜であることが判明した。
Composition analysis of this thin film by secondary ion mass spectrometry revealed that the composition of the intermediate layer was AlN 0.99 to B 0.28 Al 0.72 N.
The B / Al ratio changes continuously up to 0.99, and the uppermost layer of BAlN
It was found that the layer had a constant B 0.28 Al 0.72 N 0.99 . When observed by the X-ray diffraction method, only the diffraction line from the C plane was observed, and it was expected that the film was a wurtzite highly oriented film or a single crystal film. The full width at half maximum of the rocking curve of X-ray diffraction was 1.5 degrees, indicating high quality and highly oriented crystals. Further, when evaluated by high-speed reflection electron diffraction observation, a diffraction pattern showing a wurtzite crystal structure was observed, and a different pattern was observed corresponding to the change in the incident direction of the electron beam. Was confirmed. Furthermore, the film thickness of the case where only the intermediate layer is formed under the same conditions is about 0.
It was 1 μm, and when evaluated by high-speed backscattered electron diffraction, it was found to be a wurtzite type single crystal film.

【0037】[0037]

【発明の効果】本発明によれば窒化アルミニウムよりも
高い硬度、広いバンドギャップ、大きな音速を有し価電
子制御が容易で、結晶性のよいホウ素含有窒化アルミニ
ウム薄膜を容易に得ることができる。
According to the present invention, it is possible to easily obtain a boron-containing aluminum nitride thin film having a higher hardness, a wider bandgap, a larger sonic velocity than aluminum nitride, easy valence electron control, and good crystallinity.

【図面の簡単な説明】[Brief description of drawings]

【図1】単結晶基板上に窒化アルミニウム単結晶薄膜を
形成し、さらにその上にホウ素含有窒化アルミニウム単
結晶薄膜を形成した実施例1,2,5の例。
FIG. 1 is an example of Examples 1, 2 and 5 in which an aluminum nitride single crystal thin film is formed on a single crystal substrate, and a boron-containing aluminum nitride single crystal thin film is further formed thereon.

【図2】単結晶基板上にホウ素含有窒化アルミニウム単
結晶傾斜組成層を形成し、さらにその上にホウ素含有窒
化アルミニウム単結晶薄膜を形成した実施例3,6,7
の例。
FIG. 2 Examples 3, 6, 7 in which a boron-containing aluminum nitride single crystal gradient composition layer was formed on a single crystal substrate, and a boron-containing aluminum nitride single crystal thin film was further formed thereon.
Example.

【図3】単結晶基板上に中間層第1層として窒化アルミ
ニウム単結晶層を形成し、その上に中間層第2層として
ホウ素含有窒化アルミニウム単結晶傾斜組成層を形成
し、さらにその上にホウ素含有窒化アルミニウム単結晶
薄膜を形成した実施例4の例。
FIG. 3 shows an aluminum nitride single crystal layer formed as an intermediate first layer on a single crystal substrate, a boron-containing aluminum nitride single crystal gradient composition layer formed as an intermediate second layer thereon, and further thereon. An example of Example 4 in which a boron-containing aluminum nitride single crystal thin film was formed.

【符号の説明】[Explanation of symbols]

1:単結晶基板 2:窒化アルミニウム単結晶薄膜 3:ホウ素含有窒化アルミニウム単結晶薄膜 4:単結晶基板 5:ホウ素含有窒化アルミニウム単結晶傾斜組成層 6:ホウ素含有窒化アルミニウム単結晶薄膜 7:単結晶基板 8:窒化アルミニウム単結晶層 9:ホウ素含有窒化アルミニウム単結晶傾斜組成層 10:ホウ素含有窒化アルミニウム単結晶薄膜 1: Single crystal substrate 2: Aluminum nitride single crystal thin film 3: Boron-containing aluminum nitride single crystal thin film 4: Single crystal substrate 5: Boron-containing aluminum nitride single crystal gradient composition layer 6: Boron-containing aluminum nitride single crystal thin film 7: Single crystal Substrate 8: Aluminum nitride single crystal layer 9: Boron-containing aluminum nitride single crystal gradient composition layer 10: Boron-containing aluminum nitride single crystal thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 H01L 21/203 Z 21/205 21/205 // B23B 27/14 B23B 27/14 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/203 H01L 21/203 Z 21/205 21/205 // B23B 27/14 B23B 27/14 A

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 単結晶基板(1)上に中間層として窒化
アルミニウム単結晶薄膜(2)が形成され、前記窒化ア
ルミニウム単結晶薄膜上にホウ素含有窒化アルミニウム
単結晶薄膜(3)が形成された構造をもつことを特徴と
するホウ素含有窒化アルミニウム単結晶薄膜。
1. An aluminum nitride single crystal thin film (2) is formed as an intermediate layer on a single crystal substrate (1), and a boron-containing aluminum nitride single crystal thin film (3) is formed on the aluminum nitride single crystal thin film. A boron-containing aluminum nitride single crystal thin film having a structure.
【請求項2】 ホウ素含有窒化アルミニウム単結晶薄膜
がBxAl1-xNy(0.001≦x≦0.3、0.85≦y≦1.05)なる組
成と、ウルツ鉱型結晶構造を有することを特徴とする請
求項1に記載のホウ素含有窒化アルミニウム単結晶薄
膜。
2. A boron-containing aluminum nitride single crystal thin film having a composition of B x Al 1-x N y (0.001 ≦ x ≦ 0.3, 0.85 ≦ y ≦ 1.05) and a wurtzite crystal structure. The boron-containing aluminum nitride single crystal thin film according to claim 1.
【請求項3】 単結晶基板(4)上に中間層としてB/Al
組成比を連続的あるいは段階的に増加させたホウ素含有
窒化アルミニウム単結晶傾斜組成層(5)が形成され、
前記ホウ素含有窒化アルミニウム単結晶傾斜組成層上に
ホウ素含有窒化アルミニウム単結晶傾斜組成層の最上部
の組成と同じかまたはより高いB/Al組成比を有するホウ
素含有窒化アルミニウム単結晶薄膜(6)が形成された
構造をもつことを特徴とする、ホウ素含有窒化アルミニ
ウム単結晶薄膜。
3. B / Al as an intermediate layer on a single crystal substrate (4)
A boron-containing aluminum nitride single crystal gradient composition layer (5) having a composition ratio continuously or stepwise increased is formed,
A boron-containing aluminum nitride single crystal thin film (6) having a B / Al composition ratio equal to or higher than that of the uppermost composition of the boron-containing aluminum nitride single crystal gradient composition layer is formed on the boron-containing aluminum nitride single crystal gradient composition layer. A boron-containing aluminum nitride single crystal thin film having a formed structure.
【請求項4】 単結晶基板(7)上に中間層第1層とし
て窒化アルミニウム単結晶層(8)が形成され、前記窒
化アルミニウム単結晶層上に中間層第2層としてB/Al組
成比を連続的あるいは段階的に増加させたホウ素含有窒
化アルミニウム単結晶傾斜組成層(9)が形成され、前
記ホウ素含有窒化アルミニウム単結晶傾斜組成層上にホ
ウ素含有窒化アルミニウム単結晶傾斜組成層の最上部の
組成と同じかまたはより高いB/Al組成比を有するホウ素
含有窒化アルミニウム単結晶薄膜(10)が形成された
構造をもつことを特徴とする、ホウ素含有窒化アルミニ
ウム単結晶薄膜。
4. An aluminum nitride single crystal layer (8) is formed as a first intermediate layer on a single crystal substrate (7), and a B / Al composition ratio is formed as a second intermediate layer on the aluminum nitride single crystal layer. Is continuously or stepwise increased to form a boron-containing aluminum nitride single crystal gradient composition layer (9), and the boron-containing aluminum nitride single crystal gradient composition layer is provided on the boron-containing aluminum nitride single crystal gradient composition layer. 1. A boron-containing aluminum nitride single crystal thin film having a structure in which a boron-containing aluminum nitride single crystal thin film (10) having a B / Al composition ratio equal to or higher than that of the above is formed.
