JP4519693B2 - Nitride semiconductor - Google Patents

Nitride semiconductor Download PDF

Info

Publication number
JP4519693B2
JP4519693B2 JP2005093162A JP2005093162A JP4519693B2 JP 4519693 B2 JP4519693 B2 JP 4519693B2 JP 2005093162 A JP2005093162 A JP 2005093162A JP 2005093162 A JP2005093162 A JP 2005093162A JP 4519693 B2 JP4519693 B2 JP 4519693B2
Authority
JP
Japan
Prior art keywords
albgainn
layer
nitride semiconductor
composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005093162A
Other languages
Japanese (ja)
Other versions
JP2006278569A (en
Inventor
哲也 赤坂
康之 小林
俊樹 牧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005093162A priority Critical patent/JP4519693B2/en
Publication of JP2006278569A publication Critical patent/JP2006278569A/en
Application granted granted Critical
Publication of JP4519693B2 publication Critical patent/JP4519693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化物半導体に関し、より詳細には、可視光から紫外領域で発光する発光デバイスや、高電力・高周波数・高温動作の電子デバイスに適用することができ、III族元素として少なくともホウ素(B)を含有する窒化物半導体に関する。   The present invention relates to a nitride semiconductor, and more specifically, can be applied to a light-emitting device that emits light in the visible to ultraviolet region, and an electronic device that operates at high power, high frequency, and high temperature, and includes at least boron as a group III element. The present invention relates to a nitride semiconductor containing (B).

窒化物半導体とは、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、あるいは、インジウム(In)等のIII族元素のうち少なくとも1つ以上の元素と、V族元素である窒素との化合物である。一般式は、AlGaInN(0≦a≦1,0≦b≦1,0≦c≦1,0≦d≦1,a+b+c+d=1)で表され、以下、組成の範囲の表示は省略する。 A nitride semiconductor is a combination of at least one element among group III elements such as boron (B), aluminum (Al), gallium (Ga), or indium (In) and nitrogen that is a group V element. A compound. General formula is represented by Al a B b Ga c In d N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ c ≦ 1,0 ≦ d ≦ 1, a + b + c + d = 1), or less, of the composition The range display is omitted.

Bを含まない窒化物半導体、すなわち、AlGaInNは、電界効果トランジスタ等の電子デバイス、または、可視光領域から近紫外領域の短波長帯の発光材料として、近年盛んに研究および技術開発が行われている。窒化物半導体薄膜を用いた発光ダイオードは、橙色から紫外領域の発光が得られる(例えば、非特許文献1参照)。窒化物半導体を用いたレーザダイオードは、450nmから370nm前後の発振波長で、室温連続発振を達成している(例えば、非特許文献2参照)。短波長の紫外領域で発光する発光ダイオードやレーザダイオードを実現するためには、Bを含有するバンドギャップのより大きな窒化物半導体を用いる必要がある。 B-containing nitride semiconductors, that is, Al a Ga c In d N, have been actively researched and developed in recent years as electronic devices such as field effect transistors, or as light emitting materials in the short wavelength band from the visible light region to the near ultraviolet region. Technology development is underway. A light emitting diode using a nitride semiconductor thin film can emit light in an orange to ultraviolet region (see, for example, Non-Patent Document 1). A laser diode using a nitride semiconductor achieves room temperature continuous oscillation at an oscillation wavelength of about 450 nm to about 370 nm (see, for example, Non-Patent Document 2). In order to realize a light emitting diode or a laser diode that emits light in a short wavelength ultraviolet region, it is necessary to use a nitride semiconductor containing B and having a larger band gap.

中村修二、「GaN系発光素子の現状と将来」、応用物理、第65巻、第7号、第676〜686頁、1996年Shuji Nakamura, “Current Status and Future of GaN-based Light Emitting Elements”, Applied Physics, Vol. 65, No. 7, pp. 676-686, 1996 I.Akasaki, H.Amano, ”Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength light Emitters”, Jpn. J. Appl. Phys. vol.36 pp.5393-5408 (1997)I. Akasaki, H. Amano, “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength light Emitters”, Jpn. J. Appl. Phys. Vol. 36 pp. 5393-5408 (1997)

しかしながら、以下に述べる理由により、Bを含有する窒化物半導体は、良好な結晶性を示す高品質な結晶を得ることが難しく、発光材料や電子デバイスへの応用は実現していない。   However, for the reasons described below, it is difficult for a nitride semiconductor containing B to obtain high-quality crystals exhibiting good crystallinity, and application to light-emitting materials and electronic devices has not been realized.

