JPH02253159A - Performance diagnosing device for water treating device - Google Patents

Performance diagnosing device for water treating device

Info

Publication number
JPH02253159A
JPH02253159A JP7596989A JP7596989A JPH02253159A JP H02253159 A JPH02253159 A JP H02253159A JP 7596989 A JP7596989 A JP 7596989A JP 7596989 A JP7596989 A JP 7596989A JP H02253159 A JPH02253159 A JP H02253159A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange medium
water treatment
performance diagnostic
diagnostic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7596989A
Other languages
Japanese (ja)
Other versions
JPH0743365B2 (en
Inventor
Akira Ichimura
彰 市村
Sadakuni Hirano
平野 貞邦
Katsumi Osumi
大角 克巳
Fumio Mizuniwa
水庭 文雄
Atsushi Konase
敦 木名瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Kogyo Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Kogyo Ltd, Hitachi Ltd filed Critical Hitachi Kyowa Kogyo Ltd
Priority to JP1075969A priority Critical patent/JPH0743365B2/en
Publication of JPH02253159A publication Critical patent/JPH02253159A/en
Publication of JPH0743365B2 publication Critical patent/JPH0743365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To optimize exchange frequencies by collecting plural test samples from an ion exchange medium and analyzing an ion exchange capacity in accordance with the change in the electrical conductivity between the inlet and outlet of the samples. CONSTITUTION:A sodium chloride soln. is put at 1 to 1,000ppm into a sample liquid vessel 1 and while the flow rate thereof is adjusted by a flow rate regulating valve 4 and a flow meter 5, the sample liquid is sent through a connecting piping 2 by a liquid feed pump 3 into an ion exchange medium vessel 7. The electrical conductivity and temp. in the inlet and outlet of the vessel 7 are measured by an electrical conductivity meter and thermometer 6 with the height of the ion exchange medium layer in the vessel 7 as the unit treatment height of the exchange medium and are inputted to a data processor 8 which measures the ion exchange capacity of the sample ion exchange medium at an arbitrary temp. and flow rate. The other necessary data are inputted to an external data input/output device 9 which calculates the quality of the treated water. The frequencies for the regeneration or exchange of the ion exchange medium are optimized in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電等の汽力発電プラントの復水浄化
系に用いられるイオン交換型水処理装置に係り、特に処
理水質の把握と、再生または交換時期め把握に好適な、
水処理装置性能診断装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ion exchange type water treatment device used in a condensate purification system of a steam power plant such as a nuclear power generation plant. Or, it is suitable for knowing when to replace it.
The present invention relates to a water treatment equipment performance diagnosis device.

〔従来の技術〕[Conventional technology]

従来、イオン交換媒体として一般化しているイオン交換
樹脂を用いた水処理装置の処理能力を測定する方法とし
て、実機を模擬した樹脂充填高さを有するカラムに、適
当な濃度のイオン負荷を連続的に与え、出口水質を導電
率でモニターし、処理水質が悪化するまでの時間と、そ
れまでの積算イオン負荷から処理能力を求める方法が取
られて来た。しかし、単位量当りの性能から、全体の処
理能力を推定する公知例は、見あたらない。
Conventionally, as a method to measure the processing capacity of water treatment equipment using ion exchange resin, which is commonly used as an ion exchange medium, ions at an appropriate concentration are continuously loaded into a column with a resin packing height that simulates the actual equipment. A method has been adopted in which the outlet water quality is monitored by electrical conductivity, and the treatment capacity is determined from the time until the treated water quality deteriorates and the cumulative ion load up to that point. However, there is no known example of estimating the overall processing capacity from the performance per unit amount.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、過渡的な濃度変化に対応できる等の性
能評価に対する配慮がされておらず、したがって処理能
力を使い切った場合における出口水の性状について予測
できないという問題かあった。従来技術においては、設
計負荷量に対し、充分に余裕を持って再生処理するとい
う対策を取っていたため、特に過渡的な性能を把握する
実運用上の必要性は生じなかったが、反面必要以上に再
生を繰り返すため、廃棄物処理費、再生薬品購入費、再
生操作のための人件費等、経済的な面で負担が大きくな
っていた。
The above-mentioned conventional technology does not give consideration to performance evaluation such as being able to respond to transient concentration changes, and therefore has the problem that it is impossible to predict the properties of the outlet water when the processing capacity is used up. In the conventional technology, the measure was taken to perform regeneration processing with sufficient margin for the design load amount, so there was no need in actual operation to understand the transient performance in particular. Because regeneration is repeated over and over again, there is a heavy economic burden, including waste treatment costs, regeneration chemical purchase costs, and labor costs for regeneration operations.

本発明の目的は、適切な時期にイオン交換媒体の再生ま
たは交換実施の判断が可能となるような、水処理装置の
性能診断装置を提供することにより、水処理装置の性能
評価の高度化と、運転コストの低減を図ることにある。
An object of the present invention is to improve the performance evaluation of water treatment equipment by providing a performance diagnostic device for water treatment equipment that makes it possible to determine whether to regenerate or replace the ion exchange medium at an appropriate time. The aim is to reduce operating costs.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、イオン交換媒体
を用いた水処理装置の性能診断装置において、前記イオ
ン交換媒体から複数の試料を分取し、該イオン交換媒体
試料の入口と出口の導電率の変化に基づいて、該試料の
イオン交換能力を同時に分析して前記イオン交換媒体の
イオン交換能力を測定する自動分析手段と、該測定デー
タに基づいて水処理性能を解析するデータ処理手段とを
具備したことを特徴とするものである。
In order to achieve the above object, the present invention provides a performance diagnostic device for water treatment equipment using an ion exchange medium, in which a plurality of samples are separated from the ion exchange medium, and an inlet and an outlet of the ion exchange medium sample are separated. automatic analysis means for simultaneously analyzing the ion exchange capacity of the sample based on changes in electrical conductivity to measure the ion exchange capacity of the ion exchange medium; and data processing means for analyzing water treatment performance based on the measurement data. It is characterized by having the following.

そして、その自動分析手段は、塩化ナトワウ11濃度1
ppmないし11000ppの範囲の適当な濃度のイオ
ン負荷を与えることにより、前記イオン交換媒体のイオ
ン濃度変化に基づいて、該媒体のイオン交換能力を測定
するものであり、供試塩化ナトリウム溶液の温度を任意
に設定保持し、該溶液の流量を任意に設定可能なもので
ある。
And, the automatic analysis means is
By applying an ion load with an appropriate concentration in the range of ppm to 11,000 ppm, the ion exchange capacity of the ion exchange medium is measured based on the change in the ion concentration of the ion exchange medium, and the temperature of the sodium chloride solution under test is It is possible to arbitrarily set and maintain the flow rate of the solution.

また前記データ処理手段は、前記自動分析手段による測
定データと、前記水処理装置の使用条件とに基づいて、
該水処理装置の処理水質及び運転可能時間を予測するも
のであり、加えて、該水処理装置の過渡的なイオン負荷
上昇に対する処理水質及び運転可能時間を予測するもの
である。
Further, the data processing means, based on the measurement data by the automatic analysis means and the usage conditions of the water treatment device,
This method predicts the quality of treated water and possible operating time of the water treatment device, and also predicts the quality of treated water and possible operating time of the water treatment device in response to a transient increase in ion load.

〔作用〕[Effect]

上記構成によれば、使用中のイオン交換媒体の水処理性
能を短時間に診断可能となり、また複数のイオン交換媒
体を同時に診断することができる。
According to the above configuration, the water treatment performance of the ion exchange medium in use can be diagnosed in a short time, and a plurality of ion exchange media can be diagnosed simultaneously.

塩化ナトリウムによるイオン負荷を与えることによって
、導電率変化あるいはイオン濃度変化からイオン交換能
力を自動分析することができ、供試溶液の温度、流量を
任意に設定できるのできわめて容易に分析することがで
きる。
By applying an ion load with sodium chloride, the ion exchange capacity can be automatically analyzed from changes in conductivity or ion concentration, and the temperature and flow rate of the sample solution can be set arbitrarily, making analysis extremely easy. .

これに実機の使用条件のデータを加えることによって、
特に過渡的な、急激なイオン濃度上昇の変化に対応して
処理水質及び運転可能時間を予測できるので、実機に使
用中のイオン交換媒体の再生又は交換頻度を最適化する
ことができる。
By adding data on the usage conditions of the actual machine to this,
In particular, since the quality of treated water and possible operating time can be predicted in response to changes in transient and rapid increases in ion concentration, it is possible to optimize the frequency of regeneration or replacement of ion exchange media used in actual equipment.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。本装
置は、供試液容器1、接続配管2、送液ポンプ3、流量
調整弁4、流量計5、導電率計温度計6、供試イオン交
換媒体容器7、データ処理装置8、及び外部データ入力
装置9からなる。
An embodiment of the present invention will be described below with reference to FIG. This device includes a sample liquid container 1, connection piping 2, liquid sending pump 3, flow rate adjustment valve 4, flow meter 5, conductivity meter thermometer 6, sample ion exchange medium container 7, data processing device 8, and external data. It consists of an input device 9.

供試液容器1に1ないし11000ppの塩化ナトリウ
ム溶液を入れ、接続配管2を通して送液ポンプ3により
、流量調整弁4と流量計5で流量を調整しながら、供試
イオン交換媒体容器7に供試液を送る。
A sodium chloride solution of 1 to 11,000 pp is poured into the test liquid container 1, and the test liquid is poured into the test ion exchange medium container 7 through the connecting pipe 2 using the liquid sending pump 3 while adjusting the flow rate with the flow rate adjustment valve 4 and the flow meter 5. send.

供試イオン交換媒体容器7には、測定しようとするイオ
ン交換媒体を入れておき、その時のイオン交換媒体層高
さを供試イオン交換媒体の単位処理高さとし、その時の
供試イオン交換媒体容器7の入口と出口の導電率及び温
度を導電率計温度計6により測定し、そのデータをデー
タ処理装置7に入力することにより、任意の温度及び流
速における供試イオン交換媒体のイオン交換能力を測定
し、その他必要データを外部データ入出力装置9に入力
することにより、任意の規模の水処理装置の処理水質を
算出する。
The ion exchange medium to be measured is placed in the test ion exchange medium container 7, and the height of the ion exchange medium layer at that time is taken as the unit treatment height of the test ion exchange medium. By measuring the conductivity and temperature at the inlet and outlet of 7 with a conductivity meter thermometer 6 and inputting the data into the data processing device 7, the ion exchange capacity of the test ion exchange medium at any temperature and flow rate can be determined. By measuring and inputting other necessary data to the external data input/output device 9, the treated water quality of a water treatment device of any size is calculated.

ここで、本実施例によるイオン交換媒体のイオン除去に
関する自動分析及びデータ処理の作用原理について詳細
に説明する。
Here, the principle of operation of automatic analysis and data processing regarding ion removal from an ion exchange medium according to this embodiment will be explained in detail.

る。Ru.

C−Co ・ (1−a)  Z −・ (1)但し、
C:イオン交換媒体層出口濃度(単位任意)co=イオ
ン交換媒体層入口濃度(単位任意)したがって、イオン
交換媒体の一部を採取し単位処理高さ当りの脱塩率を求
める装置と、このブタを処理する装置を組み合わせるこ
とにより、任意の負荷条件における処理水質を把握する
ことが可能となる。
C-Co ・ (1-a) Z − ・ (1) However,
C: Concentration at the outlet of the ion exchange medium layer (arbitrary unit) co = Concentration at the inlet of the ion exchange medium layer (arbitrary unit) Therefore, a device for collecting a part of the ion exchange medium and determining the desalination rate per unit treatment height, and this By combining equipment that processes pigs, it becomes possible to understand the quality of treated water under any load conditions.

また処理可能時間の算出に必要となるイオン交換媒体残
留イオン交換量は、上記のCO及びC=Coに達するま
での通水量とその間の平均脱塩率により下式により求め
ることができる。
Further, the amount of ion exchange remaining in the ion exchange medium, which is necessary for calculating the processable time, can be determined by the following formula based on the amount of water passed until reaching CO and C=Co and the average desalination rate during that time.

Rh=Co ・a ・f/V  ・・・ (2)但し、
Rh:イオン交換媒体残留イオン交換容量。
Rh=Co・a・f/V... (2) However,
Rh: Residual ion exchange capacity of ion exchange medium.

α:C=Coに達するまでの平均脱塩率。α: Average desalination rate until C=Co is reached.

f : C=Goに達するまでの積算通水量。f: Cumulative amount of water flow until reaching C=Go.

V:供試イオン交換媒体量。V: Amount of ion exchange medium to be tested.

この残留イオン交換量と、(1)式におけるCを、水処
理装置の入口における任意の条件における必要処理水質
と規定して算出される必要処理段数と実処理段数の差か
ら、その条件における動的なイオン交換容量(通常、貫
流イオン交換容量と呼ばれる)が求まる。
Based on the difference between the required number of treatment stages and the actual number of treatment stages calculated by defining this residual ion exchange amount and C in equation (1) as the required treatment water quality under arbitrary conditions at the inlet of the water treatment equipment, The ion exchange capacity (usually called the flow-through ion exchange capacity) is determined.

この貫流イオン交換容量と、その算出条件である入口水
質条件から、その条件における、その水処理装置の運転
可能時間を算出できる。
From this once-through ion exchange capacity and the inlet water quality conditions that are the calculation conditions, it is possible to calculate the operating time of the water treatment device under those conditions.

イオン交換媒体の単位処理高さ当りの脱塩率は、供試イ
オン交換媒体層入口出口の目的イオン濃度変化率を、そ
の導電率変化率から下式によって求めることができる。
The desalination rate per unit treatment height of the ion exchange medium can be determined from the rate of change in target ion concentration at the inlet and outlet of the ion exchange medium layer under test using the following formula from the rate of change in conductivity.

但し、S:イオン交換媒体層出口導電率(μS/σ)S
o:イオン交換媒体層入口導電率(μS / an )
St:イオン交換媒体試料が陰イオン交換媒体であると
きは、負荷した陰イオン が全てOHイオンに置きかわった場合 の理論導電率。陽イオン交換媒体であ るときは、全てHイオンに置きかねっ た時の理論導電率。
However, S: ion exchange medium layer outlet conductivity (μS/σ) S
o: Ion exchange medium layer inlet conductivity (μS/an)
St: When the ion exchange medium sample is an anion exchange medium, the theoretical conductivity when all the loaded anions are replaced by OH ions. When using a cation exchange medium, it is the theoretical conductivity when all H ions are removed.

尚、上記αは、イオン交換媒体のイオン交換速度により
決定されるため,イオン交換媒体試料に負荷する供試液
の通水流速及び温度に影響され、したがって、実際の装
置に合わせて測定する必要があるが、近似的には、第2
図及び第3図に示すような、実験的に求めたイオン交換
媒体の脱塩率の流速依存性のデータ、及び第4図と第5
図に示すような温度依存性データによって補正し、任意
の通水流速及び温度における値を得ることができる。
Note that the above α is determined by the ion exchange rate of the ion exchange medium, so it is affected by the water flow rate and temperature of the test liquid loaded onto the ion exchange medium sample, and therefore it is necessary to measure it in accordance with the actual equipment. However, approximately, the second
The data on the flow rate dependence of the desalination rate of the ion exchange medium determined experimentally as shown in Figures 4 and 5, as shown in Figures 4 and 5.
By correcting the temperature dependence data as shown in the figure, it is possible to obtain values at any water flow rate and temperature.

(3)式において、Stは、下記イオン交換反応により
、供試液中の中性塩が酸、又はアルカリイオン又は陰イ
オンと、Hイオン、OHイオンの当量導電率の差により
、入口導電率より高くなる。
In Equation (3), St is determined by the following ion exchange reaction, whereby the neutral salt in the test solution becomes acid or alkali ion or anion, and due to the difference in equivalent conductivity between H ion and OH ion, St is lower than the inlet conductivity. It gets expensive.

また(2)式中のSは、同様に一部が酸、又はアルカリ
に変化し,入口導電率より高くなった結果である。
Further, S in formula (2) is partially converted to acid or alkali, resulting in higher conductivity than the inlet conductivity.

(陰イオン交換媒体の場合の反応) +     − R − O H + N a  C l −) R −
 C l +N a  O HR−OH:OHイオンを
有する陰イオン交換媒体。
(Reaction in case of anion exchange medium) + − R − O H + Na Cl −) R −
C l +N a O HR-OH: Anion exchange medium with OH ions.

(陽イオン交換媒体の場合の反応) R−H:Hイオンを有する陽イオン交換媒体。(Reaction in case of cation exchange medium) RH: Cation exchange medium with H ions.

つまり(3)式中のStは、Sの極限値に等しくなるこ
とから、5−8oと5t−8oの比は、イオン交換媒体
試料の反応効率となり、前出の脱塩率の値と等しくなる
In other words, since St in equation (3) is equal to the limit value of S, the ratio of 5-8o and 5t-8o is the reaction efficiency of the ion exchange medium sample, which is equal to the value of the desalination rate mentioned above. Become.

また、このイオン交換媒体の静的な交換容量の値は、5
=Soに達するまでの負荷量から算出することができる
In addition, the value of static exchange capacity of this ion exchange medium is 5
= So can be calculated from the load amount until reaching So.

以上により求めた数値から、以下の手法によって各入口
水質条件における水処理装置の運転可能時間を求めるこ
とができる。
From the values obtained above, the possible operating time of the water treatment device under each inlet water quality condition can be determined by the following method.

前出(1)式より、 C=Co (1−a> ”   ・・(1)C/Co=
 (1−a)”  −・−(4)ここでCを、水処理装
置の必要処理水質(濃度)値として与えれば、(4)式
より、必要処理段数は Z=Qn  (C/Co)/Q n  (1−a>−(
5)となる。
From the above formula (1), C=Co (1-a> ”...(1) C/Co=
(1-a)" -・-(4) Here, if C is given as the required treatment water quality (concentration) value of the water treatment equipment, then from equation (4), the required number of treatment stages is Z = Qn (C/Co) /Q n (1-a>-(
5).

したがって、水処理装置の設計条件として与えられる全
処理段数をHとすれば、H−Zは、その入口水質条件に
おける余裕量となる。この余裕分の交換容量を全て消費
した時点で、この水処理装置の出口水質は、必要処理水
質に達することになる。この余裕分の容量は、イオン交
換媒体の静的Rh:イオン交換媒体の静的な交換容量V
 :水処理装置のイオン交換媒体量 となる。
Therefore, if the total number of treatment stages given as a design condition of the water treatment device is H, then H-Z is the margin amount under the inlet water quality conditions. When all of this extra exchange capacity is consumed, the outlet water quality of this water treatment device will reach the required treatment water quality. The capacity of this margin is static Rh of the ion exchange medium: Static exchange capacity V of the ion exchange medium
: The amount of ion exchange medium in the water treatment equipment.

したがって、このQの容量と、水処理装置入口濃度Co
と単位時間当りの処理水量(設計値)fから、水処理装
置の連続運転可能時間Tを下式により求めることができ
る。
Therefore, the capacity of this Q and the water treatment equipment inlet concentration Co
From the amount of water to be treated per unit time (design value) f, the continuous operation time T of the water treatment device can be determined by the following formula.

T=Q/Co−f・・ (7) 以上の(4)〜(7)式による解析において、Coを任
意の範囲で繰り返すことにより、入口水質条件毎の水処
理装置の連続運転可能時間を求めることかできる。
T=Q/Co-f... (7) In the analysis using equations (4) to (7) above, by repeating Co in an arbitrary range, the continuous operation time of the water treatment equipment for each inlet water quality condition can be calculated. I can do what I want.

これを沸騰水型原子カプラント(以下BWRという)の
重要水処理装置である復水脱塩装置(以下CDという)
に応用すると、COはCD入口水質、Cは出口水質と考
えられる。BWRの運転においては、原子炉水の水質を
基準値内に保つことが必要であるが、原子炉水の水質は
、プラントの運転状態と上記Cの値で決定される。した
がって、原子炉水水質を基準値に保つために必要なCD
出l 但し CR:原子炉水水質基準 Fc:原子炉冷却材浄化系流量 FL:原子炉給水流量 DF:原子炉冷却材浄化系の除去係数 BWRの場合、CD出口水質をC以下に保つことが水質
面における運転可能条件であることから、(8)式によ
り求めたCと、(4)〜(7)式の解析を実施すること
により、任意の条件におけるBWRプラントの連続運転
可能時間を求めることができる。
This is called a condensate desalination device (hereinafter referred to as CD), which is an important water treatment equipment for boiling water atomic couplant (hereinafter referred to as BWR).
When applied to , CO is considered to be the CD inlet water quality and C is considered to be the outlet water quality. In the operation of a BWR, it is necessary to maintain the quality of reactor water within a standard value, and the quality of reactor water is determined by the operating state of the plant and the value of C above. Therefore, the CD required to maintain the reactor water quality at the standard value is
However, CR: Reactor water quality standard Fc: Reactor coolant purification system flow rate FL: Reactor feed water flow rate DF: Removal coefficient of reactor coolant purification system In the case of BWR, it is possible to maintain the CD outlet water quality below C. Since this is an operable condition in terms of water quality, the continuous operation time of the BWR plant under arbitrary conditions is determined by analyzing C obtained from equation (8) and equations (4) to (7). be able to.

このように本実施例によれば、従来実施していたような
、長時間の試験を必要とせず、しかも、任意の条件にお
ける水処理装置の処理性能及び連続運転可能時間が迅速
に求められる効果がある。
As described above, according to this embodiment, there is no need for long-time tests as conventionally conducted, and the treatment performance and continuous operation time of the water treatment equipment under arbitrary conditions can be quickly determined. There is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の方式では容易に求めることので
きなかったあらゆる運転条件下における水処理装置の運
転性能を、短時間に予測することが可能となるため、水
処理装置に使用しているイオン交換媒体の再生又は交換
の頻度を最適化することができるので、その水処理装置
の運転コストを最低限に抑えることができ、また二次廃
棄物の発生量も最少にする効果がある。
According to the present invention, it is possible to predict in a short time the operational performance of water treatment equipment under all operating conditions, which could not be easily determined using conventional methods. It is possible to optimize the frequency of regeneration or replacement of the ion exchange media used in water treatment systems, thereby minimizing the operating costs of the water treatment equipment and also minimizing the amount of secondary waste generated. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図及び第3図
は実験的に求めたデータ解析時に使用するイオン交換媒
体の脱塩率の流速依存性のデータ第4図及び第5図はそ
の温度依存性のデータの測定例である。 1・・・任意の温度に設定可能な温度調整機能を有する
供試液容器。 6・・・イオン交換媒体試料の性能を測定するために設
けた導電率計及び温度計。 7・・イオン交換媒体試料容器。 8・・・データ処理機能を有するデータ処理装置79・
・・データの入出力を行なう外部データ入出力装置。
Figure 1 is a block diagram of an embodiment of the present invention, and Figures 2 and 3 are data showing the flow rate dependence of the desalination rate of the ion exchange medium used for data analysis obtained experimentally. Figure 5 shows an example of measurement of temperature-dependent data. 1...A sample liquid container with a temperature adjustment function that can be set to any temperature. 6... Conductivity meter and thermometer provided to measure the performance of the ion exchange medium sample. 7. Ion exchange medium sample container. 8... Data processing device 79 having a data processing function.
...External data input/output device that inputs and outputs data.

Claims (1)

【特許請求の範囲】 1、イオン交換媒体を用いた水処理装置の性能診断装置
において、前記イオン交換媒体から複数の試料を分取し
、該イオン交換媒体試料の入口と出口の導電率の変化に
基づいて、該試料のイオン交換能力を同時に分析して前
記イオン交換媒体のイオン交換能力を測定する自動分析
手段と、該測定データに基づいて水処理性能を解析する
データ処理手段とを具備したことを特徴とする水処理装
置の性能診断装置。 2、請求項1記載の性能診断装置において、前記自動分
析手段は、塩化ナトリウム濃度1ppmないし1000
ppmの範囲の適当な濃度のイオン負荷を与えることに
より、前記イオン交換媒体試料のイオン濃度変化に基づ
いて、該媒体のイオン交換能力を測定するものである水
処理装置の性能診断装置。 3、請求項1又は2記載の性能診断装置において、前記
自動分析手段は、供試塩化ナトリウム溶液の温度を任意
に設定保持し、該溶液の流量を任意に設定可能なもので
ある水処理装置の性能診断装置。 4、請求項1ないし3のうちいずれかに記載の性能診断
装置において、前記データ処理手段は、前記自動分析手
段による測定データと、前記水処理装置の使用条件とに
基づいて、該水処理装置の処理水質及び運転可能時間を
予測するものである水処理装置の性能診断装置。 5、請求項4記載の性能診断装置において、前記データ
処理手段は、前記自動分析手段による測定データと、前
記水処理装置の使用条件とに基づいて、該水処理装置の
過渡的なイオン負荷上昇に対する処理水質及び運転可能
時間を予測するものである水処理装置の性能診断装置。
[Claims] 1. In a performance diagnostic device for a water treatment device using an ion exchange medium, a plurality of samples are separated from the ion exchange medium, and changes in electrical conductivity at the inlet and outlet of the ion exchange medium samples are performed. , an automatic analysis means for simultaneously analyzing the ion exchange capacity of the sample and measuring the ion exchange capacity of the ion exchange medium based on the measurement data, and a data processing means for analyzing the water treatment performance based on the measurement data. A performance diagnostic device for water treatment equipment, characterized by: 2. The performance diagnostic device according to claim 1, wherein the automatic analysis means has a sodium chloride concentration of 1 ppm to 1000 ppm.
A performance diagnostic device for water treatment equipment, which measures the ion exchange capacity of the ion exchange medium sample based on the change in ion concentration of the ion exchange medium sample by applying an ion load of an appropriate concentration in the range of ppm. 3. The performance diagnostic device according to claim 1 or 2, wherein the automatic analysis means is capable of arbitrarily setting and maintaining the temperature of the sample sodium chloride solution and arbitrarily setting the flow rate of the solution. performance diagnostic equipment. 4. The performance diagnostic device according to any one of claims 1 to 3, wherein the data processing means analyzes the water treatment device based on the measurement data by the automatic analysis device and the usage conditions of the water treatment device. A performance diagnostic device for water treatment equipment that predicts the quality of treated water and operating time. 5. The performance diagnostic device according to claim 4, wherein the data processing means detects a transient increase in ion load of the water treatment device based on the measurement data by the automatic analysis means and the usage conditions of the water treatment device. A performance diagnostic device for water treatment equipment that predicts the quality of treated water and possible operating time.
JP1075969A 1989-03-28 1989-03-28 Water treatment equipment performance diagnostic equipment Expired - Fee Related JPH0743365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075969A JPH0743365B2 (en) 1989-03-28 1989-03-28 Water treatment equipment performance diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075969A JPH0743365B2 (en) 1989-03-28 1989-03-28 Water treatment equipment performance diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH02253159A true JPH02253159A (en) 1990-10-11
JPH0743365B2 JPH0743365B2 (en) 1995-05-15

Family

ID=13591568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075969A Expired - Fee Related JPH0743365B2 (en) 1989-03-28 1989-03-28 Water treatment equipment performance diagnostic equipment

Country Status (1)

Country Link
JP (1) JPH0743365B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212612A (en) * 2010-03-31 2011-10-27 Miura Co Ltd Treated water production system
JP2015013276A (en) * 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
CN104445517A (en) * 2014-11-20 2015-03-25 许天浩 Intelligent online optimization-protection water treatment system
WO2017218639A1 (en) * 2016-06-16 2017-12-21 Kurion, Inc. System and method for controlling performance of aqueous hazardous waste capture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327450B2 (en) * 2021-08-31 2023-08-16 栗田工業株式会社 How to operate an ion exchange device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162749A (en) * 1985-01-14 1986-07-23 Japan Organo Co Ltd Performance tester for ion exchange resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162749A (en) * 1985-01-14 1986-07-23 Japan Organo Co Ltd Performance tester for ion exchange resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212612A (en) * 2010-03-31 2011-10-27 Miura Co Ltd Treated water production system
JP2015013276A (en) * 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
CN104445517A (en) * 2014-11-20 2015-03-25 许天浩 Intelligent online optimization-protection water treatment system
WO2017218639A1 (en) * 2016-06-16 2017-12-21 Kurion, Inc. System and method for controlling performance of aqueous hazardous waste capture
US20170362097A1 (en) * 2016-06-16 2017-12-21 Kurion, Inc. System and method for controlling performance of aqueous hazardous waste capture

Also Published As

Publication number Publication date
JPH0743365B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
EP0496333B1 (en) Nuclear plant diagnosis apparatus and method
CN104801096B (en) Intelligent pre-filter online monitoring and diagnosing device and method
US5788828A (en) Apparatus for detecting anions in water
JPH02253159A (en) Performance diagnosing device for water treating device
JP6886563B2 (en) How to evaluate heat exchanger fouling
JP2818375B2 (en) Radioactive waste liquid treatment equipment
RU2626297C1 (en) Device for determination of components concentration of strong electrolytes mixture
US5132075A (en) Method and apparatus for water chemistry diagnosis of atomic power plant
JPS61162749A (en) Performance tester for ion exchange resin
WO2022074820A1 (en) Analysis system and management system, analysis method, and analysis program
JP3226971B2 (en) Water sampling and regeneration cycle controller for ion exchange equipment
JPH01277748A (en) Water quality monitor method in steam power plant
CN111536436B (en) Method and system for calibrating propagation attenuation coefficient of pressure pipeline leakage acoustic emission signal
Yegoshina et al. Estimation of Hydrocarbonates’ Effect on Ammonia Concentration and pH in Conditions of Feed-Water Quality Deterioration
JPH0299848A (en) Continuous analysis method and apparatus for ion component
JPH0452432B2 (en)
JP3032106B2 (en) Plant equipment health monitoring and diagnosis method
JPS62102886A (en) Device for monitoring performance of ion-exchange resin tower
JPS6148679B2 (en)
JPH06180269A (en) Pump loop diagnostic device
JP3400518B2 (en) Water quality control method for boiling water nuclear power plant
JPS62165146A (en) Apparatus for monitoring quantity of corrosion oxide film
Egoshina et al. Methods for Diagnosing and Predicting the Behavior of Impurities over the Power Unit Path in the Cycle Chemistry-Monitoring Systems at Thermal Power Plants
JPH06148110A (en) Method and device for water diagnosis
US3052839A (en) Conductivity cell tester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees