JP7327450B2 - How to operate an ion exchange device - Google Patents

How to operate an ion exchange device Download PDF

Info

Publication number
JP7327450B2
JP7327450B2 JP2021141057A JP2021141057A JP7327450B2 JP 7327450 B2 JP7327450 B2 JP 7327450B2 JP 2021141057 A JP2021141057 A JP 2021141057A JP 2021141057 A JP2021141057 A JP 2021141057A JP 7327450 B2 JP7327450 B2 JP 7327450B2
Authority
JP
Japan
Prior art keywords
water
ion exchange
ion
amount
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021141057A
Other languages
Japanese (ja)
Other versions
JP2023034710A (en
Inventor
正剛 奥村
寛子 上田
みどり 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2021141057A priority Critical patent/JP7327450B2/en
Priority to PCT/JP2022/012966 priority patent/WO2023032315A1/en
Priority to TW111124660A priority patent/TW202310926A/en
Publication of JP2023034710A publication Critical patent/JP2023034710A/en
Application granted granted Critical
Publication of JP7327450B2 publication Critical patent/JP7327450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/80Automatic regeneration
    • B01J49/85Controlling or regulating devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、イオン交換装置の運転方法に関する。 The present invention relates to a method of operating an ion exchange apparatus.

液晶や半導体等の電子産業分野では、電子部品の洗浄に用いる純水製造装置が大規模化している。そのような純水製造装置には、イオン交換樹脂等のイオン交換体を備えたイオン交換装置が複数台設けられている。再生型のイオン交換装置の場合は、一定の再生頻度でイオン交換樹脂の再生スケジュールが組まれる。また、非再生型のイオン交換装置の場合は、一定の交換頻度でイオン交換樹脂の交換スケジュールが組まれる。 In the field of electronic industries such as liquid crystals and semiconductors, the scale of pure water production equipment used for cleaning electronic parts is increasing. A plurality of ion exchangers having ion exchangers such as ion exchange resins are provided in such a pure water production apparatus. In the case of a regenerative ion exchange device, a regeneration schedule for the ion exchange resin is established at a constant regeneration frequency. Further, in the case of a non-regenerative ion exchange device, an ion exchange resin exchange schedule is established at a constant exchange frequency.

純水製造装置に備えられた再生型のイオン交換装置において、通水工程と再生工程を交互に繰り返す運転では、通水開始から樹脂再生に移行するまでの間に採水できる量(採水可能量(m/サイクル))を予め制御値として設定すると共に、製造される純水の水質の許容上限値(mS/m等)を予め制御値として設定しておき、設定した採水可能量(m/サイクル)、または処理水である純水の導電率等の水質の許容上限に達したタイミングで、通水工程から再生工程に移行するように再生運転を行っている。 In the regenerative ion exchange device installed in the water purifier, the amount of water that can be sampled from the start of water flow to the resin regeneration (water sampleable quantity (m 3 /cycle)) is set in advance as a control value, and the allowable upper limit value (mS/m, etc.) of the water quality of the pure water to be produced is set in advance as a control value, and the set possible water intake amount (m 3 /cycle), or at the timing when the allowable upper limit of the water quality such as the conductivity of the pure water, which is the treated water, is reached, the regeneration operation is performed so as to shift from the water flow process to the regeneration process.

設定する採水可能量は、被処理水のイオン濃度の変動幅の最大のときを想定した条件で、装置設計時に設定される。そして設定された採水可能量は、当該装置において通水工程と再生工程とを交互に行う際に、通水工程から再生工程に切り替える際の目安とされる。なお、採水可能量は、イオン交換樹脂の経年劣化を見越して、3~5年間使用された後のイオン交換樹脂の状態を考慮して、余裕を持った値に設定されている。そして、経年劣化したイオン交換樹脂は、定期的に、または十分な純水採水量が確保できなくなった時点で、イオン交換樹脂の交換が行われ、新品の樹脂等に入れ替えることで、純水採水量を確保している。 The amount of water that can be sampled is set at the time of designing the apparatus under conditions that assume the maximum fluctuation range of the ion concentration of the water to be treated. The set amount of water that can be collected is used as a guideline for switching from the water supply process to the regeneration process when the water supply process and the regeneration process are alternately performed in the apparatus. In addition, the amount of water that can be collected is set to a value with a margin in anticipation of aging deterioration of the ion exchange resin and considering the state of the ion exchange resin after being used for 3 to 5 years. The ion-exchange resin that has deteriorated over time is replaced periodically or when a sufficient amount of pure water cannot be obtained. Secures water.

ここで、イオン交換樹脂の再生のタイミングに関しては、下記特許文献1に記載の技術が知られている。また、イオン交換樹脂の経年劣化により採水可能量が減ることを予測計算し、次回の予測採水可能量が実際の採水量より少なくなった時点で再生に切り替えることが特許文献2、3に記載されている。また、特許文献4には、イオン交換容量や総括物質異動容量係数に基づいてイオン交換樹脂の性能を評価して、イオン負荷と通水量から採水可能量を予測計算することが記載されている。更に、特許文献5、6には、イオン交換樹脂への阻害物質の影響予測について記載されている。 Here, regarding the timing of regeneration of the ion exchange resin, the technique described in Patent Document 1 below is known. In addition, according to Patent Documents 2 and 3, it is possible to predict and calculate that the amount of water that can be collected will decrease due to the deterioration of the ion exchange resin over time, and switch to regeneration when the next predicted amount of water that can be collected becomes less than the actual amount of water that can be collected. Are listed. In addition, Patent Document 4 describes that the performance of ion exchange resin is evaluated based on the ion exchange capacity and the overall substance transfer capacity coefficient, and the amount of water that can be collected is predicted and calculated from the ion load and the water flow rate. . Furthermore, Patent Literatures 5 and 6 describe prediction of the influence of inhibitors on ion exchange resins.

特開2016-67976号公報JP 2016-67976 A 特開平5-277382号公報JP-A-5-277382 特開平6-55082号公報JP-A-6-55082 特開2012-205996号公報JP 2012-205996 A 特開2015-226866号公報JP 2015-226866 A 特開2017-227577号公報JP 2017-227577 A

上述のように、純水製造装置では、予め設定された採水可能量に基づき、純水を製造する通水工程とイオン交換樹脂を再生する再生工程とを交互に行う。ここで、純水製造装置の原水には、工業用水が多く使われる。工業用水は、イオン濃度の変動が大きい河川水を水源とする。このため、純水装置の原水は水質変動が大きい。従って、純水製造装置では、薬品ロスと水質悪化のリスクがある。即ち、設計当初に計画されたイオン濃度より低濃度の原水を処理した場合、イオン交換樹脂の交換容量が残存した状態で再生工程が行なわれる。この場合、純水製造装置は余力がある状態で再生を行うため、再生薬品の無駄(薬品ロス)が生じる。一方、設計当初に計画されたイオン濃度より高濃度の原水を処理した場合、通水工程中にイオン交換樹脂の交換容量を使い切って破過が起こり、純水の水質悪化が起こり得る。 As described above, the pure water producing apparatus alternately performs the water passing step for producing pure water and the regeneration step for regenerating the ion exchange resin based on the preset amount of water that can be collected. Industrial water is often used as the raw water for the pure water production apparatus. Industrial water is sourced from river water with large fluctuations in ion concentration. For this reason, the water quality of the raw water of the water purifier is greatly fluctuated. Therefore, there is a risk of chemical loss and deterioration of water quality in the pure water production system. That is, when raw water with an ion concentration lower than that planned at the time of design is treated, the regeneration process is performed with the exchange capacity of the ion exchange resin remaining. In this case, the deionized water production apparatus performs regeneration with a surplus capacity, so waste of regeneration chemicals (chemical loss) occurs. On the other hand, if raw water with a higher ion concentration than planned at the time of design is treated, the exchange capacity of the ion-exchange resin will be used up during the water flow process, causing breakthrough and deteriorating the quality of pure water.

一方、イオン交換樹脂においては、継続使用により徐々に樹脂の性能が低下する。一般に、純水製造装置の設計時に再生可能量を設定する場合は、純水装置に備えられたイオン交換樹脂の状態によるイオン交換能力の違いを考慮していないため、安全面を考慮して早めの樹脂交換を行うように設計されている。このため、樹脂再生のための再生薬品ロスや、樹脂交換費用のロスが生じ得る。即ち、イオン交換樹脂が新品に近い状態にある場合、設定された純水採水量では、樹脂に余力がある状態で再生が行われるため、再生薬品の無駄が生じる。一方、イオン交換樹脂の性能低下は、カチオン交換樹脂やアニオン交換樹脂によりその程度が異なる。また、イオン交換樹脂の性能低下は、原水である工業用水の水質によってもその程度が異なる。そのため、定期的に樹脂交換を実施する場合には、安全面を考慮して早めに樹脂交換を行う必要があり、必要以上に樹脂交換することによる費用の無駄が生じる。特に、各種のコンビナートに備えられる純水製造装置は、1年間単位の長期間にわたり連続運転されるところ、1年後の正確な状態予測が難しいため、相当に余裕をもった樹脂交換を実施しており、樹脂交換費用のロスが顕著になる。 On the other hand, in the ion exchange resin, the performance of the resin gradually deteriorates with continued use. In general, when setting the renewable amount at the time of designing a water purifier, the difference in ion exchange capacity due to the state of the ion exchange resin installed in the water purifier is not taken into account. designed to perform a resin exchange of For this reason, loss of regeneration chemicals for regeneration of the resin and loss of resin exchange costs may occur. That is, when the ion-exchange resin is in a state close to a new one, regeneration is performed in a state where the resin has a surplus capacity with the set amount of pure water sampled, resulting in waste of regeneration chemicals. On the other hand, the degree of deterioration in the performance of the ion exchange resin differs depending on the cation exchange resin and the anion exchange resin. Further, the degree of deterioration in the performance of the ion-exchange resin varies depending on the quality of industrial water, which is raw water. Therefore, when the resin is to be replaced periodically, it is necessary to replace the resin early in consideration of safety. In particular, the pure water production equipment installed in various industrial complexes is operated continuously for a long period of time, such as one year, and it is difficult to accurately predict the state after one year. Therefore, the loss of resin exchange cost becomes remarkable.

以上のことから、イオン交換樹脂の性能劣化を考慮しつつ、イオン交換樹脂の能力を最大限活用し、イオン交換装置の採水可能量を正確に管理して、イオン交換樹脂の再生を行うことが求められる。 From the above, while considering the deterioration of the performance of the ion exchange resin, it is necessary to maximize the capacity of the ion exchange resin, accurately manage the amount of water that can be collected by the ion exchange device, and regenerate the ion exchange resin. is required.

本発明は上記事情に鑑みてなされたものであり、イオン交換装置の採水可能量を正確に管理することが可能な、イオン交換装置の運転方法を提供することを課題とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of operating an ion exchange apparatus that enables accurate management of the amount of water that can be collected by the ion exchange apparatus.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] イオン交換樹脂が充填された樹脂塔に対して、原水を通水してイオン交換処理する通水工程と、前記イオン交換樹脂を再生する再生工程とを順次行う通水・再生サイクルを繰り返す、純水製造装置に備えられた再生型のイオン交換装置の運転方法において、
前記通水・再生サイクル中に、前記通水工程における前記原水の流量と前記原水中の目的成分のイオン濃度との積である原水負荷を計測し、前記原水負荷に基づいて前記イオン交換樹脂の予測採水可能量をシミュレーションにより算出し、
前記シミュレーションにおいては、前記イオン交換樹脂のイオン交換容量及び総活物質移動容量係数を組み込んだ数式として、ある時点でのイオン交換樹脂のイオン交換容量、物質収支式、移動速度式及び吸着平衡式を組み込んだものとし、
当該数式に、原水のイオン負荷量(原水負荷)を導入することより算出した貫流交換容量に基づき予測採水容量を求めるとともに、前記イオン交換樹脂の性能変化傾向情報を予め取得しておき、前記性能変化傾向情報を考慮して前記予測採水容量を補正し、
前記性能変化傾向情報には、前記原水の有機物量、重金属イオン量または残留塩素イオン量のいずれかが含まれ、
算出された補正後の前記予測採水可能量に基づいて、採水量制御値を設定し、
前記通水工程中における前記原水の採水量が前記採水量制御値に到達した時点で、前記通水工程から前記再生工程に切り替える、イオン交換装置の運転方法。
ただし、
前記物質収支式は、原水のイオン負荷量を、処理水の成分リーク量、樹脂に吸着された成分量、樹脂間の空隙に滞留する成分量との関係で表した物質収支式であり、
前記移動速度式は、イオン交換塔におけるイオンの移動速度を、液相における移動速度とイオン交換樹脂内における移動速度で表した移動速度式であり、
前記吸着平衡式は、イオン交換樹脂中のイオン濃度に平衡な成分の液相中濃度を求めるためにイオン交換を、1価-1価の交換で表現する拡張ラングミュア式を用いてイオン交換樹脂中の濃度と液相中の濃度の平衡関係を求めた吸着平衡式である。
[2] 前記原水中の目的成分のイオン濃度は、目的成分のイオン濃度を直接計測するか、または目的成分のイオン濃度と相関する計測項目を計測し、その計測値に基づいて目的成分のイオン濃度を求める、[1]に記載のイオン交換装置の運転方法。
[3] 前記計測値に基づいて前記イオン交換樹脂の許容負荷量を求め、求めた許容負荷量と前記原水負荷とに基づいて前記イオン交換樹脂の予測採水可能量を算出する、[2]に記載のイオン交換装置の運転方法。
In order to solve the above problems, the present invention employs the following configuration.
[1] A water passing/regenerating cycle in which a water passing step of passing raw water through a resin tower filled with an ion exchange resin for ion exchange treatment and a regeneration step of regenerating the ion exchange resin are sequentially performed. In the repeated operation method of the regenerative ion exchange device provided in the pure water production device,
During the water supply/regeneration cycle, the raw water load, which is the product of the flow rate of the raw water in the water supply process and the ion concentration of the target component in the raw water, is measured, and the ion exchange resin is processed based on the raw water load. Calculate the estimated amount of water that can be collected by simulation,
In the simulation, the ion exchange capacity of the ion exchange resin at a certain time, the mass balance equation, the transfer rate equation, and the adsorption equilibrium equation were used as mathematical formulas incorporating the ion exchange capacity and the total active material transfer capacity coefficient of the ion exchange resin . shall be incorporated,
In addition to obtaining the predicted water intake capacity based on the once-through exchange capacity calculated by introducing the ion load of the raw water (raw water load) into the formula , obtaining the performance change trend information of the ion exchange resin in advance, Correcting the predicted water intake capacity in consideration of performance change trend information,
The performance change trend information includes any of the amount of organic substances in the raw water, the amount of heavy metal ions, or the amount of residual chlorine ions,
setting a water intake amount control value based on the predicted corrected water intake amount that has been calculated;
A method of operating an ion exchange apparatus, wherein the water passing step is switched to the regeneration step when the amount of raw water sampled during the water passing step reaches the water sampling amount control value.
however,
The material balance formula is a material balance formula that expresses the amount of ion load in raw water in terms of the relationship between the amount of component leakage in treated water, the amount of components adsorbed by resin, and the amount of components retained in voids between resins,
The migration rate formula is a migration rate formula in which the migration rate of ions in the ion exchange column is represented by the migration rate in the liquid phase and the migration rate in the ion exchange resin,
The adsorption equilibrium equation uses the extended Langmuir equation, which expresses the ion exchange in terms of monovalent-monovalent exchange, in order to obtain the concentration in the liquid phase of the component in equilibrium with the ion concentration in the ion exchange resin. It is an adsorption equilibrium equation that obtains the equilibrium relationship between the concentration of and the concentration in the liquid phase.
[2] The ion concentration of the target component in the raw water is obtained by directly measuring the ion concentration of the target component, or by measuring a measurement item that correlates with the ion concentration of the target component, and based on the measured value, the ion concentration of the target component The method for operating an ion exchange device according to [1], wherein the concentration is determined.
[3] Obtaining the allowable load of the ion exchange resin based on the measured value, and calculating the predicted possible water intake amount of the ion exchange resin based on the obtained allowable load and the raw water load, [2] The method of operating the ion exchange device according to 1.

本発明によれば、イオン交換装置の採水可能量を正確に管理することが可能な、イオン交換装置の運転方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the operating method of an ion-exchange apparatus which can manage the amount of water which can be sampled of an ion-exchange apparatus correctly can be provided.