【請求項5】 ホウ素含有窒化アルミニウム単結晶傾斜
組成層がBαAl1-αNβ(0.0001≦α≦x、0.85≦β≦1.0
5)なる組成範囲内で連続的あるいは段階的に増加したB
/Al組成比とウルツ鉱型結晶構造を有し、前記ホウ素含
有窒化アルミニウム単結晶傾斜組成層上に形成されたホ
ウ素含有窒化アルミニウム単結晶薄膜がBxAl1-xNy(0.0
01≦x≦0.7、0.85≦y≦1.05)なる組成と、ウルツ鉱型
結晶構造を有することを特徴とする請求項3および請求
項4に記載のホウ素含有窒化アルミニウム単結晶薄膜。
5. A boron-containing aluminum nitride single crystal gradient composition layer is B α Al 1 N β (0.0001 ≦ α ≦ x, 0.85 ≦ β ≦ 1.0
5) B increased continuously or stepwise within the composition range
/ Al composition ratio and wurtzite crystal structure, the boron-containing aluminum nitride single crystal thin film formed on the boron-containing aluminum nitride single crystal gradient composition layer is B x Al 1-x N y (0.0
The boron-containing aluminum nitride single crystal thin film according to claim 3 or 4, wherein the composition is 01≤x≤0.7, 0.85≤y≤1.05) and has a wurtzite type crystal structure.
【請求項6】 単結晶基板としてダイヤモンド、Si、サ
ファイア、六方晶SiC、立方晶SiC、MgOを使用すること
特徴とする請求項1、請求項2、請求項3、請求項4、
請求項5に記載のホウ素含有窒化アルミニウム単結晶薄
膜。
6. A diamond, Si, sapphire, hexagonal SiC, cubic SiC, MgO is used as a single crystal substrate, claim 1, claim 2, claim 3, claim 4, characterized in that.
The boron-containing aluminum nitride single crystal thin film according to claim 5.
【請求項7】 窒化アルミニウム単結晶薄膜、ホウ素含
有窒化アルミニウム単結晶薄膜の形成法として、MOCVD
法、スパッタ法、MBE法、プラズマCVD法のいずれかを用
いることを特徴とする請求項1、請求項2、請求項3、
請求項4、請求項5、請求項6に記載のホウ素含有窒化
アルミニウム単結晶薄膜の製造方法。
7. A MOCVD method for forming an aluminum nitride single crystal thin film and a boron-containing aluminum nitride single crystal thin film.
Method, sputtering method, MBE method, or plasma CVD method is used, claim 1, claim 2, claim 3,
A method for producing a boron-containing aluminum nitride single crystal thin film according to claim 4, claim 5, or claim 6.
【請求項8】 アルミニウム、ホウ素、窒化アルミニウ
ム、窒化ホウ素、アルミニウム−ホウ素合金の中から選
ばれた材料をターゲットとして、窒素またはアンモニア
を含むガス雰囲気で、スパッタ法によってBxAl1-xN
y(0.0001≦x≦0.7、0.85≦y≦1.05)のホウ素含有窒化
アルミニウム単結晶薄膜を基板上に形成することを特徴
とするホウ素含有窒化アルミニウム単結晶薄膜の製造方
法。
8. A target material selected from aluminum, boron, aluminum nitride, boron nitride, and an aluminum-boron alloy is used in a gas atmosphere containing nitrogen or ammonia in a B x Al 1-x N by sputtering method.
A method for producing a boron-containing aluminum nitride single crystal thin film, which comprises forming a boron-containing aluminum nitride single crystal thin film of y (0.0001 ≤ x ≤ 0.7, 0.85 ≤ y ≤ 1.05) on a substrate.
【請求項9】 アルミニウム源として、アルミニウムを
含有する有機金属化合物を、ホウ素源として、ホウ素を
含有するハロゲン化物または水素化物または有機金属化
合物または金属アルコキシドをそれぞれ水素または希ガ
スで希釈して原料として供給し、窒素源として窒素また
はアンモニアガスを供給し、MOCVD法によってBxAl1-xNy
(0.0001≦x≦0.7、0.85≦y≦1.05)のホウ素含有窒化
アルミニウム単結晶薄膜を基板上に形成することを特徴
とするホウ素含有窒化アルミニウム単結晶薄膜の製造方
法。
9. An aluminum-containing organic metal compound as an aluminum source, and a boron source as a raw material by diluting a boron-containing halide or hydride or an organometallic compound or metal alkoxide with hydrogen or a noble gas, respectively. Supply, nitrogen or ammonia gas as a nitrogen source, and B x Al 1-x N y by MOCVD method
