JPH02250969A - Production of boron nitride - Google Patents

Production of boron nitride

Info

Publication number
JPH02250969A
JPH02250969A JP7324289A JP7324289A JPH02250969A JP H02250969 A JPH02250969 A JP H02250969A JP 7324289 A JP7324289 A JP 7324289A JP 7324289 A JP7324289 A JP 7324289A JP H02250969 A JPH02250969 A JP H02250969A
Authority
JP
Japan
Prior art keywords
substrate
plasma
gas
cvd method
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7324289A
Other languages
Japanese (ja)
Inventor
Yukio Ichinose
一ノ瀬 幸雄
Hiroki Morino
森野 弘樹
Hidetoshi Saito
秀俊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP7324289A priority Critical patent/JPH02250969A/en
Publication of JPH02250969A publication Critical patent/JPH02250969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To rapidly produce BN having a high content of c-BN without using special raw material or device by using a plasma-jet process in the production of BN by means of a CVD method. CONSTITUTION:A gaseous mixture of B2H6, NH3, H2, Ar, etc., is used as the raw gaseous material in the CVD method. A voltage is impressed between electrodes 3 and 4 from a DC power source 6 to generate an arc, and the gas is converted to plasma. Since the temp. of plasma becomes heat up to about 5000 to 20,000 deg.K, the gas is rapidly expanded, and a plasma jet 7 is formed. The distance between the electrode 4 and a substrate 5 is preferably controlled to about 5 to 50mm, and the substrate 5 is appropriately heated at 200 to 700 deg.C. Consequently, BN contg. c-BN and h-BN is deposited on the substrate 5. The c-BN having high heat conductivity can be utilized as a radiating substrate. Since the c-BN has a high hardness and the h-BN with lubricity is together contained, the BN-coated substrate 5 can also exhibit an excellent effect as a sliding member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はいわゆるCVD法による窒化ほう素の製造法に
関する。この窒化ほう素(BN)は立方耐食、耐磨耗性
被覆材、切削材などに利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing boron nitride by a so-called CVD method. This boron nitride (BN) is used for cubic corrosion-resistant, wear-resistant coating materials, cutting materials, etc.

〔従来の技術〕[Conventional technology]

BNには軟らかい六方晶窒化ほう素(以下h−BNとい
う)と高硬度なc−BNがある。
BN includes soft hexagonal boron nitride (hereinafter referred to as h-BN) and highly hard c-BN.

c−BNはh−BNを高温、高圧処理して得る方法が古
くから行われているが、近年はほう素含有化合物からC
VD法による製法も提案されている。
c-BN has long been obtained by processing h-BN at high temperature and high pressure, but in recent years, c-BN has been obtained by processing h-BN from boron-containing compounds.
A manufacturing method using the VD method has also been proposed.

CVD法として従来知られている方法は原料としてポロ
アミノポリマー、ボラン、ジボラン、テトラボラン、B
CI 3.B5N5H,などが知られ、またCVD法と
してはマイクロ波、高周波、アーク放電、熱フイラメン
ト法などが知られている(特開昭60−81009 、
同62−184869、同82−40376 、同(t
o −5874、同81−174378、同63−19
9871)。
The method conventionally known as the CVD method uses polyamino polymer, borane, diborane, tetraborane, B
CI 3. B5N5H, etc. are known, and microwave, high frequency, arc discharge, hot filament methods, etc. are known as CVD methods (Japanese Patent Laid-Open No. 60-81009,
62-184869, 82-40376, (t
o -5874, 81-174378, 63-19
9871).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

CVD法によりBNを製造する場合、重要なことはc−
BNの含有量を高めること、及びBNの生成速度を上げ
ること、その他原料化合物の毒性がないことや取り易い
ことである。
When producing BN by the CVD method, the important thing is that c-
Increasing the content of BN, increasing the production rate of BN, and making the raw material compounds non-toxic and easy to remove.

前記した従来法では最も問題になるのはBHの生成速度
が低いことである。その他毒性のある原料を用いている
もの、特殊な装置を用いるためにコストが高くなるもの
などがある。
The biggest problem with the conventional method described above is that the BH production rate is low. Others use toxic raw materials or require special equipment, resulting in high costs.