本発明の実施形態であるイオン交換装置の運転方法を適用可能なイオン交換装置の一例を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of an ion exchange apparatus to which the operating method of an ion exchange apparatus according to an embodiment of the present invention can be applied; 実施例において用いたイオン交換装置を示す模式図。The schematic diagram which shows the ion exchange apparatus used in the Example.

以下、本発明の実施形態であるイオン交換装置の運転方法について図面を参照して説明する。 Hereinafter, a method for operating an ion exchange apparatus according to an embodiment of the present invention will be described with reference to the drawings.

[イオン交換装置]
本実施形態の運転方法を適用可能なイオン交換装置について図面を参照して説明する。
図1に示すイオン交換装置1は、原水が流れる順に、原水が貯留される原水槽2と、活性炭が充填された活性炭塔3と、カチオン交換樹脂が充填された第1カチオン交換塔4と、脱炭酸塔5と、アニオン交換樹脂が充填された第1アニオン交換塔6と、カチオン交換樹脂が充填された第2カチオン交換塔7と、アニオン交換樹脂が充填された第2アニオン交換塔8と、純水が貯留される純水槽9と、制御部10と、が備えられている。これらの設備は、流路L1~L7によって接続されている。
[Ion exchange device]
An ion exchange apparatus to which the operating method of the present embodiment can be applied will be described with reference to the drawings.
The ion exchange device 1 shown in FIG. 1 includes, in order of flow of the raw water, a raw water tank 2 in which the raw water is stored, an activated carbon tower 3 filled with activated carbon, a first cation exchange tower 4 filled with a cation exchange resin, A decarboxylation tower 5, a first anion exchange tower 6 filled with an anion exchange resin, a second cation exchange tower 7 filled with a cation exchange resin, and a second anion exchange tower 8 filled with an anion exchange resin. , a pure water tank 9 in which pure water is stored, and a control unit 10 are provided. These facilities are connected by channels L1 to L7.

原水槽2と活性炭塔3とを接続する流路L1には、原水を加圧するポンプP1と、原水中のイオン濃度を測定するイオン濃度計M1とが備えられている。イオン濃度計M1によって計測された原水のイオン濃度のデータは、制御部10に送られる。
また、脱炭酸塔5と第1アニオン交換塔6とを接続する流路L4には、第1アニオン交換塔6から流出された被処理水を加圧するポンプP2が設けられている。
更に、第2アニオン交換塔8と純水槽9とを接続する流路L7には、流量計F1が備えられている。流量計F1によって計測された純水の流量のデータは、制御部10に送られる。純水の流量は原水の流量にほぼ一致するため、本実施形態の運転方法では、流量計F1によって計測された純水の流量を、原水の流量として扱う。
A flow path L1 connecting the raw water tank 2 and the activated carbon tower 3 is provided with a pump P1 for pressurizing the raw water and an ion concentration meter M1 for measuring the ion concentration in the raw water. Data on the ion concentration of the raw water measured by the ion concentration meter M1 is sent to the control unit 10 .
A pump P2 for pressurizing the water to be treated flowing out from the first anion exchange tower 6 is provided in the flow path L4 connecting the decarboxylation tower 5 and the first anion exchange tower 6 .
Further, the flow path L7 connecting the second anion exchange tower 8 and the pure water tank 9 is provided with a flow meter F1. Data on the pure water flow rate measured by the flow meter F1 is sent to the control unit 10 . Since the flow rate of pure water substantially matches the flow rate of raw water, the flow rate of pure water measured by the flow meter F1 is treated as the flow rate of raw water in the operating method of the present embodiment.

制御部10は、原水のイオン濃度及び原水の流量に基づき、イオン交換装置1における予測採水可能量をシミュレーションにより算出し、算出された予測採水可能量に基づいて、採水量制御値を設定し、通水工程中における原水の採水量が採水量制御値に到達した時点で、通水工程から再生工程に切り替えさせる。制御部10の動作は、運転方法の説明において詳細に述べる。 The control unit 10 calculates the predicted possible water intake amount in the ion exchange device 1 by simulation based on the ion concentration and the flow rate of the raw water, and sets the water intake amount control value based on the calculated predicted possible water intake amount. Then, when the amount of raw water sampled during the water supply process reaches the water supply amount control value, the water supply process is switched to the regeneration process. The operation of the control unit 10 will be described in detail in the description of the operating method.

図1に示すイオン交換装置1においては、通水工程と再生工程とが交互に繰り返し行われる。通水工程では、原水を、活性炭塔3、第1カチオン交換塔4、脱炭酸塔5、第1アニオン交換塔6、第2カチオン交換塔7及び第2アニオン交換塔8に順次通過させることで、純水を製造する。再生工程では、第1アニオン交換塔6及び第2アニオン交換塔8にアルカリ性再生液(例えば水酸化ナトリウム水溶液)を供給し、第1カチオン交換塔4及び第2カチオン交換塔7に酸性再生液(例えば塩酸水溶液)を供給して、カチオン交換樹脂及びアニオン交換樹脂を再生する。 In the ion exchange device 1 shown in FIG. 1, the water passing step and the regeneration step are alternately repeated. In the water passage step, the raw water is passed through the activated carbon tower 3, the first cation exchange tower 4, the decarboxylation tower 5, the first anion exchange tower 6, the second cation exchange tower 7, and the second anion exchange tower 8 in sequence. , to produce pure water. In the regeneration step, the first anion exchange tower 6 and the second anion exchange tower 8 are supplied with an alkaline regeneration liquid (eg, aqueous sodium hydroxide solution), and the first cation exchange tower 4 and the second cation exchange tower 7 are supplied with an acidic regeneration liquid ( For example, an aqueous solution of hydrochloric acid) is fed to regenerate the cation exchange resin and the anion exchange resin.

[イオン交換装置1の運転方法]
図1に示すイオン交換装置1においては、通水工程の開始時から再生工程の開始前の間に採水できると予測される量(m/サイクル)である予測採水可能量を求め、予測採水可能量に基づいて採水量制御値を設定し、通水工程中における原水の採水量が採水量制御値に到達した時点で、通水工程から再生工程に切り替える。
[Method of operating the ion exchange device 1]
In the ion exchange device 1 shown in FIG. 1, a predicted possible water intake amount, which is an amount (m 3 /cycle) expected to be able to be collected during the period from the start of the water flow process to the start of the regeneration process, is obtained, A water intake amount control value is set based on the predicted possible water intake amount, and the water supply process is switched to the regeneration process when the water intake amount of the raw water during the water supply process reaches the water intake amount control value.

すなわち、本実施形態のイオン交換装置1の運転方法は、カチオン交換樹脂及びアニオン交換樹脂(イオン交換樹脂)が充填された第1カチオン交換塔4、第1アニオン交換塔6、第2カチオン交換塔7及び第2アニオン交換塔8(樹脂塔)に対して、原水を通水してイオン交換処理する通水工程と、イオン交換樹脂を再生する再生工程とを順次行う通水・再生サイクルを繰り返す、イオン交換装置1の運転方法において、通水・再生サイクル中に、通水工程における原水の流量と原水中の目的成分のイオン濃度との積である原水負荷を計測し、原水負荷に基づいてイオン交換樹脂の予測採水可能量をシミュレーションにより算出し、算出された予測採水可能量に基づいて、採水量制御値を設定し、通水工程中における原水の採水量が採水量制御値に到達した時点で、通水工程から再生工程に切り替える。 That is, the operation method of the ion exchange device 1 of the present embodiment includes a first cation exchange tower 4, a first anion exchange tower 6, and a second cation exchange tower filled with a cation exchange resin and an anion exchange resin (ion exchange resin). 7 and the second anion exchange tower 8 (resin tower), repeating a water supply/regeneration cycle in which a water supply step of passing raw water through for ion exchange treatment and a regeneration step of regenerating the ion exchange resin are sequentially performed. , in the operation method of the ion exchange device 1, during the water supply/regeneration cycle, the raw water load, which is the product of the raw water flow rate in the water supply process and the ion concentration of the target component in the raw water, is measured, and based on the raw water load Calculate the expected water intake capacity of the ion exchange resin by simulation, set the water intake volume control value based on the calculated estimated water intake volume, and the raw water intake volume during the water flow process becomes the water intake volume control value. At the time of arrival, the water flow process is switched to the regeneration process.

イオン交換樹脂の予測採水可能量をシミュレーションにより算出する際のシミュレーションにおいては、イオン交換樹脂の性能変化傾向情報を予め取得しておき、性能変化傾向情報を考慮してシミュレーション条件を補正しつつシミュレーションを行う。 In the simulation when calculating the predicted water intake capacity of the ion exchange resin by simulation, the performance change trend information of the ion exchange resin is acquired in advance, and the simulation conditions are corrected in consideration of the performance change trend information. I do.

図1に示すイオン交換装置1においては、制御部10において運転方法を実施するための制御を行う。以下、制御部10における動作を説明する。なお、図1に示すイオン交換装置1は、4床5塔(4B5T)形式の装置であるが、本実施形態の運転方法を適用可能なイオン交換装置1の形式はこれに限らず、例えば、2B3T形式、3B4T形式であっってもよい。 In the ion exchange apparatus 1 shown in FIG. 1, the controller 10 performs control for carrying out the operating method. The operation of the control unit 10 will be described below. The ion exchange apparatus 1 shown in FIG. 1 is a four-bed, five-tower (4B5T) type apparatus, but the type of the ion exchange apparatus 1 to which the operation method of the present embodiment can be applied is not limited to this. 2B3T format or 3B4T format may be used.

[原水の負荷量の計測]
原水は、最初のイオン交換樹脂(カチオン交換樹脂)への供給水である。例えば原水として河川を水源とする工業用水を用いることができる。原水負荷を計測する場合の測定対象は、例えば、原水槽2とイオン交換樹脂塔とが接続されている場合や、原水槽2とイオン交換樹脂塔との間に活性炭塔3が介在する場合は、原水槽2内の水を測定対象とする。
[Measurement of raw water load]
Raw water is the feed water to the first ion exchange resin (cation exchange resin). For example, industrial water from a river can be used as raw water. The measurement object when measuring the raw water load is, for example, when the raw water tank 2 and the ion exchange resin tower are connected, or when the activated carbon tower 3 is interposed between the raw water tank 2 and the ion exchange resin tower , the water in the raw water tank 2 is to be measured.

原水の流量、すなわち、イオン交換樹脂への供給水は、定流量に制御されており、その流量は流量計F1によって測定され、制御部10に送られている。よって、原水についての測定は、原水の目的成分(Naなど)のイオン濃度の測定のみとする。目的成分のイオン濃度の測定は、通水・再生サイクルの1サイクル中に、連続的または間欠的に原水の目的成分のイオン濃度を測定してもよいし、何サイクルかに1度の割合で目的成分のイオン濃度を測定し、その値を採用してもよい。測定された目的成分のイオン濃度と原水の流量との積を原水負荷とする。 The flow rate of the raw water, that is, the water supplied to the ion exchange resin is controlled at a constant flow rate. Therefore, only the ion concentration of the target component (such as Na) in the raw water should be measured. The ion concentration of the target component may be measured continuously or intermittently during one cycle of the water supply/regeneration cycle, or at a rate of once every several cycles. The ion concentration of the target component may be measured and the value may be adopted. The raw water load is defined as the product of the measured ion concentration of the target component and the raw water flow rate.

図1に示すイオン交換装置1の場合、原水槽2と活性炭塔3とを接続する流路L1に設けられたイオン濃度計M1により目的成分のイオン濃度を直接測定するか、イオン濃度計M1に替えて電気伝導率計M2を用い、電気伝導率計M2により電気伝導率を測定し、その結果を制御部10に送る。
なお、イオン濃度を求める方法として電気伝導率計M2を使用する場合と、イオン濃度計M1を使用する場合とがある。電気伝導率計M2を用いる場合は、まず、運転前に予め給水を複数回サンプリングして電気伝導率と目的成分(Naなど)のイオン濃度を測定し、電気伝導率と目的成分のイオン濃度との近似式を作成しておき、運転開始後は電気伝導率計M2により電気伝導率を測定して前記近似式による相関関係から目的成分のイオン濃度を求める。
一方、イオン濃度計M1を用いる場合は、目的成分(Naなど)に対応する電極を使用して測定することで目的成分のイオン濃度を直接測定する。
In the case of the ion exchange device 1 shown in FIG. 1, the ion concentration of the target component is directly measured by the ion concentration meter M1 provided in the flow path L1 connecting the raw water tank 2 and the activated carbon tower 3, or the ion concentration meter M1 Instead, the electric conductivity meter M2 is used to measure the electric conductivity, and the result is sent to the control unit 10 .
As a method for obtaining the ion concentration, there are a case of using the electrical conductivity meter M2 and a case of using the ion concentration meter M1. When using the electrical conductivity meter M2, first, the water supply is sampled several times in advance before operation to measure the electrical conductivity and the ion concentration of the target component (such as Na), and the electrical conductivity and the ion concentration of the target component are measured. After the operation is started, the electric conductivity is measured by the electric conductivity meter M2, and the ion concentration of the target component is obtained from the correlation by the approximate expression.
On the other hand, when the ion concentration meter M1 is used, the ion concentration of the target component (such as Na) is directly measured by using an electrode corresponding to the target component (such as Na).

また、後述するシミュレーションにおいて予測採水可能量を求める場合、通水・再生サイクルの1サイクル内の1時点の瞬間イオン濃度の測定値が1サイクルの全時間帯で一定だったとみなして当該サイクルの予測採水可能量を概算してもよいし、1サイクル内で単位時間ごとの原水イオン負荷の計測値に応じてイオン交換樹脂の許容イオン負荷が徐々に低下することを考慮して残りの予測採水可能量を算出すると共に直前の単位時間以前の単位予測採水可能量の積算値と加算することによって求めてもよい。 In addition, when obtaining the predicted possible water intake volume in the simulation described later, it is assumed that the measurement value of the instantaneous ion concentration at one point in one cycle of the water supply/regeneration cycle is constant throughout the entire time period of the cycle. The estimated amount of water that can be collected may be roughly estimated, or the remaining prediction considering that the allowable ion load of the ion exchange resin gradually decreases according to the measured value of the raw water ion load per unit time within one cycle It may be obtained by calculating the possible water intake amount and adding it to the integrated value of the unit predictable water intake amount before the immediately preceding unit time.

[イオン交換樹脂の性能による採水可能量の変化のシミュレーション]
制御部10は、原水のイオン負荷量に基づき、イオン交換樹脂の予測採水可能量をシミュレーションにより算出する。
シミュレーションにおいては、イオン交換樹脂の性能変化傾向情報を予め取得しておき、性能変化傾向情報を考慮してシミュレーション条件を補正しつつ、原水負荷(原水のイオン負荷)が1サイクルの間、一定であるとみなしたときの1サイクル当たりの予測採水可能量を算出するというシミュレーションを行う。
具体的には、電気伝導率と許容負荷量の関係、または、目的成分のイオン濃度と許容負荷量の関係を予め近似関数で数式化しておき、電気伝導率またはイオン濃度の計測値から許容負荷量を求め、許容負荷量を原水負荷で除することにより予測採水可能量を算出する。
なお、電気伝導率計M2を用いてイオン濃度を求める場合は許容負荷量も電気伝導率計M2を用いて求め、イオン濃度計M1を用いてイオン濃度を求める場合は許容負荷量もイオン濃度計M1を用いて求めることで、計器を1種類に統一して減らすことができるが、これに限定されない。
[Simulation of changes in the amount of water that can be collected due to the performance of ion-exchange resin]
The control unit 10 calculates the predicted water intake capacity of the ion exchange resin by simulation based on the ion load of the raw water.
In the simulation, the performance change trend information of the ion exchange resin is acquired in advance, and the simulation conditions are corrected in consideration of the performance change trend information, and the raw water load (ion load of raw water) is constant during one cycle. A simulation is performed to calculate the predicted amount of water that can be collected per cycle when it is assumed that there is.
Specifically, the relationship between the electrical conductivity and the allowable load amount, or the relationship between the ion concentration of the target component and the allowable load amount is expressed in advance with an approximate function, and the allowable load is calculated from the measured value of the electrical conductivity or ion concentration. Calculate the estimated possible water intake volume by dividing the allowable load volume by the raw water load volume.
When the ion concentration is determined using the electrical conductivity meter M2, the allowable load is also determined using the electrical conductivity meter M2, and when the ion concentration is determined using the ion concentration meter M1, the allowable load is also determined by the ion concentration meter By obtaining using M1, it is possible to unify and reduce the number of instruments to one type, but it is not limited to this.

(a)イオン交換容量(イオン交換樹脂1L(リットル)あたりの吸着可能なイオン量)
(b)総括物質移動容量係数(大きいほどイオンの吸着速度が大きい)
(a) Ion exchange capacity (amount of adsorbable ions per 1 L (liter) of ion exchange resin)
(b) Overall mass transfer capacity coefficient (the larger the coefficient, the higher the ion adsorption speed)

制御部10では、これらを組み込んだ数式に、原水のイオン負荷量(原水負荷)を導入することより、イオン交換処理において一定水質が維持できる総イオン当量である貫流交換容量(BTC)を算定し、算出した貫流交換容量(BTC)からイオン交換装置1の予測採水可能量を推定する。さらに、1サイクル前の通水・再生サイクルにおける樹脂再生後から現時点までの通水量を積算し、予測採水可能量からこの積算値を減算した残存採水可能量を演算する。 In the control unit 10, by introducing the ion load of the raw water (raw water load) into the formula incorporating these, the flow exchange capacity (BTC), which is the total ion equivalent that can maintain a constant water quality in the ion exchange treatment, is calculated. , the predicted water intake capacity of the ion exchange device 1 is estimated from the calculated once-through exchange capacity (BTC). Further, the amount of water passing from after resin regeneration to the present time in the water passing/regeneration cycle one cycle before is integrated, and the remaining available water supply amount is calculated by subtracting this integrated value from the predicted available water supply amount.

シミュレーションにて利用する数式では、「ある時点でのイオン交換樹脂の性能(交換容量)」、「物質収支式」、「移動速度式」及び「吸着平衡式」に基づき、イオン交換塔でのイオン交換性能を計算する。更に、数式には「樹脂性能予測式」を組み込んでもよい。 In the formulas used in the simulation, the ion Calculate exchange performance. Furthermore, a "resin performance prediction formula" may be incorporated into the formula.

「物質収支式」は、原水のイオン負荷量を、処理水の成分リーク量、樹脂に吸着された成分量、樹脂間の空隙に滞留する成分量との関係で表す。「移動速度式」は、イオン交換塔におけるイオンの移動速度を、液相における移動速度とイオン交換樹脂内における移動速度で表す。「吸着平衡式」は、イオン交換樹脂中のイオン濃度に平衡な成分の液相中濃度を求めるためにイオン交換を、1価-1価の交換で表現する拡張ラングミュア式を用いてイオン交換樹脂中の濃度と液相中の濃度の平衡関係を求める。「樹脂性能予測式」は、後述するEEMスペクトルなどの樹脂性能低下の指標と、イオン交換樹脂への積算通水量から性能低下を予測する予測式である。予備試験にて、通水による樹脂性能低下要因物質の蓄積と上記(a)、(b)の樹脂性能低下傾向の関係を示す実測値を得て、近似関数で数式化して予測式とする。 The "mass balance formula" expresses the ion load of the raw water in terms of the relationship between the leak amount of the components of the treated water, the amount of the components adsorbed by the resin, and the amount of the components remaining in the voids between the resins. The "migration rate formula" expresses the migration rate of ions in the ion exchange column by the migration rate in the liquid phase and the migration rate in the ion exchange resin. The "adsorption equilibrium equation" uses the extended Langmuir equation, which expresses ion exchange as a monovalent-monovalent exchange, to determine the concentration in the liquid phase of a component that is in equilibrium with the ion concentration in the ion exchange resin. Find the equilibrium relationship between the concentration in the medium and the concentration in the liquid phase. The "resin performance prediction formula" is a prediction formula for predicting performance degradation from an indicator of resin performance degradation such as the EEM spectrum, which will be described later, and the cumulative amount of water passing through the ion-exchange resin. In a preliminary test, measured values showing the relationship between the accumulation of resin performance deteriorating substances due to water passage and the above (a) and (b) resin performance deteriorating tendencies are obtained, and expressed as a prediction formula using an approximation function.

変化因子である「ある時点でのイオン交換樹脂の性能」を水中のEEMスペクトルなどの樹脂の性能低下に関わる指標、運転条件(採水量、再生材量)から性能変化(低下)を算出し、一定期間後の将来的なイオン交換塔の状態を予測する。なお、EEMスペクトルは、3次元蛍光分光分析装置によって測定されるものであり、原水中の有機物(特にフミン酸、フルボ酸のような腐植物質)の存在量を示す。3次元蛍光分光分析装置は、例えば、原水槽2に設置してもよい。 The performance change (decrease) is calculated from the "performance of the ion-exchange resin at a certain point", which is a change factor, from the index related to the performance deterioration of the resin such as the EEM spectrum in water, and the operating conditions (water sampling amount, recycled material amount), Predict the future state of the ion exchange tower after a certain period of time. The EEM spectrum is measured by a three-dimensional fluorescence spectrometer, and indicates the abundance of organic matter (especially humic substances such as humic acid and fulvic acid) in the raw water. The three-dimensional fluorescence spectroscopic analyzer may be installed in the raw water tank 2, for example.

イオン交換樹脂の性能変化傾向情報は、予備試験などで実験的に求め、固定値としてシミュレーションの補正パラメータとして使用してもよいし、実運転中も定期的に測定して変数としてシミュレーションの補正パラメータとして考慮することもできる。イオン交換樹脂の性能変化傾向情報としては、原水中の有機物によるアニオン交換樹脂の性能低下の傾向を示す情報や、原水中の重金属イオン(銅、鉄、バナジウムなど)や残留塩素イオンによるカチオン交換樹脂の劣化の傾向を示す情報が例示される。このうち有機物によるアニオン交換樹脂の性能低下については、例えば以下の(1)または(2)傾向が考慮される。 The performance change trend information of the ion exchange resin may be obtained experimentally in a preliminary test or the like and used as a fixed value as a correction parameter for the simulation, or it may be periodically measured during actual operation and used as a variable for the correction parameter for the simulation. can also be considered as The performance change trend information of the ion exchange resin includes information indicating the tendency of deterioration of the performance of the anion exchange resin due to organic substances in the raw water, and cation exchange resin due to heavy metal ions (copper, iron, vanadium, etc.) and residual chlorine ions in the raw water. is exemplified as information indicating the tendency of deterioration of Of these, the following tendencies (1) or (2), for example, are considered for the deterioration of the performance of the anion exchange resin due to organic matter.

(1)原水のイオン負荷
イオン交換樹脂が、通水/再生を繰り返してイオンの吸着/脱着を繰り返すうちに、イオン交換樹脂の許容イオン負荷が経時的に低下する。この経時的なイオン負荷の低下量を、予備試験で傾向を数値化し、シミュレーションのパラメータとして考慮する。
(1) Ion load of raw water While the ion exchange resin repeats the adsorption/desorption of ions by repeating water flow/regeneration, the allowable ion load of the ion exchange resin decreases with time. This decrease in ion load over time is quantified in a preliminary test and taken into account as a simulation parameter.

(2)原水中の有機物の影響
原水に含まれる有機物(特にフミン酸、フルボ酸のような腐植物質)が、イオン交換樹脂の表面に吸着してイオン交換性能が低下する。このようなイオン交換性能の低下量を、予備試験または予備試験と実運転中の測定により、原水中の有機物濃度をシミュレーションの補正パラメータとして考慮する。
(2) Effect of Organic Substances in Raw Water Organic substances contained in raw water (especially humic substances such as humic acid and fulvic acid) are adsorbed on the surface of the ion-exchange resin to lower the ion-exchange performance. Such a decrease in ion exchange performance is measured in a preliminary test or during a preliminary test and actual operation, and the concentration of organic matter in the raw water is taken into account as a correction parameter for the simulation.

特に、上記(2)について、イオン交換樹脂のうち、アニオン交換樹脂に有機物が吸着することによる汚染が発生すると、上記(a)イオン交換容量や、上記(b)総括物質移動容量係数が低下する。そこで、アニオン交換樹脂の汚染によって上記(a)や上記(b)の値が低下する割合を数式化する(樹脂性能予測式)。このとき予備分析などにより原水中の有機物量を見積もり、上記(a)や上記(b)の低下幅を推定した上で、これらを定数として演算することもできる。また、連続的または定期的に原水中の有機物量を分析して、上記(a)や上記(b)の低下幅を変数として演算することもできる。上記(a)や上記(b)に対して、新品のイオン交換樹脂のイオン交換容量または総括物質移動容量よりも低い値を設定してシミュレーションすれば、破過するまでの時間が短くなり、経時的に採水量が低下するシミュレーション結果が得られるようになる。 In particular, with respect to (2) above, when contamination occurs due to adsorption of organic matter to anion exchange resin among ion exchange resins, the above (a) ion exchange capacity and the above (b) overall mass transfer capacity coefficient decrease. . Therefore, the rate at which the above values (a) and (b) decrease due to contamination of the anion exchange resin is expressed as a formula (resin performance prediction formula). At this time, it is also possible to estimate the amount of organic substances in the raw water by preliminary analysis or the like, estimate the range of decrease in the above (a) and (b), and then calculate these as constants. It is also possible to continuously or periodically analyze the amount of organic matter in the raw water and calculate the range of decrease in (a) or (b) above as a variable. For the above (a) and above (b), if the simulation is performed by setting a value lower than the ion exchange capacity or the overall mass transfer capacity of the new ion exchange resin, the time until breakthrough is shortened, and the aging It is possible to obtain a simulation result that the amount of water sampled decreases exponentially.

原水中の有機物量の数値化については、例えばTOC濃度分析や、三次元蛍光スペクトル分析のEEMスペクトルの成分分離による腐植成分の分離として実施される。TOC濃度は、原水槽2に設置したTOC計により測定される。また、EEMスペクトルは、原水槽2に設置した3次元蛍光分光分析装置により測定される。予備試験で分析した原水の有機物濃度の計測値が実運転においても変動がないものとみなして、シミュレーションのパラメータに固定値として適用すると共に定期的に分析してパラメータを補正することで、有機物の樹脂吸着を考慮したシミュレーションを可能にする。 The quantification of the amount of organic matter in the raw water is carried out, for example, by TOC concentration analysis or separation of humic components by component separation of the EEM spectrum of three-dimensional fluorescence spectrum analysis. The TOC concentration is measured by a TOC meter installed in the raw water tank 2 . Also, the EEM spectrum is measured by a three-dimensional fluorescence spectrometer installed in the raw water tank 2 . Assuming that the measured values of organic matter concentrations in the raw water analyzed in the preliminary test do not fluctuate even in actual operation, they are applied as fixed values to the simulation parameters and periodically analyzed to correct the parameters. Enables simulation considering resin adsorption.

また、定期的にイオン交換樹脂をサンプリングして手分析を行い、シミュレーションによる結果と乖離があればシミュレーション条件を補正するとよい。 In addition, the ion exchange resin is periodically sampled and manually analyzed, and if there is a deviation from the simulation result, the simulation conditions should be corrected.

以上のようにして、性能変化傾向情報を予め取得したイオン交換樹脂の性能変化傾向情報を考慮してシミュレーション条件を補正しつつ、原水の負荷量に基づきシミュレーションを行い、イオン交換樹脂の予測採水可能量を算出する。 As described above, while correcting the simulation conditions in consideration of the performance change trend information of the ion-exchange resin obtained in advance, the simulation is performed based on the load of raw water, and the predicted water intake of the ion-exchange resin is performed. Calculate the possible amount.

[採水量制御値]
次に、制御部10は、イオン交換樹脂の予測採水可能量から、採水量制御値を設定する。採水量制御値は、予想採水可能量そのものを設定してもよいし、安全率を考慮して予想採水可能量よりも幾分低めに設定してもよい。例えば、予測採水可能量に安全率として0.9を乗じた値を、採水量制御値としてもよい。安全率は0.9に限定されるものではなく、実際の純水製造装置の稼働状況を踏まえて適切な値に設定すればよい。
[Water sampling volume control value]
Next, the control unit 10 sets a water intake amount control value based on the predicted water intake amount of the ion exchange resin. The water sampling amount control value may be set to the estimated possible water intake amount itself, or may be set somewhat lower than the estimated possible water intake amount in consideration of a safety factor. For example, a value obtained by multiplying the predicted possible water intake amount by 0.9 as a safety factor may be used as the water intake amount control value. The safety factor is not limited to 0.9, and may be set to an appropriate value based on the actual operating conditions of the pure water production apparatus.

また、カチオン交換樹脂を充填した第1、第2カチオン交換塔4、7とアニオン交換樹脂を充填した第1、第2アニオン交換塔6、8の通水流量は、通常は同じであるから、カチオン交換樹脂とアニオン交換樹脂の予測採水可能量を別個に算出した場合は、どちらか小さい方を基準として、さらに必要に応じて安全率を考慮して採水量制御値を決定すればよい。 In addition, since the water flow rate of the first and second cation exchange towers 4 and 7 filled with cation exchange resin and the first and second anion exchange towers 6 and 8 filled with anion exchange resin are usually the same, When the predicted possible water intake amounts of the cation exchange resin and the anion exchange resin are separately calculated, the water intake amount control value may be determined based on whichever is smaller and, if necessary, considering the safety factor.

そして、通水工程と再生工程を交互に繰り返し行うイオン交換装置1の運転において、通水工程中における原水の採水量が採水量制御値に到達した時点で、制御部10は、通水工程から再生工程に切り替えるようにする。これにより、適切なタイミングで通水工程から再生工程に切り替えることができるようになる。 Then, in the operation of the ion exchange device 1 in which the water passing process and the regeneration process are alternately repeated, when the raw water sampling amount during the water passing process reaches the water sampling amount control value, the control unit 10 stops the water passing process. Switch to the regeneration process. As a result, it becomes possible to switch from the water flow process to the regeneration process at an appropriate timing.

本実施形態の運転方法の一例を説明する。
図1のイオン濃度計M1を電気伝導率計M2とし、原水の電気伝導率を連続測定して、イオン濃度を算出する。イオン濃度の算出は、第1、第2カチオン交換塔4、7でのイオン交換成分(陽イオン;TC)と、第1、第2アニオン交換塔6、8でのイオン交換成分(炭酸に起因するイオンを除いた陰イオン;DTA)を個別で算出する。原水の電気伝導率からTC、DTAを算出するためにTCと電気伝導率の関係式、DTAと電気伝導率の関係式を予備試験の分析結果から実験的に事前に求め決定しておく。そして長期間で装置運転に伴う変動を把握するために定期的に検証し関係式を見直すことでより精度の高いイオン濃度の算出を可能とする。なお、電気伝導率からTC、DTAの算出は、制御部10にて行う。
An example of the operating method of this embodiment will be described.
The ion concentration meter M1 in FIG. 1 is replaced by an electrical conductivity meter M2, and the electrical conductivity of the raw water is continuously measured to calculate the ion concentration. The ion concentration is calculated based on the ion exchange components (cations; TC) in the first and second cation exchange towers 4 and 7 and the ion exchange components (caused by carbonic acid) in the first and second anion exchange towers 6 and 8. Anions (DTA) excluding the ions that In order to calculate TC and DTA from the electrical conductivity of the raw water, the relational expression between TC and electrical conductivity and the relational expression between DTA and electrical conductivity are experimentally determined in advance from the analysis results of the preliminary test. In addition, in order to grasp the fluctuation accompanying the operation of the device over a long period of time, it is possible to calculate the ion concentration with higher accuracy by periodically verifying and revising the relational expression. Note that the control unit 10 calculates TC and DTA from the electrical conductivity.

関係式によって求めたTC、DTAが1サイクルの通水開始(再開)から一定であると仮定して、原水流量(基本は一定流量)から、TCに対して第1、第2カチオン交換塔7、DTAに対して第1、第2アニオン交換塔8のどちらか先に飽和する採水量を予測採水可能量として算出する。次いで、予測採水可能量そのもの又は安全率を乗じた数値を採水量制御値として設定する。次いで、実際の1サイクル中の採水量が採水量制御値に到達した時に通水工程から再生工程に切り替えて、カチオン交換樹脂およびアニオン交換樹脂の再生を行う。 Assuming that TC and DTA obtained by the relational expression are constant from the start (restart) of water flow in one cycle, from the raw water flow rate (basically a constant flow rate), the first and second cation exchange towers 7 for TC , and DTA, whichever of the first and second anion exchange towers 8 is saturated first is calculated as the predicted possible water intake amount. Next, the predictable water intake amount itself or a numerical value multiplied by a safety factor is set as the water intake amount control value. Next, when the actual amount of water sampled in one cycle reaches the water sample amount control value, the water passing step is switched to the regeneration step to regenerate the cation exchange resin and the anion exchange resin.

このとき、原水中の重金属イオンや残留塩素イオンによるカチオン交換樹脂の劣化を考慮する場合や、原水中の有機物によるアニオン交換樹脂の性能低下を考慮する場合は、貫流交換容量(BTC)の算定式における(a)イオン交換容量や、(b)総括物質移動容量係数の低下量の係数を乗じるなどにより、イオン交換樹脂の不慮の性能低下を考慮した予測採水可能量の算出を可能とする。 At this time, when considering the deterioration of the cation exchange resin due to heavy metal ions and residual chlorine ions in the raw water, or when considering the performance deterioration of the anion exchange resin due to organic substances in the raw water, the calculation formula for the flow-through exchange capacity (BTC) By multiplying (a) the ion exchange capacity in (a) and (b) the reduction amount of the overall mass transfer capacity coefficient, etc., it is possible to calculate the predicted amount of water that can be collected in consideration of the unexpected performance deterioration of the ion exchange resin.

以上説明したように、本実施形態のイオン交換装置1の運転方法によれば、イオン交換装置の採水可能量を正確に管理することが可能になり、樹脂再生のための再生薬品ロスや、樹脂交換費用のロスが生じることがなく、効率的に純水を製造できる。 As described above, according to the operation method of the ion exchange device 1 of the present embodiment, it is possible to accurately manage the amount of water that can be collected by the ion exchange device, and the regeneration chemical loss for resin regeneration, Purified water can be produced efficiently without loss of resin replacement cost.

図2に示す純水製造装置についてシミュレーションを行った。
図2に示す純水製造装置は、凝集槽12と、重力濾過槽13と、イオン交換装置14とから構成されていた。イオン交換装置14は、原水が流れる順に、原水が貯留される原水槽21と、活性炭が充填された活性炭塔22と、カチオン交換樹脂が充填されたカチオン交換塔23と、脱炭酸塔24と、アニオン交換樹脂が充填されたアニオン交換塔25と、純水が貯留される純水槽26と、制御部27と、が備えられていた。これらは、流路Lによって接続されていた。
A simulation was performed for the pure water production apparatus shown in FIG.
The pure water production apparatus shown in FIG. The ion exchange device 14 includes, in order of flow of raw water, a raw water tank 21 in which raw water is stored, an activated carbon tower 22 filled with activated carbon, a cation exchange tower 23 filled with cation exchange resin, a decarboxylation tower 24, An anion exchange tower 25 filled with an anion exchange resin, a pure water tank 26 in which pure water is stored, and a controller 27 were provided. These were connected by a channel L.

カチオン交換塔23は、塔径1800mm、樹脂高さ1367mmとした。アニオン交換塔25は、塔径2000mm、樹脂高さ1218mmとした。原水の流量は110m/hの一定とした。 The cation exchange column 23 had a column diameter of 1800 mm and a resin height of 1367 mm. The anion exchange column 25 had a column diameter of 2000 mm and a resin height of 1218 mm. The raw water flow rate was constant at 110 m 3 /h.

また、事前に原水槽21中の原水の有機物量を3次元蛍光分光分析装置により分析してEEMスペクトルを求め、これを制御部27に入力した。 Further, the amount of organic substances in the raw water in the raw water tank 21 was analyzed in advance by a three-dimensional fluorescence spectrometer to obtain an EEM spectrum, which was input to the controller 27 .

原水槽21と活性炭塔22とを接続する流路Lには、原水を加圧するポンプP1と、原水中のイオン濃度を測定するための電気伝導率計M2とが備えられていた。電気伝導率計M2によって計測された原水の電気伝導率は、制御部27に送られた。制御部27にて、電気伝導率からイオン濃度を算出した。 A flow path L connecting the raw water tank 21 and the activated carbon tower 22 was equipped with a pump P1 for pressurizing the raw water and an electrical conductivity meter M2 for measuring the ion concentration in the raw water. The electrical conductivity of the raw water measured by the electrical conductivity meter M2 was sent to the control unit 27 . The control unit 27 calculated the ion concentration from the electrical conductivity.

脱炭酸塔24とアニオン交換塔25とを接続する流路Lには、アニオン交換塔25から流出された被処理水を加圧するポンプP2が設けられていた。 A flow path L connecting the decarboxylation tower 24 and the anion exchange tower 25 was provided with a pump P2 for pressurizing the water to be treated flowing out from the anion exchange tower 25 .

アニオン交換塔25と純水槽26とを接続する流路には、流量計F1が備えられていた。流量計F1によって計測された純水の流量は、制御部27に送られた。 A flow meter F1 was provided in the flow path connecting the anion exchange tower 25 and the pure water tank 26 . The pure water flow rate measured by the flow meter F1 was sent to the controller 27 .

制御部27は、原水のイオン濃度及び原水の流量に基づき、イオン交換装置14における予測採水可能量をシミュレーションにより算出し、算出された予測採水可能量に基づいて、採水量制御値を設定し、通水工程中における原水の採水量が採水量制御値に到達した時点で、通水工程から再生工程に切り替えさせた。 The control unit 27 calculates the predicted possible water intake amount in the ion exchange device 14 based on the ion concentration and the flow rate of the raw water by simulation, and sets the water intake amount control value based on the calculated predicted possible water intake amount. Then, when the amount of raw water sampled during the water supply process reached the water supply amount control value, the water supply process was switched to the regeneration process.

表1に、図2に示したイオン交換装置14の運転状況を示す。 Table 1 shows the operating conditions of the ion exchanger 14 shown in FIG.

Figure 0007327450000001
Figure 0007327450000001

表1に示すように、イオン交換樹脂の性能変化情報としてアニオン交換樹脂の性能低下の原因となる有機物量をEEMスペクトルの測定結果として考慮したシミュレーションを行ったことにより、より正確な予測採水可能量を算出することができた。 As shown in Table 1, it is possible to more accurately predict water sampling by conducting a simulation that considers the amount of organic matter that causes the performance deterioration of the anion exchange resin as the measurement result of the EEM spectrum as the performance change information of the ion exchange resin. amount could be calculated.

1…イオン交換装置、4…第1カチオン交換塔(樹脂塔)、6…第1アニオン交換塔(樹脂塔)、7…第2カチオン交換塔(樹脂塔)、8…第2アニオン交換塔(樹脂塔)。 1... Ion exchange device, 4... First cation exchange tower (resin tower), 6... First anion exchange tower (resin tower), 7... Second cation exchange tower (resin tower), 8... Second anion exchange tower ( resin tower).

Claims (3)

イオン交換樹脂が充填された樹脂塔に対して、原水を通水してイオン交換処理する通水工程と、前記イオン交換樹脂を再生する再生工程とを順次行う通水・再生サイクルを繰り返す、純水製造装置に備えられた再生型のイオン交換装置の運転方法において、
前記通水・再生サイクル中に、前記通水工程における前記原水の流量と前記原水中の目的成分のイオン濃度との積である原水負荷を計測し、前記原水負荷に基づいて前記イオン交換樹脂の予測採水可能量をシミュレーションにより算出し、
前記シミュレーションにおいては、前記イオン交換樹脂のイオン交換容量及び総活物質移動容量係数を組み込んだ数式として、ある時点でのイオン交換樹脂のイオン交換容量、物質収支式、移動速度式及び吸着平衡式を組み込んだものとし、
当該数式に、原水のイオン負荷量(原水負荷)を導入することより算出した貫流交換容量に基づき予測採水容量を求めるとともに、前記イオン交換樹脂の性能変化傾向情報を予め取得しておき、前記性能変化傾向情報を考慮して前記予測採水容量を補正し、
前記性能変化傾向情報には、前記原水の有機物量、重金属イオン量または残留塩素イオン量のいずれかが含まれ、
算出された補正後の前記予測採水可能量に基づいて、採水量制御値を設定し、
前記通水工程中における前記原水の採水量が前記採水量制御値に到達した時点で、前記通水工程から前記再生工程に切り替える、イオン交換装置の運転方法。
ただし、
前記物質収支式は、原水のイオン負荷量を、処理水の成分リーク量、樹脂に吸着された成分量、樹脂間の空隙に滞留する成分量との関係で表した物質収支式であり、
前記移動速度式は、イオン交換塔におけるイオンの移動速度を、液相における移動速度とイオン交換樹脂内における移動速度で表した移動速度式であり、
前記吸着平衡式は、イオン交換樹脂中のイオン濃度に平衡な成分の液相中濃度を求めるためにイオン交換を、1価-1価の交換で表現する拡張ラングミュア式を用いてイオン交換樹脂中の濃度と液相中の濃度の平衡関係を求めた吸着平衡式である。
A water passing/regenerating cycle in which raw water is passed through a resin tower filled with an ion exchange resin for ion exchange treatment and a regeneration process for regenerating the ion exchange resin is repeated sequentially. In a method for operating a regenerative ion exchange device provided in a water production device,
During the water supply/regeneration cycle, the raw water load, which is the product of the flow rate of the raw water in the water supply process and the ion concentration of the target component in the raw water, is measured, and the ion exchange resin is processed based on the raw water load. Calculate the estimated amount of water that can be collected by simulation,
In the simulation, the ion exchange capacity of the ion exchange resin at a certain time, the mass balance equation, the transfer rate equation, and the adsorption equilibrium equation were used as mathematical formulas incorporating the ion exchange capacity and the total active material transfer capacity coefficient of the ion exchange resin . shall be incorporated,
In addition to obtaining the predicted water intake capacity based on the once-through exchange capacity calculated by introducing the ion load of the raw water (raw water load) into the formula , obtaining the performance change trend information of the ion exchange resin in advance, Correcting the predicted water intake capacity in consideration of performance change trend information,
The performance change trend information includes any of the amount of organic substances in the raw water, the amount of heavy metal ions, or the amount of residual chlorine ions,
setting a water intake amount control value based on the predicted corrected water intake amount that has been calculated;
A method of operating an ion exchange apparatus, wherein the water passing step is switched to the regeneration step when the amount of raw water sampled during the water passing step reaches the water sampling amount control value.
however,
The material balance formula is a material balance formula that expresses the amount of ion load in raw water in terms of the relationship between the amount of component leakage in treated water, the amount of components adsorbed by resin, and the amount of components retained in voids between resins,
The migration rate formula is a migration rate formula in which the migration rate of ions in the ion exchange column is represented by the migration rate in the liquid phase and the migration rate in the ion exchange resin,
The adsorption equilibrium equation uses the extended Langmuir equation, which expresses the ion exchange in terms of monovalent-monovalent exchange, in order to obtain the concentration in the liquid phase of the component in equilibrium with the ion concentration in the ion exchange resin. It is an adsorption equilibrium equation that obtains the equilibrium relationship between the concentration of and the concentration in the liquid phase.
前記原水中の目的成分のイオン濃度は、目的成分のイオン濃度を直接計測するか、または目的成分のイオン濃度と相関する計測項目を計測し、その計測値に基づいて目的成分のイオン濃度を求める、請求項1に記載のイオン交換装置の運転方法。 The ion concentration of the target component in the raw water is obtained by directly measuring the ion concentration of the target component, or by measuring a measurement item that correlates with the ion concentration of the target component, and determining the ion concentration of the target component based on the measured value. A method of operating an ion exchange apparatus according to claim 1. 前記計測値に基づいて前記イオン交換樹脂の許容負荷量を求め、求めた許容負荷量と前記原水負荷とに基づいて前記イオン交換樹脂の予測採水可能量を算出する、請求項2に記載のイオン交換装置の運転方法。 3. The method according to claim 2, wherein an allowable load of the ion exchange resin is obtained based on the measured value, and a predicted possible water intake amount of the ion exchange resin is calculated based on the obtained allowable load and the raw water load. A method of operating an ion exchanger.
JP2021141057A 2021-08-31 2021-08-31 How to operate an ion exchange device Active JP7327450B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021141057A JP7327450B2 (en) 2021-08-31 2021-08-31 How to operate an ion exchange device
PCT/JP2022/012966 WO2023032315A1 (en) 2021-08-31 2022-03-22 Method for operating ion exchange device
TW111124660A TW202310926A (en) 2021-08-31 2022-07-01 Method for operating ion exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021141057A JP7327450B2 (en) 2021-08-31 2021-08-31 How to operate an ion exchange device

Publications (2)

Publication Number Publication Date
JP2023034710A JP2023034710A (en) 2023-03-13
JP7327450B2 true JP7327450B2 (en) 2023-08-16

Family

ID=85412500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021141057A Active JP7327450B2 (en) 2021-08-31 2021-08-31 How to operate an ion exchange device

Country Status (3)

Country Link
JP (1) JP7327450B2 (en)
TW (1) TW202310926A (en)
WO (1) WO2023032315A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303518B (en) * 2023-09-08 2024-06-04 深圳市伊科赛尔环保科技有限公司 Ion exchange ultrapure water equipment and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224564A1 (en) 2009-03-04 2010-09-09 Anticline Disposal, Llc Method for removing organic contaminants from resins
JP2012205996A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system
JP2015013276A (en) 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
JP2015226866A (en) 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
JP2016180592A (en) 2015-03-23 2016-10-13 オルガノ株式会社 Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
JP2018038989A (en) 2016-09-09 2018-03-15 水ing株式会社 Device for producing pure water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743365B2 (en) * 1989-03-28 1995-05-15 株式会社日立製作所 Water treatment equipment performance diagnostic equipment
JP3226971B2 (en) * 1992-08-04 2001-11-12 栗田工業株式会社 Water sampling and regeneration cycle controller for ion exchange equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224564A1 (en) 2009-03-04 2010-09-09 Anticline Disposal, Llc Method for removing organic contaminants from resins
JP2012205996A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system
JP2015013276A (en) 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
JP2015226866A (en) 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
JP2016180592A (en) 2015-03-23 2016-10-13 オルガノ株式会社 Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
JP2018038989A (en) 2016-09-09 2018-03-15 水ing株式会社 Device for producing pure water

Also Published As

Publication number Publication date
WO2023032315A1 (en) 2023-03-09
JP2023034710A (en) 2023-03-13
TW202310926A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7327450B2 (en) How to operate an ion exchange device
KR102634096B1 (en) Electrolyte delivery and generation equipment
RU2533820C2 (en) Method reducing corrosion and deposition of corrosion products in crude oil refining unit
CN104583772A (en) Determination of a conversion factor relating the conductivity and the hardness of water
WO2014165140A1 (en) Use of detection techiniques for contaminant and corrosion control in industrial processes
Rajaković-Ognjanović et al. Improvement of chemical control in the water-steam cycle of thermal power plants
EP3366373A1 (en) Water softening device and method to operate a water softening device
KR20210072055A (en) Water quality management method, ion adsorption device, information processing device and information processing system
EP1322943A1 (en) A process and device for continuous ionic monitoring of aqueous solutions
JP5120124B2 (en) High-precision analysis of lithium by ion chromatography
US20190203375A1 (en) Removal of electroplating bath additives
JP6720241B2 (en) Pure water production method
JP5859287B2 (en) Method for measuring the concentration of trace hydrogen peroxide in ultrapure water
JP6315721B2 (en) Pure water production equipment
EP2668137B1 (en) Monitoring method
JP2010044022A (en) Method and apparatus for continuously monitoring test water
US20030180186A1 (en) Process and device for continuous tonic monitoring of aqueous solutions
JP5092735B2 (en) Method and apparatus for continuous monitoring of sample water
Ledingham et al. The development and validation of a novel, parameter-free, modelling strategy for electromembrane processes: Electrodialysis
CN110914385A (en) Operation for catalytic reforming apparatus
WO2021065191A1 (en) Pure water manufacturing management system and pure water manufacturing management method
WO2024024277A1 (en) Operation management method and operation management system for ultrapure water production apparatus
JP2008190933A (en) Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system
TW202413283A (en) Operation management method and operation management system for ultrapure water production device
JP3226971B2 (en) Water sampling and regeneration cycle controller for ion exchange equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221223

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150