A method for producing a boron-containing aluminum nitride single crystal thin film, comprising forming a boron-containing aluminum nitride single crystal thin film (0.0001 ≦ x ≦ 0.7, 0.85 ≦ y ≦ 1.05) on a substrate.
【請求項10】 ホウ素、アルミニウム源として、それ
ぞれホウ素およびアルミニウムを含有するハロゲン化物
または水素化物または有機金属化合物または金属アルコ
キシドを水素または希ガスで希釈して原料として供給
し、窒素源として窒素またはアンモニアガスを供給し、
プラズマCVD法によってBxAl1-xNy(0.0001≦x≦0.7、0.
85≦y≦1.05)のホウ素含有窒化アルミニウム単結晶薄
膜を基板上に形成することを特徴とするホウ素含有窒化
アルミニウム単結晶薄膜の製造方法。
10. A boron or aluminum source, a halide or hydride containing boron and aluminum respectively, or an organometallic compound or a metal alkoxide, is diluted with hydrogen or a rare gas and supplied as a raw material, and nitrogen or ammonia is used as a nitrogen source. Supply gas,
B x Al 1-x N y (0.0001 ≦ x ≦ 0.7, 0.
A method for producing a boron-containing aluminum nitride single crystal thin film, which comprises forming a boron-containing aluminum nitride single crystal thin film of 85 ≦ y ≦ 1.05) on a substrate.
【請求項11】 アルミニウム源、ホウ素源としてアル
ミニウム、ホウ素、窒化アルミニウム、窒化ホウ素、ア
ルミニウム−ホウ素合金の中から選ばれた材料を電子ビ
ーム蒸発源あるいはKセル(クヌーセンセル)を用いて
供給し、窒素源としてN2、またはNH3を原料としRFイオ
ン源あるいはECRイオン源を用いて供給し、MBE法によっ
てBxAl1-xNy(0.0001≦x≦0.7、0.85≦y≦1.05)のホウ
素含有窒化アルミニウム単結晶薄膜を基板上に形成する
ことを特徴とするホウ素含有窒化アルミニウム単結晶薄
膜の製造方法。
11. A material selected from aluminum, boron, aluminum nitride, boron nitride, and an aluminum-boron alloy as an aluminum source and a boron source is supplied by using an electron beam evaporation source or a K cell (Knudsen cell), N 2 or NH 3 as a nitrogen source is used as a raw material and is supplied by using an RF ion source or an ECR ion source, and B x Al 1-x N y (0.0001 ≦ x ≦ 0.7, 0.85 ≦ y ≦ 1.05) of the MBE method is supplied. A method for producing a boron-containing aluminum nitride single crystal thin film, which comprises forming a boron-containing aluminum nitride single crystal thin film on a substrate.
JP04168795A 1995-03-01 1995-03-01 Boron-containing aluminum nitride thin film and manufacturing method Expired - Fee Related JP3716440B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04168795A JP3716440B2 (en) 1995-03-01 1995-03-01 Boron-containing aluminum nitride thin film and manufacturing method
DE69521409T DE69521409T2 (en) 1995-03-01 1995-11-21 Boron aluminum nitride coating and process for its production
EP95308297A EP0730044B1 (en) 1995-03-01 1995-11-21 Boron-aluminum nitride coating and method of producing same
US08/565,027 US5766783A (en) 1995-03-01 1995-11-30 Boron-aluminum nitride coating and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04168795A JP3716440B2 (en) 1995-03-01 1995-03-01 Boron-containing aluminum nitride thin film and manufacturing method