第1に、Bを含まない窒化物半導体AlGaInNとBNとは、格子定数が著しく異なるので、AlGaInNにおけるB組成bを増やしていくと、大きなミッシビリティギャップにより相分離が起こり、結晶中のB組成に不均一が生じてしまう。 First, a not a nitride semiconductor Al a Ga c In d N and BN which contains B, since the lattice constants are different significantly, when gradually increasing the Al a B b Ga c In d N B composition in b, large Phase separation occurs due to the miscibility gap, resulting in non-uniformity in the B composition in the crystal.

第2に、化学的気相成長法(Chemical Vapor Deposition:CVD)や物理的気相成長法における典型的な成長条件である摂氏千数百度以下および常圧以下の環境において、AlGaInNの安定な結晶構造は、ウルツ鉱型六方晶である。これに対して、BNはグラファイト型六方晶であり、お互いに異なる結晶構造を有する。このように異なる結晶構造を有するために、AlGaInNの結晶性を損なう原因となっている。 Second, a chemical vapor deposition: in (Chemical Vapor Deposition CVD) and physical vapor typical Celsius thousand several hundred degrees under the following and normal pressure the growth conditions in the growth process environment, Al a Ga c In stable crystal structure of the d N is the wurtzite hexagonal. On the other hand, BN is a graphite-type hexagonal crystal and has different crystal structures. Such a different crystal structure causes the crystallinity of Al a B b Ga c In d N to be impaired.

図1に、従来のBを含む窒化物半導体薄膜の表面の光学顕微鏡写真を示す。この試料は、(0001)面を主方位とする窒化珪素基板上に、MOCVD装置を用いて、厚さが500nmのAl0.940.06N薄膜が形成されている。B組成が0.06と比較的小さいにもかかわらず、表面が砂粒状に荒れているのが分かる。 FIG. 1 shows an optical micrograph of the surface of a conventional nitride semiconductor thin film containing B. In this sample, an Al 0.94 B 0.06 N thin film having a thickness of 500 nm is formed on a silicon nitride substrate having a (0001) plane as a main orientation by using an MOCVD apparatus. Although the B composition is 0.06, which is relatively small, it can be seen that the surface is roughened into sand particles.

図2に、従来のBを含む窒化物半導体のX線回折チャートを示す。X線回折チャートには、相分離によりウルツ鉱型のAlBN(0002)の回折ピークが2つ見られる。このように品質の低い窒化物半導体薄膜を、発光材料や電子デバイスに用いることはできなかった。特に、B組成bが大きくなるにつれて、結晶性が著しく劣化するという問題もあった。   FIG. 2 shows an X-ray diffraction chart of a conventional nitride semiconductor containing B. In the X-ray diffraction chart, two diffraction peaks of wurtzite AlBN (0002) are observed due to phase separation. Such a low quality nitride semiconductor thin film could not be used for a light emitting material or an electronic device. In particular, as the B composition b is increased, there is a problem that the crystallinity is remarkably deteriorated.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、可視光から紫外領域で発光する発光デバイスや、高電力・高周波数・高温動作の電子デバイスに適用することができ、結晶品質の高い窒化物半導体を提供することにある。   The present invention has been made in view of such problems, and its object is to apply to light-emitting devices that emit light in the ultraviolet region from visible light, and electronic devices that operate at high power, high frequency, and high temperature. It is possible to provide a nitride semiconductor with high crystal quality.

本発明は、このような目的を達成するために、請求項1に記載の発明は、(0001)面からのずれが±10度以下の主方位面を有する炭化珪素結晶からなる基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、前記多層構造は、ウルツ鉱型の結晶構造であり(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが10nm未満で、ホウ素の組成が0.05以上0.5未満であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層と交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする。 In order to achieve such an object, the present invention provides the main structure of a substrate made of a silicon carbide crystal having a main orientation plane whose deviation from the (0001) plane is ± 10 degrees or less. A nitride semiconductor having a multilayer structure in which crystals are grown on an orientation plane , wherein the multilayer structure is a wurtzite crystal structure, and (1) a boron composition is less than 0.05 , A first AlBGaInN layer that is lattice-matched ; (2) a thickness of less than 10 nm and a boron composition of 0.05 to less than 0.5 that is lattice-matched to the first AlBGaInN layer; a second AlBGaInN layer are laminated alternately, and the second AlBGaInN layer a multilayer structure is sandwiched between said first AlBGaInN layer, of the first AlBGaInN layer and the second AlBGaInN layer The composition of indium is characterized in that at least 0.01.