本発明の目的は特別な原料や装置を用いることなく、比
較的c−BN含有率の高いBNを高速度で得ることにあ
る。
An object of the present invention is to obtain BN with a relatively high c-BN content at high speed without using special raw materials or equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者はCVD法のBN製法として従来試みられなか
ったプラズマジェット法が前記目的に対して極めて有効
であることを発見した。プラズマジェットは通常DC(
直流)であるがAC(交流)も可能である。
The inventors of the present invention have discovered that the plasma jet method, which has not been tried before as a CVD method for producing BN, is extremely effective for the above purpose. Plasma jet is usually DC (
Direct current), but AC (alternating current) is also possible.

本発明で使用される原料化合物となるほう素、窒素源は
特に制限なく、BとNを含む化合物、例えば83N3H
6、ポロアミノポリマーやB含有化合物とN含有化合物
の混合物、例えばB2H6とNHHBOとNH3などを
用いることができる。またNHに代ってN2とN2の混
合ガスでもよい。これらの中では原料の導入やガス圧の
調整のし昌さなどから、気体化合物である8 2 H8
が好ましい。
The boron and nitrogen sources used as raw material compounds used in the present invention are not particularly limited, and compounds containing B and N, such as 83N3H
6. Polyamino polymers or mixtures of B-containing compounds and N-containing compounds, such as B2H6, NHHBO, and NH3, can be used. Further, a mixed gas of N2 and N2 may be used instead of NH. Among these, 8 2 H8 is a gaseous compound due to the ease of introducing raw materials and adjusting gas pressure.
is preferred.

プラズマジェットを発生させるにはこれらの原料化合物
の外、プラズマ発生を容易にするためにHe 、 A 
r 、H2I N 2ガスなどが混合される。
To generate a plasma jet, in addition to these raw material compounds, He and A are used to facilitate plasma generation.
r, H2IN2 gas, etc. are mixed.

その割合は一般的に混合ガス総量に対し、B源化合物と
窒素源化合物が1〜99容量%が適し、残部がH2、A
 、等になる。この場合の全ガス圧は0.5〜67kP
aが適当である。
In general, it is suitable that the proportion of B source compound and nitrogen source compound is 1 to 99% by volume with respect to the total amount of mixed gas, and the balance is H2 and A.
, etc. The total gas pressure in this case is 0.5 to 67kP
a is appropriate.

次に図面に基づいて具体的に本発明を説明する。Next, the present invention will be specifically explained based on the drawings.

図1は本発明を実施するための装置の1例で、1はセラ
ミック製管で内面に石英管2がはめ込まれている。3は
陰極でタングステンが好ましい。
FIG. 1 shows an example of a device for carrying out the present invention, in which 1 is a ceramic tube with a quartz tube 2 fitted inside. 3 is a cathode, preferably made of tungsten.

その他黒鉛、Mo、Tatども用いることができる。4
は陽極で同じくタングステンが好ましいが、その他黒鉛
、Mo、Taなども用いることができる。5は基体のi
Fiである基板で81 、 W、 Mo 。
Other materials such as graphite, Mo, and Tat can also be used. 4
Similarly, tungsten is preferable for the anode, but other materials such as graphite, Mo, and Ta can also be used. 5 is i of the base
81 on a substrate that is Fi, W, Mo.

Taなどの金属、SiC焼結体などのセラミ・ツク、超
硬合金チップ、その他サーメットなど殆んど制限なく使
用できる。その形状は板状、湾曲状など特に制限はない
。6は直流電源、8は原料ガスの導入口である。
Metals such as Ta, ceramics such as SiC sintered bodies, cemented carbide chips, and other cermets can be used without any restrictions. The shape is not particularly limited, such as a plate shape or a curved shape. 6 is a DC power supply, and 8 is an inlet for raw material gas.

電極3と4の間でアークが発生し、ガスがプラズマ化す
る。このときプラズマの温度が5000〜20000 
”Kにもなるので、ガスが急激に膨脂し、プラズマジェ
ット流7が形成される。電極4と基板5の距離は5〜5
0龍位が好ましい。基板温度は200〜700℃が適当
で、好ましくは500〜700℃である。必要ならばこ
れらの温度にするために基板に温度制御装置を設ける。
An arc is generated between electrodes 3 and 4, and the gas turns into plasma. At this time, the temperature of the plasma is 5,000 to 20,000.
``K, so the gas rapidly expands and a plasma jet flow 7 is formed.The distance between the electrode 4 and the substrate 5 is 5 to 5.
0 dragon rank is preferred. The substrate temperature is suitably 200 to 700°C, preferably 500 to 700°C. A temperature control device is provided on the substrate to achieve these temperatures if necessary.