Publications (2)

Publication Number Publication Date
JPH08239752A true JPH08239752A (en) 1996-09-17
JP3716440B2 JP3716440B2 (en) 2005-11-16

Family

ID=12615345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04168795A Expired - Fee Related JP3716440B2 (en) 1995-03-01 1995-03-01 Boron-containing aluminum nitride thin film and manufacturing method

Country Status (1)

Country Link
JP (1) JP3716440B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035805A (en) * 1999-07-19 2001-02-09 Sony Corp Iii group nitride compound semiconductor thin film, method of forming same, semiconductor device and manufacture thereof
JP2002237737A (en) * 2000-12-05 2002-08-23 Ngk Insulators Ltd Substrate for surface acoustic wave device and method for manufacturing the substrate and surface acoustic wave device using the substrate
US6593679B2 (en) 2000-09-27 2003-07-15 Seiko Epson Corporation Surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus
JP2005210084A (en) * 2003-12-22 2005-08-04 Ngk Insulators Ltd Epitaxial substrate, semiconductor laminate structure, dislocation reduction method, and substrate for epitaxial formation
US6931701B2 (en) 2000-07-19 2005-08-23 Murata Manufacturing Co., Ltd. Method for manufacturing a thin film
JP2005255440A (en) * 2004-03-10 2005-09-22 Univ Meijo Method for making group iii nitride semiconductor and group iii nitride semiconductor
JP2006278569A (en) * 2005-03-28 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor
JP2008311420A (en) * 2007-06-14 2008-12-25 Showa Denko Kk Manufacturing method of sputter target, sputter target, sputtering device, manufacturing method of group iii nitride compound semiconductor light emitting element, group iii nitride compound semiconductor light emitting element, and lamp
WO2009096270A1 (en) * 2008-01-31 2009-08-06 Canon Anelva Corporation AlN HETEROEPITAXIAL CRYSTAL, METHOD FOR PRODUCING THE SAME, BASE SUBSTRATE FOR GROUP III NITRIDE FILM USING THE CRYSTAL, LIGHT-EMITTING DEVICE, SURFACE ACOUSTIC WAVE DEVICE, AND SPUTTERING APPARATUS
JP2010159207A (en) * 2010-02-05 2010-07-22 Meijo Univ Group iii nitride semiconductor
WO2014087799A1 (en) * 2012-12-05 2014-06-12 株式会社村田製作所 Piezoelectric member, elastic wave apparatus, and piezoelectric member manufacturing method
JP2014527714A (en) * 2011-07-29 2014-10-16 株式会社東芝 Semiconductor device and manufacturing method thereof
KR20160015230A (en) 2013-05-31 2016-02-12 산켄덴키 가부시키가이샤 Semiconductor substrate, semiconductor device, and semiconductor device manufacturing method
WO2018216335A1 (en) 2017-05-23 2018-11-29 Tdk株式会社 Nitride single crystal
JP2020037501A (en) * 2018-09-03 2020-03-12 国立大学法人三重大学 Method for producing nitride semiconductor substrate, and nitride semiconductor substrate

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613373B2 (en) * 1999-07-19 2011-01-19 ソニー株式会社 Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
JP2001035805A (en) * 1999-07-19 2001-02-09 Sony Corp Iii group nitride compound semiconductor thin film, method of forming same, semiconductor device and manufacture thereof
US6931701B2 (en) 2000-07-19 2005-08-23 Murata Manufacturing Co., Ltd. Method for manufacturing a thin film
US6593679B2 (en) 2000-09-27 2003-07-15 Seiko Epson Corporation Surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus
JP4502553B2 (en) * 2000-12-05 2010-07-14 日本碍子株式会社 Method for manufacturing substrate for surface acoustic wave device
JP2002237737A (en) * 2000-12-05 2002-08-23 Ngk Insulators Ltd Substrate for surface acoustic wave device and method for manufacturing the substrate and surface acoustic wave device using the substrate
JP2005210084A (en) * 2003-12-22 2005-08-04 Ngk Insulators Ltd Epitaxial substrate, semiconductor laminate structure, dislocation reduction method, and substrate for epitaxial formation
JP2005255440A (en) * 2004-03-10 2005-09-22 Univ Meijo Method for making group iii nitride semiconductor and group iii nitride semiconductor
JP4556034B2 (en) * 2004-03-10 2010-10-06 学校法人 名城大学 Method for manufacturing group III nitride semiconductor
JP2006278569A (en) * 2005-03-28 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor
JP4519693B2 (en) * 2005-03-28 2010-08-04 日本電信電話株式会社 Nitride semiconductor
JP2008311420A (en) * 2007-06-14 2008-12-25 Showa Denko Kk Manufacturing method of sputter target, sputter target, sputtering device, manufacturing method of group iii nitride compound semiconductor light emitting element, group iii nitride compound semiconductor light emitting element, and lamp
WO2009096270A1 (en) * 2008-01-31 2009-08-06 Canon Anelva Corporation AlN HETEROEPITAXIAL CRYSTAL, METHOD FOR PRODUCING THE SAME, BASE SUBSTRATE FOR GROUP III NITRIDE FILM USING THE CRYSTAL, LIGHT-EMITTING DEVICE, SURFACE ACOUSTIC WAVE DEVICE, AND SPUTTERING APPARATUS
JP2010159207A (en) * 2010-02-05 2010-07-22 Meijo Univ Group iii nitride semiconductor
JP2014527714A (en) * 2011-07-29 2014-10-16 株式会社東芝 Semiconductor device and manufacturing method thereof
WO2014087799A1 (en) * 2012-12-05 2014-06-12 株式会社村田製作所 Piezoelectric member, elastic wave apparatus, and piezoelectric member manufacturing method
US9831416B2 (en) 2012-12-05 2017-11-28 Murata Manufacturing Co., Ltd. Piezoelectric member that achieves high sound speed, acoustic wave apparatus, and piezoelectric member manufacturing method
KR20160015230A (en) 2013-05-31 2016-02-12 산켄덴키 가부시키가이샤 Semiconductor substrate, semiconductor device, and semiconductor device manufacturing method
US9520286B2 (en) 2013-05-31 2016-12-13 Shanken Electric Co., Ltd. Semiconductor substrate, semiconductor device and method of manufacturing the semiconductor device
WO2018216335A1 (en) 2017-05-23 2018-11-29 Tdk株式会社 Nitride single crystal
JP2020037501A (en) * 2018-09-03 2020-03-12 国立大学法人三重大学 Method for producing nitride semiconductor substrate, and nitride semiconductor substrate

Also Published As

Publication number Publication date
JP3716440B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
EP0730044B1 (en) Boron-aluminum nitride coating and method of producing same
EP0669412B1 (en) Aluminim nitride thin film substrate and process for producing same
Davis III-V nitrides for electronic and optoelectronic applications
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
US11180865B2 (en) Foundation substrate for producing diamond film and method for producing diamond substrate using same
US5743957A (en) Method for forming a single crystal diamond film
JP2009543946A (en) Wide band gap semiconductor materials
JPH08310900A (en) Thin-film single crystal of nitride and its production
US20210404090A1 (en) Ground substrate and method for producing same
JPH09227298A (en) Carbon nitride single crystal film
CN110828291A (en) GaN/AlGaN heterojunction material based on single crystal diamond substrate and preparation method thereof
WO2023114508A1 (en) Hybrid chemical and physical vapor deposition of transition-metal-alloyed piezoelectric semiconductor films
WO2020194763A1 (en) Semiconductor film
US5326424A (en) Cubic boron nitride phosphide films
JP3465345B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
US6800133B1 (en) Process for growing a magnesium oxide film on a silicon (100) substrate coated with a cubic silicon carbide butter layer
JP2023532799A (en) Semiconductor substrate with nitrided interfacial layer
JPH09256139A (en) Production of zinc oxide film
KR20080005002A (en) Preparation method of zinc oxide based oxide thin film using sputtering
WO2020195355A1 (en) Underlying substrate
JPH07288231A (en) Single-crystal growing substrate
CN1096548A (en) The manufacture method of single crystal diamond diaphragm
Kietipaisalsophon et al. Structure properties of cubic-AlN grown by reactive gas-timing rf magnetron sputtering
KR100416664B1 (en) Zn-added magnesium oxide thin films and process for preparing same
JPH04188717A (en) Diamond substrate and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050222

A521 Written amendment

Effective date: 20050407

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090909

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100909

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110909

LAPS Cancellation because of no payment of annual fees