請求項2に記載の発明は、(0001)面からのずれが±10度以下の主方位面を有する炭化珪素結晶からなる基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、前記多層構造は、ウルツ鉱型の結晶構造であり(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが1分子層以下で、ホウ素の組成が0.5以上であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層と交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする。 The invention according to claim 2 is a nitride semiconductor having a multilayer structure in which a crystal is grown on the main orientation plane of a substrate made of a silicon carbide crystal having a main orientation plane whose deviation from the (0001) plane is ± 10 degrees or less. a is, the multilayer structure is a wurtzite crystal structure, (1) a composition of boron is less than 0.05, the first AlBGaInN layer in the substrate lattice-matched, (2 ) is equal to or smaller than one molecular layer thick, there is the composition of the boron 0.5 or more, said the first AlBGaInN layer lattice matched to that second AlBGaInN layer are laminated alternately, the second A multilayer structure in which an AlBGaInN layer is sandwiched between the first AlBGaInN layers, and the indium composition of the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.

請求項に記載の発明は、C面からのずれが±10度以下の主方位面を有するサファイア基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、前記多層構造は、ウルツ鉱型の結晶構造であり、(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが10nm未満で、ホウ素の組成が0.05以上0.5未満であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層とが交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする。
請求項4に記載の発明は、C面からのずれが±10度以下の主方位面を有するサファイア基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、前記多層構造は、ウルツ鉱型の結晶構造であり、(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが1分子層以下で、ホウ素の組成が0.5以上であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層とが交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする。
The invention according to claim 3 is a nitride semiconductor having a multilayer structure in which crystals are grown on the main azimuth plane of a sapphire substrate having a main azimuth plane whose deviation from the C plane is ± 10 degrees or less. The structure is a wurtzite crystal structure, (1) a first AlBGaInN layer having a boron composition less than 0.05 and lattice-matched with the substrate, and (2) a thickness less than 10 nm. And second AlBGaInN layers having a boron composition of 0.05 or more and less than 0.5 and lattice-matched with the first AlBGaInN layers are alternately stacked, and the second AlBGaInN layers are A multilayer structure sandwiched between first AlBGaInN layers, wherein the composition of indium in the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more .
The invention according to claim 4 is a nitride semiconductor having a multilayer structure in which a crystal is grown on the main azimuth plane of a sapphire substrate having a main azimuth plane whose deviation from the C plane is ± 10 degrees or less. The structure is a wurtzite crystal structure, (1) a first AlBGaInN layer having a boron composition of less than 0.05 and lattice-matched with the substrate, and (2) a thickness of one molecule. The second AlBGaInN layer having a boron composition of 0.5 or more and having a boron composition of 0.5 or more and lattice-matched with the first AlBGaInN layer are alternately stacked, and the second AlBGaInN layer is formed as the first AlBGaInN layer. The AlBGaInN layer has a multilayer structure, and the indium composition of the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.

以上説明したように、本発明によれば、厚さが10nm未満でホウ素の組成が0.05以上0.5未満、または厚さが1分子層以下でホウ素の組成が0.5以上の窒化物半導体層を、ホウ素の組成が0.05未満の窒化物半導体層で挟む多層構造を備えたので、結晶品質の高い窒化物半導体を提供することが可能となる。 As described above, according to the present invention, nitriding with a thickness of less than 10 nm and a boron composition of 0.05 or more and less than 0.5, or a thickness of one molecular layer or less and a boron composition of 0.5 or more. Since the multilayer semiconductor structure in which the nitride semiconductor layer is sandwiched between the nitride semiconductor layers having a boron composition of less than 0.05, a nitride semiconductor with high crystal quality can be provided.

また、本発明によれば、窒化物半導体層のいずれかに、組成が0.01以上のインジウムを含むことにより、さらに結晶欠陥を減少させることが可能となる。   In addition, according to the present invention, it is possible to further reduce crystal defects by including indium having a composition of 0.01 or more in any of the nitride semiconductor layers.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図3に、本発明の実施例1にかかる窒化物半導体の多層構造を示す。窒化物半導体の多層構造は、Si面炭化珪素(SiC)基板11上に、Al0.80.04Ga0.1In0.06N層(第1窒化物半導体層)12を形成し、その上に、Al0.320.1Ga0.62In0.06N(第2窒化物半導体層)13とAl0.80.04Ga0.1In0.06N層(第3窒化物半導体層)14とを交互に合計10層積層する。 FIG. 3 shows a multilayer structure of a nitride semiconductor according to Example 1 of the present invention. In the multilayer structure of nitride semiconductor, an Al 0.8 B 0.04 Ga 0.1 In 0.06 N layer (first nitride semiconductor layer) 12 is formed on a Si-plane silicon carbide (SiC) substrate 11, and Al 0.32 B is formed thereon. A total of 10 layers of 0.1 Ga 0.62 In 0.06 N (second nitride semiconductor layer) 13 and Al 0.8 B 0.04 Ga 0.1 In 0.06 N layer (third nitride semiconductor layer) 14 are alternately stacked.