本発明の方法で基板への堆積速度は1分間に厚さで平均
約100m、最大で300虜に達し、BNの膜が形成さ
れる。このBN膜巾のc−BN含有率は一般的には30
〜40重量%である。
In the method of the present invention, the deposition rate on the substrate reaches an average thickness of about 100 m per minute and a maximum of 300 m, and a BN film is formed. The c-BN content of this BN film width is generally 30
~40% by weight.

従来、公知のプラズマCVD法では原料の供給を多くす
るとc−BN含有率が下がり、優れたBH膜をつくるこ
とが困難であったが、本発明によるプラズマジェット法
では高速のジェット流が形成され、従って原料の供給速
度が大となるが、それにも拘らず、その理由は定かでは
ないがC−BNの含有率下がらないという意外な結果が
わかった。
Conventionally, in the known plasma CVD method, when the supply of raw materials was increased, the c-BN content decreased, making it difficult to create an excellent BH film, but in the plasma jet method of the present invention, a high-speed jet stream was formed. Therefore, although the feed rate of the raw material increases, the unexpected result was found that the C-BN content did not decrease, although the reason for this is not clear.

〔実 施 例〕〔Example〕

図1に装置を用い実験した。原料 ガスはB2H6(0
,7容量%)、NH(0,7容量%) 、N2(88,
8容量%)、Ar(30容量%)の混合ガスを用いた。
An experiment was conducted using the apparatus shown in Figure 1. The raw material gas is B2H6 (0
, 7% by volume), NH (0.7% by volume), N2 (88,
A mixed gas of 8% by volume) and Ar (30% by volume) was used.

A「はアークの安定のために用いるものである。A is used to stabilize the arc.

石英管2は内周の径3.9ca、長さ15(!01であ
る。混合ガスはガス導入口より13kPaで20I/分
を供給した。なお、図示してないが、図1の装置は13
kPaに減圧しであるケース内に収められている。
The quartz tube 2 has an inner diameter of 3.9 ca and a length of 15 (!01). The mixed gas was supplied from the gas inlet at 13 kPa and 20 I/min.Although not shown, the device in Fig. 1 13
It is housed in a case with a reduced pressure of kPa.

タングステン電極3.4間に直流電源6から電圧550
vを印加してアークを発生させた。出力は5.5kwで
ある。基板温度は約700℃とした。電極と基板間の距
離は約20m11mである。基板にはSiウェハーを用
いた。
Voltage 550 from DC power supply 6 between tungsten electrodes 3 and 4
v was applied to generate an arc. The output is 5.5kw. The substrate temperature was approximately 700°C. The distance between the electrode and the substrate is approximately 20m11m. A Si wafer was used as the substrate.

この条件で5分間実験したところ、基板5にBNが堆積
し、中心部が厚くなっていたが平均して約500tmの
膜となった。これを赤外分光により分析したところc−
BNとh−BN混在したものであることがわかり、c−
BHの含有率は30重量%であった。
When an experiment was conducted under these conditions for 5 minutes, BN was deposited on the substrate 5, and the film was about 500 tm thick on average, although it was thick at the center. When this was analyzed by infrared spectroscopy, c-
It turns out that it is a mixture of BN and h-BN, and c-
The BH content was 30% by weight.

〔効  果〕〔effect〕

本発明によれば従来法に比較して格段に早い速度でBN
膜が形成でき、しかもそのc−BN含有率も従来に較べ
て遜色ない。
According to the present invention, BN can be generated at a much faster speed than the conventional method.
A film can be formed, and its c-BN content is comparable to that of conventional methods.

c−BNは熱電導度が島いので、放熱基板として利用で
き、またc−BNは高硬度であり、これに潤滑性のh−
BNが混在しているので、基材に被覆して摺動部材とし
ても優れた効果を発揮する。
Since c-BN has a low thermal conductivity, it can be used as a heat dissipation substrate. Also, c-BN has high hardness and has lubricating properties.
Since BN is mixed therein, it exhibits an excellent effect when coated on a base material and used as a sliding member.

さらにステンレスやセラミック材に被覆して切削材とし
たり、或いは膜を粉砕し、c−BNを分離してc−BN
の粉粒体砥粒としての利用も可能である。
Furthermore, it can be coated on stainless steel or ceramic material to be used as a cutting material, or the film can be crushed to separate c-BN.
It is also possible to use it as a powder abrasive grain.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明方法を実施するための装置の1例を示す概
略断面図である。 3.4・・・電極  5・・・基板 7・・・プラズマジェット流 特許出願人   −ノ瀬  幸  雄
FIG. 1 is a schematic cross-sectional view showing one example of an apparatus for carrying out the method of the present invention. 3.4... Electrode 5... Substrate 7... Plasma jet flow patent applicant - Yukio Nose

Claims (2)

【特許請求の範囲】[Claims] (1)ほう素源、窒素源からCVD法により基体上に窒
化ほう素を製造する方法において、CVD法としてプラ
ズマジェット法を用いることを特徴とする方法。
(1) A method for producing boron nitride on a substrate from a boron source and a nitrogen source by a CVD method, characterized in that a plasma jet method is used as the CVD method.
(2)ほう素源、窒素源としてB_2H_6及びNH_
3を用いる請求項1の方法。
(2) B_2H_6 and NH_ as boron source and nitrogen source
3. The method of claim 1, wherein:
JP7324289A 1989-03-24 1989-03-24 Production of boron nitride Pending JPH02250969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324289A JPH02250969A (en) 1989-03-24 1989-03-24 Production of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324289A JPH02250969A (en) 1989-03-24 1989-03-24 Production of boron nitride

Publications (1)

Publication Number Publication Date
JPH02250969A true JPH02250969A (en) 1990-10-08

Family

ID=13512517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324289A Pending JPH02250969A (en) 1989-03-24 1989-03-24 Production of boron nitride

Country Status (1)

Country Link
JP (1) JPH02250969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277767A (en) * 1987-05-11 1988-11-15 Fujitsu Ltd Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS6462471A (en) * 1987-09-03 1989-03-08 Fujitsu Ltd Vapor phase synthesis method for high pressure-phase boron nitride
JPS6462470A (en) * 1987-09-02 1989-03-08 Fujitsu Ltd Vapor synthesis method for high-pressure phase boron nitride
JPH01201481A (en) * 1987-10-13 1989-08-14 Fujitsu Ltd Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277767A (en) * 1987-05-11 1988-11-15 Fujitsu Ltd Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS6462470A (en) * 1987-09-02 1989-03-08 Fujitsu Ltd Vapor synthesis method for high-pressure phase boron nitride
JPS6462471A (en) * 1987-09-03 1989-03-08 Fujitsu Ltd Vapor phase synthesis method for high pressure-phase boron nitride
JPH01201481A (en) * 1987-10-13 1989-08-14 Fujitsu Ltd Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film

Similar Documents

Publication Publication Date Title
US4279689A (en) Process for producing super hard-highly pure silicon nitrides
JPH01282999A (en) Acoustic diaphragm and its manufacture
US7645513B2 (en) Cubic boron nitride/diamond composite layers
JPH01164795A (en) Method for synthesizing diamond particles
Gitzhofer Induction plasma synthesis of ultrafine SiC
JPH02250969A (en) Production of boron nitride
WO1990005701A1 (en) Diamond production
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH02254168A (en) Production of boron nitride
JP2536492B2 (en) Tool material
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6411681B2 (en)
JP4032178B2 (en) Method for manufacturing silicon nitride sprayed film
JPH0438685B2 (en)
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH03267361A (en) Hard film and its production
JPS6369973A (en) Production of cubic boron nitride film
JP3980138B2 (en) Diamond manufacturing method
JPS61174378A (en) Production of rigid material coated with boron nitride
KR100466406B1 (en) Diamond coated tool for precision machining and fabrication technology thereof
JPS63140084A (en) Hard carbon coated parts
JPH03131583A (en) Production of sintered material
JPH01305896A (en) Method of vapor phase synthesis of diamond
JPH02156087A (en) Formation of diamond film
JPS6048447B2 (en) Ultra-hard, high-purity fine-grained polycrystalline silicon nitride