SiC基板11は、主方位面が(0001)面から0.5度だけ<1−100>方向(以下、−1は結晶方位の1バーを示す)に傾いている。第1窒化物半導体層12は、厚さ200nmであり、第2窒化物半導体層13は、厚さ9nmである。第3窒化物半導体層14は、厚さ41nmであり、第1窒化物半導体層12と同じ組成である。   The SiC substrate 11 is inclined in the <1-100> direction (hereinafter, -1 indicates one bar of the crystal orientation) by 0.5 degrees from the (0001) plane. The first nitride semiconductor layer 12 has a thickness of 200 nm, and the second nitride semiconductor layer 13 has a thickness of 9 nm. The third nitride semiconductor layer 14 has a thickness of 41 nm and the same composition as the first nitride semiconductor layer 12.

図4に、実施例1の窒化物半導体多層構造の表面の光学顕微鏡写真を示す。凹凸がまったくない滑らかな鏡面状の表面が得られていることが分かる。また、原子間力顕微鏡(AFM)で表面を詳細に観察すると、原子層レベルで平坦な表面であることが分かる。さらに、X線回折の測定から非常に高い結晶性を有していることも分かった。ここで、第2窒化物半導体層13と第3窒化物半導体層14とは、共にウルツ鉱型の結晶構造を有し、a軸の格子定数が0.312nmと等しく、格子整合している。c軸は、SiC基板11のc軸に一致している。   FIG. 4 shows an optical micrograph of the surface of the nitride semiconductor multilayer structure of Example 1. It can be seen that a smooth mirror-like surface having no irregularities is obtained. Further, when the surface is observed in detail with an atomic force microscope (AFM), it can be seen that the surface is flat at the atomic layer level. Furthermore, it was found from the measurement of X-ray diffraction that it has very high crystallinity. Here, both the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 have a wurtzite type crystal structure, and the lattice constant of the a-axis is equal to 0.312 nm and is lattice-matched. The c axis coincides with the c axis of the SiC substrate 11.

格子定数がほぼ一致している場合に、Bを含まない第2窒化物半導体層13と第3窒化物半導体層14とを用いれば、それぞれの層の厚さは任意に設計することができる。しかしながら、Bを比較的多量に含む窒化物半導体の場合には、ウルツ鉱型の結晶構造が不安定相であるため、第2窒化物半導体層13のBの組成は、0.05以上で0.5未満であって、膜厚が10nmを超えないようにする必要がある。加えて、Bの組成が0.05未満の第3窒化物半導体層14によって、第2窒化物半導体層13をサンドイッチ状に挟むこと(最下層の第2窒化物半導体層13は、第1窒化物半導体層12と第3窒化物半導体層14とによって挟む)が、良好な結晶性を得るために不可欠である。すなわち、B組成の大きな窒化物半導体層を、B組成の小さな窒化物半導体層により挟むことにより、格子定数や結晶構造の相違による結晶品質の劣化を防ぐことができる。   If the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 that do not contain B are used when the lattice constants are substantially the same, the thickness of each layer can be arbitrarily designed. However, in the case of a nitride semiconductor containing a relatively large amount of B, since the wurtzite crystal structure is an unstable phase, the composition of B in the second nitride semiconductor layer 13 is 0.05 or more and 0. It is necessary that the film thickness does not exceed 10 nm. In addition, the second nitride semiconductor layer 13 is sandwiched between the third nitride semiconductor layers 14 having a B composition of less than 0.05 (the lowermost second nitride semiconductor layer 13 is the first nitride). Sandwiched between the semiconductor semiconductor layer 12 and the third nitride semiconductor layer 14) is indispensable for obtaining good crystallinity. That is, by sandwiching a nitride semiconductor layer having a large B composition between nitride semiconductor layers having a small B composition, it is possible to prevent deterioration in crystal quality due to a difference in lattice constant or crystal structure.

図5に、実施例1の窒化物半導体多層構造の表面粗さと第2窒化物半導体層のB組成との関係を示す。図3に示した多層構造において、第2窒化物半導体層13の厚さを9nmに固定し、第2窒化物半導体層13のB組成を変えたときの、窒化物半導体多層構造の表面粗さを示す。表面粗さは、AFMで測定した平均二乗根粗さであり、対数スケールで縦軸に示す。なお、第2窒化物半導体層13と第3窒化物半導体層14のa軸の格子定数差が5%以内に収まるように、第2窒化物半導体層13のAl,GaおよびIn組成を適宜調整している。   FIG. 5 shows the relationship between the surface roughness of the nitride semiconductor multilayer structure of Example 1 and the B composition of the second nitride semiconductor layer. In the multilayer structure shown in FIG. 3, the surface roughness of the nitride semiconductor multilayer structure when the thickness of the second nitride semiconductor layer 13 is fixed to 9 nm and the B composition of the second nitride semiconductor layer 13 is changed. Indicates. The surface roughness is the mean square root roughness measured by AFM and is shown on the vertical axis on a logarithmic scale. The Al, Ga, and In compositions of the second nitride semiconductor layer 13 are appropriately adjusted so that the difference in lattice constant between the a-axes of the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 is within 5%. is doing.

第2窒化物半導体層13のB組成が0.5を超えない場合には、表面粗さは0.25nmと原子層レベルで非常に滑らかな表面が得られている。ところが、第2窒化物半導体層13のB組成が0.5を超えると、結晶性の劣化により表面粗さが急激に大きくなっているのが分かる。   When the B composition of the second nitride semiconductor layer 13 does not exceed 0.5, the surface roughness is 0.25 nm, and a very smooth surface is obtained at the atomic layer level. However, it can be seen that when the B composition of the second nitride semiconductor layer 13 exceeds 0.5, the surface roughness rapidly increases due to deterioration of crystallinity.

また、格子定数や結晶構造の相違のために生ずる結晶欠陥を防ぐためには、第2窒化物半導体層13と第3窒化物半導体層14のIn組成を、少なくとも0.01以上にすることが重要である。これは、Inを多く含むことによって、特に点欠陥の密度を減少させることができるからである。この効果は、BとInの電気陰性度の差が大きいため、Bを含む窒化物半導体の場合に特に効果が高い。   In order to prevent crystal defects caused by differences in lattice constants and crystal structures, it is important that the In composition of the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 is at least 0.01 or more. It is. This is because the density of point defects can be particularly reduced by containing a large amount of In. This effect is particularly high in the case of a nitride semiconductor containing B because the difference in electronegativity between B and In is large.

図3に示した窒化物半導体多層構造において、第2窒化物半導体層13の膜厚を、1分子層以下にすると、第2窒化物半導体層13のB組成を0.5以上に増やしても良好な結晶性を得られることができる。これは、第2窒化物半導体層13の膜厚を極端に薄く1分子層以下とすることにより、第2窒化物半導体層13および第3窒化物半導体層14の安定なウルツ鉱型の積層シーケンス、すなわちc軸方向のABABAB・・・・という積層の繰り返しが確実に引き継がれるからである。従って、第3窒化物半導体層14によるサンドイッチ効果が大きくなり、第2窒化物半導体層13のウルツ鉱型の結晶構造がより安定化される。このため、第2窒化物半導体層13は、BN(B組成が1)であっても構わない。 In the nitride semiconductor multilayer structure shown in FIG. 3, if the film thickness of the second nitride semiconductor layer 13 is one molecular layer or less, the B composition of the second nitride semiconductor layer 13 can be increased to 0.5 or more. Good crystallinity can be obtained. This is because the second nitride semiconductor layer 13 is extremely thin and has a molecular layer or less, so that a stable wurtzite stacking sequence of the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 is achieved. That is, the repetition of the stacking of ABABAB in the c-axis direction is surely taken over. Therefore, the sandwich effect by the third nitride semiconductor layer 14 is increased, and the wurtzite crystal structure of the second nitride semiconductor layer 13 is further stabilized. For this reason, the second nitride semiconductor layer 13 may be BN (B composition is 1).

図6に、実施例2の窒化物半導体多層構造の表面粗さと第2窒化物半導体層のB組成との関係を示す。図3に示した多層構造において、第2窒化物半導体層13の厚さを1分子層相当に固定し、第2窒化物半導体層13のB組成を変えたときの、窒化物半導体多層構造の表面粗さを示す。表面粗さは、AFMで測定した平均二乗根粗さであり、対数スケールで縦軸に示す。なお、第2窒化物半導体層13と第3窒化物半導体層14のa軸の格子定数差ができるだけ小さくなるように、第2窒化物半導体層13のAl,GaおよびIn組成を適宜調整している。 FIG. 6 shows the relationship between the surface roughness of the nitride semiconductor multilayer structure of Example 2 and the B composition of the second nitride semiconductor layer. In the multilayer structure shown in FIG. 3, the thickness of the second nitride semiconductor layer 13 is fixed to one molecular layer, and the B composition of the second nitride semiconductor layer 13 is changed. Indicates surface roughness. The surface roughness is the mean square root roughness measured by AFM and is shown on the vertical axis on a logarithmic scale. The Al, Ga, and In compositions of the second nitride semiconductor layer 13 are adjusted as appropriate so that the difference in lattice constant between the a-axes of the second nitride semiconductor layer 13 and the third nitride semiconductor layer 14 is as small as possible. Yes.

第2窒化物半導体層13の厚さを1分子層相当とすると、B組成が1(すなわちBN)であっても原子層レベルで平坦な表面を有することがわかる。
When the thickness of the second nitride semiconductor layer 13 is equivalent to one molecular layer, it can be seen that even if the B composition is 1 (that is, BN), it has a flat surface at the atomic layer level.

実施例1,2では、基板11として、主方位面が(0001)面から0.5度だけ<1−100>方向に傾いたSi面SiC基板を用いた。(0001)面からのずれが任意の方位に±10度以下の主方位面を有するSiC基板を用いた場合でも、同様の効果を得ることができる。   In Examples 1 and 2, as the substrate 11, a Si surface SiC substrate having a main azimuth plane tilted in the <1-100> direction by 0.5 degrees from the (0001) plane was used. Even when a SiC substrate having a main azimuth plane whose deviation from the (0001) plane is ± 10 degrees or less in an arbitrary direction is used, the same effect can be obtained.

[a](0001)面からずれが±10度以下の主方位面を有するウルツ鉱型の結晶基板、[b](111)面からのずれが±10度以下の主方位面を有する閃亜鉛鉱型の結晶基板、[c]C面からのずれが±10度以下の主方位面を有するサファイア基板、[d](111)面からのずれが±10度以下の主方位面を有するダイヤモンド型の結晶基板を用いることもできる。   [A] Wurtzite type crystal substrate having a main orientation plane with a deviation of ± 10 degrees or less from the (0001) plane, Zinc flash having a main orientation plane with a deviation from the [b] (111) plane of ± 10 degrees or less Ore-type crystal substrate, [c] sapphire substrate having a main orientation plane with a deviation from the C plane of ± 10 degrees or less, diamond having a main orientation plane with a deviation from the [d] (111) plane of ± 10 degrees or less A type crystal substrate can also be used.

従来のBを含む窒化物半導体の表面の光学顕微鏡写真である。It is the optical microscope photograph of the surface of the nitride semiconductor containing the conventional B. 従来のBを含む窒化物半導体のX線回折チャートである。3 is an X-ray diffraction chart of a conventional nitride semiconductor containing B. 本発明の実施例1にかかる窒化物半導体の多層構造を示す断面図である。It is sectional drawing which shows the multilayer structure of the nitride semiconductor concerning Example 1 of this invention. 実施例1の窒化物半導体多層構造の表面の光学顕微鏡写真である。2 is an optical micrograph of the surface of the nitride semiconductor multilayer structure of Example 1. FIG. 実施例1の窒化物半導体多層構造の表面粗さと第2窒化物半導体層のB組成との関係を示す図である。It is a figure which shows the relationship between the surface roughness of the nitride semiconductor multilayer structure of Example 1, and B composition of a 2nd nitride semiconductor layer. 実施例2の窒化物半導体多層構造の表面粗さと第2窒化物半導体層のB組成との関係を示す図である。It is a figure which shows the relationship between the surface roughness of the nitride semiconductor multilayer structure of Example 2, and B composition of a 2nd nitride semiconductor layer.

符号の説明Explanation of symbols

11 Si面炭化珪素(SiC)基板
12 第1窒化物半導体層
13 第2窒化物半導体層
14 第3窒化物半導体層
11 Si-plane silicon carbide (SiC) substrate 12 First nitride semiconductor layer 13 Second nitride semiconductor layer 14 Third nitride semiconductor layer

Claims (4)

(0001)面からのずれが±10度以下の主方位面を有する炭化珪素結晶からなる基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、
前記多層構造は、ウルツ鉱型の結晶構造であり(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが10nm未満で、ホウ素の組成が0.05以上0.5未満であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層と交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり
前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする窒化物半導体。
A nitride semiconductor having a multilayer structure in which a crystal is grown on the main orientation plane of a substrate made of a silicon carbide crystal having a main orientation plane with a deviation from the (0001) plane of ± 10 degrees or less ,
Wherein the multilayer structure is a wurtzite crystal structure, (1) a composition of boron is less than 0.05, the first AlBGaInN layer in the substrate lattice matched, (2) thickness less than 10 nm, and less than 0.5 the composition of the boron 0.05 or more, the first and the second AlBGaInN layer that AlBGaInN layer lattice matched are alternately stacked, the second AlBGaInN layer a multilayer structure sandwiched between the first AlBGaInN layer,
A nitride semiconductor, wherein a composition of indium in the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.
(0001)面からのずれが±10度以下の主方位面を有する炭化珪素結晶からなる基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、
前記多層構造は、ウルツ鉱型の結晶構造であり(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが1分子層以下で、ホウ素の組成が0.5以上であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層と交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり
前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする窒化物半導体。
A nitride semiconductor having a multilayer structure in which a crystal is grown on the main orientation plane of a substrate made of a silicon carbide crystal having a main orientation plane with a deviation from the (0001) plane of ± 10 degrees or less ,
Wherein the multilayer structure is a wurtzite crystal structure, (1) a composition of boron is less than 0.05, the first AlBGaInN layer in the substrate lattice matched, (2) thickness The second AlBGaInN layer is alternately laminated with the first AlBGaInN layer and the first AlBGaInN layer having a boron composition of not more than one molecular layer and having a boron composition of 0.5 or more. a multilayer structure sandwiched between the first AlBGaInN layer,
A nitride semiconductor, wherein a composition of indium in the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.
C面からのずれが±10度以下の主方位面を有するサファイア基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、
前記多層構造は、ウルツ鉱型の結晶構造であり、(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが10nm未満で、ホウ素の組成が0.05以上0.5未満であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層とが交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、
前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする窒化物半導体。
A nitride semiconductor having a multilayer structure in which a crystal growth is performed on the main orientation plane of a sapphire substrate having a main orientation plane with a deviation from the C plane of ± 10 degrees or less ,
The multilayer structure is a wurtzite crystal structure, (1) a first AlBGaInN layer having a boron composition less than 0.05 and lattice-matched with the substrate, and (2) a thickness of Second AlBGaInN layers alternately stacked with second AlBGaInN layers having a boron composition of less than 10 nm and a boron composition of 0.05 to less than 0.5 and lattice-matched with the first AlBGaInN layers. Is a multilayer structure sandwiched between the first AlBGaInN layers,
The nitride compound semiconductor you wherein the first composition of indium AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.
C面からのずれが±10度以下の主方位面を有するサファイア基板の前記主方位面上に結晶成長した多層構造を有する窒化物半導体であって、A nitride semiconductor having a multilayer structure in which a crystal growth is performed on the main orientation plane of a sapphire substrate having a main orientation plane with a deviation from the C plane of ± 10 degrees or less,
前記多層構造は、ウルツ鉱型の結晶構造であり、(1)ホウ素の組成が0.05未満であって、前記基板と格子整合している第1のAlBGaInN層と、(2)厚さが1分子層以下で、ホウ素の組成が0.5以上であって、前記第1のAlBGaInN層と格子整合している第2のAlBGaInN層とが交互に積層され、前記第2のAlBGaInN層を前記第1のAlBGaInN層で挟んだ多層構造であり、The multilayer structure is a wurtzite crystal structure, (1) a first AlBGaInN layer having a boron composition less than 0.05 and lattice-matched with the substrate, and (2) a thickness of The second AlBGaInN layer is laminated alternately with the first AlBGaInN layer having a boron composition of 0.5 or more in one molecular layer and being lattice-matched with the first AlBGaInN layer, A multilayer structure sandwiched between first AlBGaInN layers,
前記第1のAlBGaInN層および前記第2のAlBGaInN層のインジウムの組成が0.01以上であることを特徴とする窒化物半導体。A nitride semiconductor, wherein a composition of indium in the first AlBGaInN layer and the second AlBGaInN layer is 0.01 or more.
JP2005093162A 2005-03-28 2005-03-28 Nitride semiconductor Expired - Fee Related JP4519693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093162A JP4519693B2 (en) 2005-03-28 2005-03-28 Nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093162A JP4519693B2 (en) 2005-03-28 2005-03-28 Nitride semiconductor

Publications (2)

Publication Number Publication Date
JP2006278569A JP2006278569A (en) 2006-10-12
JP4519693B2 true JP4519693B2 (en) 2010-08-04

Family

ID=37213035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093162A Expired - Fee Related JP4519693B2 (en) 2005-03-28 2005-03-28 Nitride semiconductor

Country Status (1)

Country Link
JP (1) JP4519693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884157B2 (en) * 2006-10-13 2012-02-29 日本電信電話株式会社 Manufacturing method of nitride semiconductor
JP4860665B2 (en) * 2008-06-11 2012-01-25 日本電信電話株式会社 Single crystal thin film structure of boron nitride and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288371A (en) * 1989-04-28 1990-11-28 Toshiba Corp Semiconductor light emitting element and manufacture thereof
JPH08239752A (en) * 1995-03-01 1996-09-17 Sumitomo Electric Ind Ltd Thin film of boron-containing aluminum nitride and its production
JPH10326911A (en) * 1997-05-26 1998-12-08 Sony Corp P-type iii nitride compound semiconductor and its production
JPH11162848A (en) * 1997-11-26 1999-06-18 Showa Denko Kk Epitaxial wafer and manufacture thereof
JP2000022211A (en) * 1998-06-26 2000-01-21 Showa Denko Kk Iii group nitride semiconductor light emitting element substrate
JP2002075873A (en) * 2000-08-25 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Semiconducor device
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288371A (en) * 1989-04-28 1990-11-28 Toshiba Corp Semiconductor light emitting element and manufacture thereof
JPH08239752A (en) * 1995-03-01 1996-09-17 Sumitomo Electric Ind Ltd Thin film of boron-containing aluminum nitride and its production
JPH10326911A (en) * 1997-05-26 1998-12-08 Sony Corp P-type iii nitride compound semiconductor and its production
JPH11162848A (en) * 1997-11-26 1999-06-18 Showa Denko Kk Epitaxial wafer and manufacture thereof
JP2000022211A (en) * 1998-06-26 2000-01-21 Showa Denko Kk Iii group nitride semiconductor light emitting element substrate
JP2002075873A (en) * 2000-08-25 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Semiconducor device
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006278569A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Kim et al. The grain size effects on the photoluminescence of ZnO/α-Al 2 O 3 grown by radio-frequency magnetron sputtering
Rogers et al. Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN
JPH11260835A (en) Substrate for electronic device
JP6966063B2 (en) Crystal substrate, ultraviolet light emitting device and their manufacturing method
US20040077165A1 (en) Hafnium nitride buffer layers for growth of GaN on silicon
WO2011155496A1 (en) Epitaxial substrate and method for producing epitaxial substrate
Jamil et al. Development of strain reduced GaN on Si (111) by substrate engineering
JP2008162888A (en) Substrate for electronic device
TW201228032A (en) Vicinal semipolar III-nitride substrates to compensate tilt of relaxed hetero-epitaxial layers
Senichev et al. Impact of growth conditions and strain on indium incorporation in non-polar m-plane (101¯) InGaN grown by plasma-assisted molecular beam epitaxy
He et al. Structure and optical properties of InN and InAlN films grown by rf magnetron sputtering
Komiyama et al. Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers
Saraf et al. In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates
WO2005065402A2 (en) Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
Aggarwal et al. Semipolar r-plane ZnO films on Si (100) substrates: Thin film epitaxy and optical properties
Bayram High-quality AlGaN/GaN superlattices for near-and mid-infrared intersubband transitions
JP7013070B2 (en) III-N material grown on an ErAIN buffer on a silicon substrate
O’Reilly et al. Room-temperature ultraviolet luminescence from γ-CuCl grown on near lattice-matched silicon
JP2007036255A (en) SILICON CARBON GERMANIUM (SiCGe) SUBSTRATE FOR GROUP III NITRIDE-BASED DEVICE
KR102415252B1 (en) Group ⅲ nitride semiconductor substrate and production method for group ⅲ nitride semiconductor substrate
JP4519693B2 (en) Nitride semiconductor
Engel et al. Controlling surface adatom kinetics for improved structural and optical properties of high indium content aluminum indium nitride
JP2004200384A (en) Substrate for epitaxial growth
Sarzyński et al. Elimination of AlGaN epilayer cracking by spatially patterned AlN mask
Dinh et al. Comparative study of polar and semipolar (112¯ 2) InGaN layers grown by metalorganic vapour phase epitaxy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4519693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees