CN117303518B - Ion exchange ultrapure water equipment and control method thereof - Google Patents

Ion exchange ultrapure water equipment and control method thereof Download PDF

Info

Publication number
CN117303518B
CN117303518B CN202311160192.8A CN202311160192A CN117303518B CN 117303518 B CN117303518 B CN 117303518B CN 202311160192 A CN202311160192 A CN 202311160192A CN 117303518 B CN117303518 B CN 117303518B
Authority
CN
China
Prior art keywords
gel
ionization
parameter
ionization parameter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311160192.8A
Other languages
Chinese (zh)
Other versions
CN117303518A (en
Inventor
徐志奇
黄海峰
王土成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Ek Sell Environmental Technology Co ltd
Original Assignee
Shenzhen Ek Sell Environmental Technology Co ltd
Filing date
Publication date
Application filed by Shenzhen Ek Sell Environmental Technology Co ltd filed Critical Shenzhen Ek Sell Environmental Technology Co ltd
Priority to CN202311160192.8A priority Critical patent/CN117303518B/en
Publication of CN117303518A publication Critical patent/CN117303518A/en
Application granted granted Critical
Publication of CN117303518B publication Critical patent/CN117303518B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The application provides an ion exchange ultrapure water device and a control method thereof, which are used for determining a gel ionization parameter value sequence; acquiring a historical gel ionization parameter value sequence, discretizing to obtain gel ionization parameter dispersion, and selecting and evaluating gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity; obtaining expected gel ionization efficiency and reference gel ionization efficiency of the ion exchange ultrapure water at each time point, determining a gel ionization efficiency deviation ratio, determining a corrected gel ionization value of the ion exchange ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount, further obtaining a gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection amount; and adjusting the particle size of the gel resin of the ion exchange ultrapure water according to the gel ionization parameter fitness so as to improve the exchange efficiency.

Description

Ion exchange ultrapure water equipment and control method thereof
Technical Field
The application relates to the technical field of ion exchange ultrapure water equipment, in particular to ion exchange ultrapure water equipment and a control method thereof.
Background
The ion exchange is a water treatment technology, the principle is that ion exchange resin is utilized to remove ions in water, the ion exchange resin is a high molecular compound and has a specific structure, the ions in the water can be selectively adsorbed and released, in the ion exchange process, the water passes through a container filled with the ion exchange resin, the surface of the resin has a certain charge, the ions in the water are attracted and captured, and other ions with corresponding quantity are released, through the ion exchange process, hardness ions and other pollutant ions in the water can be removed, so that purer water is obtained, wherein the ion exchange ultrapure water is water treated by the ion exchange technology and is water with high purity, almost no impurities and ions are contained, in the ion exchange ultrapure water, the ions in the water are exchanged into hydrogen ions and hydroxyl ions, and thus the removal of the ions in the water is realized, and the ultrapure water is generally used in the fields requiring high purity water such as laboratory research, medical production, semiconductor manufacturing and the like.
In the prior art, in the implementation process of ion exchange ultrapure water by an ion exchange ultrapure water device, firstly raw water is subjected to a pretreatment step to remove impurities and particles, and then the raw water enters an ion exchanger, in the ion exchanger, when the raw water passes through the ion exchange resin, the ion exchange resin can adsorb cations and anions in the water and release equal amounts of hydrogen ions and hydroxide ions, the cations and anions in the water are completely removed, and high-purity water, namely ultrapure water is obtained, however, the ion exchange resin aging and other conditions exist in the ion exchange process of the existing ion exchange ultrapure water device, and if the ion exchange resin is not replaced or adjusted in time, the exchange efficiency of the ion exchange ultrapure water is low.
Disclosure of Invention
The application provides an ion exchange ultrapure water device and a control method thereof, which aim to solve the technical problem of low exchange efficiency of ion exchange ultrapure water.
In order to solve the technical problems, the application adopts the following technical scheme:
in a first aspect, the present application provides a control method of an ion exchange ultrapure water device, comprising the steps of:
Sampling gel ionization parameter values when gel resin in the ion exchange ultrapure water equipment exchanges ultrapure water, and determining a gel ionization parameter value sequence according to the gel ionization parameter values obtained by sampling;
Acquiring a historical gel ionization parameter value sequence, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity;
acquiring expected gel ionization efficiency and reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio according to the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount;
Correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity;
Comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly adjusting the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
In some embodiments, the gel ionization parameter values are sampled at equal time intervals when the gel resin exchanges ultrapure water.
In some embodiments, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain a gel ionization parameter dispersion may specifically include:
Acquiring each historical gel ionization parameter value in the historical gel ionization parameter value sequence;
acquiring the total number of historical gel ionization parameter values in the historical gel ionization parameter value sequence;
determining the average value of the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain the average value of the historical gel ionization parameter;
and determining the gel ionization parameter dispersion of the historical gel ionization parameter values according to the total number of the historical gel ionization parameter values and the historical gel ionization parameter mean value.
In some embodiments, the gel ionization parameter dispersion may be determined by the following equation:
Wherein M represents the gel ionization parameter dispersion of the historical gel ionization parameter values, K represents the total number of the historical gel ionization parameter values in the historical gel ionization parameter value sequence, x i represents the ith historical gel ionization parameter value in the historical gel ionization parameter value sequence, The average of the historical gel ionization parameter values in the sequence of historical gel ionization parameter values.
In some embodiments, selecting the gel ionization parameter value in the sequence of gel ionization parameter values according to the gel ionization parameter dispersion may specifically include:
obtaining each gel ionization parameter value from the sequence of gel ionization parameter values;
Acquiring gel ionization parameter dispersion of historical gel ionization parameter values;
Determining a gel ionization parameter adjustment efficiency parameter according to the number of all adjustment parameters involved in the gel ionization process;
determining a time information value of each gel ionization parameter value collected in the gel ionization parameter value sequence;
determining an acquisition time upper limit information value corresponding to the gel ionization parameter value in the gel ionization parameter value sequence;
Determining a gel ionization selection amount of the gel ionization parameter value according to the gel ionization parameter value, the gel ionization parameter dispersion, the gel ionization parameter adjustment efficiency parameter, the time information value and the acquired time upper limit information value, wherein the gel ionization selection amount is determined by the following formula:
Wherein W represents a gel ionization selection amount of the gel ionization parameter value, ρ t represents a gel ionization parameter value with a time information value of t in the gel ionization parameter value sequence, η represents a selection coefficient, is calibrated as a constant, The average value of the gel ionization parameter values in the gel ionization parameter value sequence is represented, M represents the dispersion of the gel ionization parameter, l represents the acquisition time upper limit information value of the gel ionization parameter value, t represents the time information value of the acquisition gel ionization parameter value, and ω represents the gel ionization parameter adjustment efficiency parameter.
In some embodiments, determining the gel ionization efficiency deviation ratio from the desired gel ionization efficiency and the reference gel ionization efficiency for each time point may specifically include:
Determining a sequence of gel ionization efficiency residuals from the expected gel ionization efficiency and the reference gel ionization efficiency residuals for each time point;
determining the average value of gel ionization efficiency residual values in the gel ionization efficiency residual sequence;
determining the fluctuation rate of gel ionization efficiency residual values in the gel ionization efficiency residual value sequence;
And obtaining the gel ionization efficiency deviation ratio of the ion exchange ultrapure water according to the ratio of the average value of the gel ionization efficiency residual values to the fluctuation rate of the gel ionization efficiency residual values.
In some embodiments, correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value may specifically include:
Determining the average value of gel ionization parameter values in the gel ionization parameter value sequence to obtain the average value of the gel ionization parameter;
performing offset calculation on each gel ionization parameter value according to the gel ionization parameter mean value to obtain gel ionization parameter offset of each gel ionization parameter value;
comparing the gel ionization parameter deviation with a preset gel ionization parameter deviation, and when the gel ionization parameter deviation is larger than the preset gel ionization parameter deviation, performing difference correction on a gel ionization parameter value corresponding to the gel ionization parameter deviation through the corrected gel ionization value to obtain each corrected gel ionization parameter value;
And recombining the gel ionization parameter values according to each corrected gel ionization parameter value, thereby obtaining a corrected gel ionization parameter value sequence.
In a second aspect, the present application provides an ion exchange ultrapure water device comprising an ionization parameter control unit comprising:
The gel ionization parameter value acquisition module is used for sampling gel ionization parameter values when gel resin exchanges ultrapure water in the ion exchange ultrapure water equipment, and determining a gel ionization parameter value sequence according to the gel ionization parameter values obtained by sampling;
The gel ionization selection quantity determining module is used for obtaining a historical gel ionization parameter value sequence, discretizing historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity;
a corrected gel ionization value determining module for obtaining a desired gel ionization efficiency and a reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio from the desired gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water from the gel ionization efficiency deviation ratio and the gel ionization selection amount;
The gel ionization parameter fitness determining module is used for correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity;
The ion exchange ultrapure water regulating module is used for comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly regulating the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
In a third aspect, the present application provides a computer apparatus including a memory storing a code and a processor configured to acquire the code and execute the above-described ion exchange ultrapure water apparatus control method.
In a fourth aspect, the present application provides a computer-readable storage medium storing a computer program which, when executed by a processor, implements the above-described ion exchange ultrapure water device control method.
The technical scheme provided by the embodiment of the application has the following beneficial effects:
in the ion exchange ultrapure water equipment and the control method thereof provided by the application, firstly, gel ionization parameter values during gel resin exchange ultrapure water in the ion exchange ultrapure water equipment are sampled, and a gel ionization parameter value sequence is determined according to the gel ionization parameter values obtained by sampling; acquiring a historical gel ionization parameter value sequence, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity; acquiring expected gel ionization efficiency and reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio according to the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount; correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity; comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and adjusting the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
In the application, the gel ionization parameter is comprehensively optimized by taking the ion exchange ultrapure water equipment as a background through multiple steps, firstly, a gel ionization parameter value sequence is obtained by sampling from actual operation, the gel ionization parameter dispersion degree and the gel ionization selection quantity are calculated by combining historical gel ionization parameter data so as to evaluate the suitability of the parameter, then, the modified gel ionization value is obtained by comparing the expected gel ionization efficiency with the reference gel ionization efficiency, the ionization parameter of the ion exchange ultrapure water is further optimized, the gel ionization parameter suitability is determined according to the modified parameter value sequence and is used for judging the overall superiority of the parameter, finally, the gel ionization parameter suitability is compared with a preset value, and when the gel ionization parameter suitability is higher than the preset value, the exchange efficiency of the ion exchange ultrapure water process can be effectively improved by adjusting the gel resin particle size.
Drawings
FIG. 1 is an exemplary flow chart of a method of controlling an ion exchange ultrapure water device according to some embodiments of the present application;
FIG. 2 is a schematic diagram of exemplary hardware and/or software of an ionization parameter control unit shown according to some embodiments of the present application;
fig. 3 is a schematic view showing a configuration of a computer apparatus to which a control method of an ion exchange ultrapure water apparatus is applied, according to some embodiments of the present application.
Detailed Description
In order to better understand the above technical solutions, the following detailed description will refer to the accompanying drawings and specific embodiments. Referring to fig. 1, which is an exemplary flowchart of an ion exchange ultrapure water device control method according to some embodiments of the present application, the ion exchange ultrapure water device control method 100 mainly includes the steps of:
in step 101, gel ionization parameter values of gel resin exchange ultrapure water in the ion exchange ultrapure water device are sampled, and a gel ionization parameter value sequence is determined from the sampled gel ionization parameter values.
Ion exchange ultrapure water is a water treatment technology, and the principle is that ion exchange resin is utilized to remove ions in water, the ion exchange resin is a high molecular compound, has a specific structure and can selectively adsorb and release the ions in water, wherein gel resin is one of the ion exchange resins, and the gel resin is suitable for adsorbing inorganic ions and has a smaller diameter of generally 0.3-0.6 nm.
In particular, the gel ionization parameter values when the gel resin exchanges ultrapure water are sampled at equal time intervals, for example, by a gel resin exchange ultrapure water device, the gel ionization parameter values sampled every 1 hour are set, the ionization parameter values sampled at 1 hour are X1, the ionization parameter values sampled at 2 hours are X2, the ionization parameter values sampled at 3 hours are X3, and so on, and all the gel ionization parameter values within the sampling time are obtained.
In specific implementation, the gel ionization parameter values obtained by each sampling are combined according to the time sequence of sampling, so as to obtain a gel ionization parameter value sequence, for example, the gel ionization parameter values are sampled every 1 hour, and the following data are obtained: hour 1: x1=10, 1 h: x2=12, hour 2: x3=15, 3 rd hour: x4=14, 4 th hour: x5=11, 5 th hour: x6=13, then the sequence of gel ionization parameter values is: {10,12,15,14,11,13}.
The gel ionization parameter values include gel ionization pH parameter values, gel ionization temperature parameter values and gel ionization conductivity parameter values, and the gel ionization parameter value sequence is a set of data obtained by sampling the gel ionization pH parameter values, the gel ionization temperature parameter values or the gel ionization conductivity parameter values at different time points when gel resin exchanges ultrapure water in an ion exchange ultrapure water device.
In step 102, a historical gel ionization parameter value sequence is obtained, historical gel ionization parameter values in the historical gel ionization parameter value sequence are discretized to obtain gel ionization parameter dispersion, and gel ionization parameter values in the gel ionization parameter value sequence are selected according to the gel ionization parameter dispersion to obtain gel ionization selection quantity.
In some embodiments, the historical gel ionization parameter value sequence is obtained in a time sequence from an ion exchange ultrapure water parameter log that records all ionization parameter value data of the history.
In some embodiments, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain the gel ionization parameter dispersion specifically may adopt the following formula, namely:
Acquiring each historical gel ionization parameter value in the historical gel ionization parameter value sequence;
acquiring the total number of historical gel ionization parameter values in the historical gel ionization parameter value sequence;
determining the average value of the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain the average value of the historical gel ionization parameter;
Determining a gel ionization parameter dispersion of the historical gel ionization parameter values from the total number of historical gel ionization parameter values and the historical gel ionization parameter mean, wherein the gel ionization parameter dispersion is determined by the following formula:
Wherein M represents the gel ionization parameter dispersion of the historical gel ionization parameter values, K represents the total number of the historical gel ionization parameter values in the historical gel ionization parameter value sequence, x i represents the ith historical gel ionization parameter value in the historical gel ionization parameter value sequence, The average of the historical gel ionization parameter values in the sequence of historical gel ionization parameter values.
It should be noted that, the historical gel ionization parameter value sequence is obtained by combining values acquired by each gel ionization parameter at different historical time points, and the gel ionization parameter dispersion is a value obtained by discretizing the gel ionization parameter values in the historical gel ionization parameter value sequence, and is used for describing trends and rules in the historical gel ionization parameter value sequence and is used as an important reference value for subsequent selected analysis, so that the evaluation of the adjustment effect can be assisted, and if the dispersion of the adjusted parameter value sequence is reduced, the adjustment process is indicated to make the data more stable, thereby achieving a better ionization effect.
In some embodiments, the gel ionization parameter values in the gel ionization parameter value sequence are selected and evaluated according to the gel ionization parameter dispersion, so that the gel ionization selection amount can be obtained specifically by the following ways:
obtaining each gel ionization parameter value from the sequence of gel ionization parameter values;
Acquiring gel ionization parameter dispersion of historical gel ionization parameter values;
Determining a gel ionization parameter adjustment efficiency parameter according to the number of all adjustment parameters involved in the gel ionization process;
determining a time information value corresponding to each gel ionization parameter value collected in the gel ionization parameter value sequence;
determining an acquisition time upper limit information value corresponding to the gel ionization parameter value in the gel ionization parameter value sequence;
Determining a gel ionization selection amount of the gel ionization parameter value according to the gel ionization parameter value, the gel ionization parameter dispersion, the gel ionization parameter adjustment efficiency parameter, the time information value and the acquired time upper limit information value, wherein the gel ionization selection amount is determined by the following formula:
Wherein W represents a gel ionization selection amount of gel ionization parameter values, ρ t represents a gel ionization parameter value with a time information value of t in a gel ionization parameter value sequence, η represents a selection coefficient, the calibration is constant, the value range is between 0 and 1, The average value of the gel ionization parameter values in the gel ionization parameter value sequence is represented, M represents the dispersion of the gel ionization parameter, l represents the acquisition time upper limit information value of the gel ionization parameter value, t represents the time information value of the acquisition gel ionization parameter value, and ω represents the gel ionization parameter adjustment efficiency parameter.
It should be noted that, in the present application, the selection is a process of determining a gel ionization selection amount, the degree of influence of the gel ionization parameter value sequence obtained by sampling on the ion exchange ultrapure water can be known by the size of the selection amount, when the gel ionization selection amount is a larger value, it is indicated that the sampled ionization parameter value is more beneficial to the ion exchange ultrapure water in the ion exchange ultrapure water process, otherwise, the influence effect is small, the beneficial to the ion exchange ultrapure water process is poor, in addition, the gel ionization selection amount is an index value measuring the gel ionization parameter value sequence obtained by sampling, and the determination of the gel ionization selection amount is used for solving the problem of poor beneficial and reference properties of sampled data in the sampling process, so as to improve the stability of the ion exchange ultrapure water process.
It should be noted that the gel ionization parameter adjustment efficiency parameter is a value determined by the number of all adjustment parameters affecting the gel ionization process, and is used to optimize the ionization process to improve the ionization efficiency, for example, 3 adjustment parameters are a gel conductivity adjustment parameter, a gel temperature adjustment parameter, and a gel pH adjustment parameter, and in specific implementation, the gel ionization parameter adjustment efficiency parameter is a value of 3.
In step 103, a desired gel ionization efficiency and a reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point are obtained, a gel ionization efficiency deviation ratio is determined from the desired gel ionization efficiency and the reference gel ionization efficiency at each time point, and a corrected gel ionization value of the ion-exchanged ultrapure water is determined from the gel ionization efficiency deviation ratio and the gel ionization selection amount.
In a specific implementation, the expected gel ionization efficiency of the ion exchange ultrapure water at each time point and the reference gel ionization efficiency are obtained, wherein the expected gel ionization efficiency is determined on the basis of theoretical calculation or experiments, and represents the expected gel ionization efficiency of the gel resin exchange ultrapure water under specific conditions, and the expected gel ionization efficiency at 15 minutes at the time point after the ion exchange ultrapure water is started is 22%, the expected gel ionization efficiency at 30 minutes at the time point is 34% and the expected gel ionization efficiency at 45 minutes at the time point is 41% according to factors such as equipment design and reaction dynamics; the reference gel ionization efficiency is set according to historical data, known parameters or standards, and can be a reference value set by analyzing and processing a plurality of experimental results under similar conditions at a specific time point, for example, the reference gel ionization efficiency at 15 minutes at the time point after the start of the ion exchange of the ultrapure water is 23%, the reference gel ionization efficiency at 30 minutes at the time point after the start of the ion exchange of the ultrapure water is 30%, and the reference gel ionization efficiency at 45 minutes at the time point after the start of the ion exchange of the ultrapure water is 39%.
In some embodiments, determining the gel ionization efficiency deviation ratio from the desired gel ionization efficiency and the reference gel ionization efficiency for each time point may specifically be performed by:
determining residual values of the expected gel ionization efficiency and the reference gel ionization efficiency at each time point to obtain a gel ionization efficiency residual value sequence;
determining the average value of gel ionization efficiency residual values in the gel ionization efficiency residual sequence;
determining the fluctuation rate of gel ionization efficiency residual values in the gel ionization efficiency residual value sequence;
And obtaining the gel ionization efficiency deviation ratio of the ion exchange ultrapure water according to the ratio of the average value of the gel ionization efficiency residual values to the fluctuation rate of the gel ionization efficiency residual values.
In a specific implementation, the gel ionization efficiency residual value sequence is composed of the residual values of the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, for example, the expected gel ionization efficiencies respectively corresponding to time points of 10 minutes, 20 minutes and 30 minutes are 32%, 41% and 45%, and the reference gel ionization efficiencies are 31.5%, 39% and 46%, so that the gel ionization efficiency residual value sequence is [05%,2% and-1% ].
In a specific implementation, the fluctuation rate of the gel ionization efficiency residual value may be obtained by calculating a standard deviation of gel ionization efficiency residual values in the gel ionization efficiency residual value sequence, which is not described herein.
It should be noted that, the deviation ratio of the gel ionization efficiency may help to evaluate the overall performance of the gel ionization efficiency, if the deviation ratio is close to zero or is a negative number, it indicates that the adjustment effect is better, the gel ionization efficiency is closer to the expected value, and if the deviation ratio is a positive number, it indicates that the deviation of the gel ionization efficiency from the expected value is larger, and it is necessary to further optimize the adjustment parameters.
In some embodiments, the determination of the corrected gel ionization value of the ion-exchanged ultrapure water from the gel ionization efficiency deviation ratio and the gel ionization selection amount may specifically be performed in such a manner that:
acquiring final expected gel ionization efficiency and final reference gel ionization efficiency;
obtaining gel ionization efficiency deviation ratio of the ion exchange ultrapure water;
gel ionization selection quantity for obtaining gel ionization parameter value
Determining a dimensionless data coefficient;
Determining a corrected gel ionization value of the ion-exchanged ultrapure water based on the final desired gel ionization efficiency, the final reference gel ionization efficiency, a gel ionization efficiency deviation ratio of the ion-exchanged ultrapure water, the data dimensionless coefficient, and a gel ionization selection amount of the gel ionization parameter value;
Wherein delta represents a corrected gel ionization value of the ion-exchanged ultrapure water, epsilon represents a data dimensionless coefficient, W represents a gel ionization selection amount of the gel ionization parameter value, p and q represent a final desired gel ionization efficiency and a final reference gel ionization efficiency, respectively, Represents the gel ionization efficiency deviation ratio of the ion-exchanged ultrapure water.
In particular, the final desired gel ionization efficiency refers to the total desired ionization efficiency in the whole process of ion-exchanging ultrapure water, the total desired ionization efficiency is obtained by analyzing, setting and planning the measured desired ionization efficiency after the whole process of ion-exchanging ultrapure water is completed a plurality of times, for example, the final desired gel ionization efficiency is obtained by analyzing and calculating the final gel ionization efficiency after the whole process of ion-exchanging ultrapure water is completed in a large amount of historical ion-exchanging ultrapure water by a computer, and the final reference gel ionization efficiency refers to a reference ionization efficiency which is set according to the efficiency standard of ion-exchanging ultrapure water after the whole process of ion-exchanging ultrapure water is completed, and is generally 99.98%.
It should be noted that, the data dimensionless number refers to a scaling factor or a scaling factor for converting original data into dimensionless data in a data dimensionless number processing process, and generally any one of 0 to 1 is selected as the data dimensionless number, for example, 0.6 is selected as the data dimensionality number, and the data dimensionality number plays a role in normalizing a data scale in data processing, so that data in different dimensions can have a unified scale range, and the influence caused by different dimensions is eliminated, so that the data can better adapt to the processing and calculation of a model.
It should be noted that the corrected gel ionization value is a correction value for gel ionization efficiency in ion-exchange ultrapure water for more accurately representing gel ionization efficiency in ion-exchange ultrapure water, and can be calculated by taking into consideration the desired gel ionization efficiency, the reference gel ionization efficiency, and the gel ionization efficiency deviation ratio at each time point, which contributes to improvement of the accuracy and precision of the ion exchange in ion-exchange ultrapure water.
In step 104, each gel ionization parameter value in the gel ionization parameter value sequence is modified according to the modified gel ionization value to obtain a modified gel ionization parameter value sequence, and the gel ionization parameter fitness is determined according to the modified gel ionization parameter value sequence and the gel ionization selection quantity.
In specific implementation, each gel ionization parameter value in the gel ionization parameter value sequence is corrected according to the corrected gel ionization value, and the corrected gel ionization parameter value sequence can be obtained by the following specific method that:
Determining the average value of gel ionization parameter values in the gel ionization parameter value sequence to obtain the average value of the gel ionization parameter;
Calculating the offset of each gel ionization parameter value according to the gel ionization parameter mean value to obtain the gel ionization parameter offset of each gel ionization parameter value;
comparing the gel ionization parameter deviation with a preset gel ionization parameter deviation, and when the gel ionization parameter deviation is larger than the preset gel ionization parameter deviation, performing difference correction on a gel ionization parameter value corresponding to the gel ionization parameter deviation through the corrected gel ionization value to obtain each corrected gel ionization parameter value;
And recombining the gel ionization parameter values according to each corrected gel ionization parameter value, thereby obtaining a corrected gel ionization parameter value sequence.
In specific implementation, the gel ionization parameter offset is determined by the following formula:
wherein H j represents the gel ionization parameter offset of the jth gel ionization parameter value in the sequence of gel ionization parameter values, Represents the average value of the gel ionization parameter values in the sequence of gel ionization parameter values, and mu j represents the j-th gel ionization parameter value in the sequence of gel ionization parameter values.
In specific implementation, comparing the gel ionization parameter deviation with a preset gel ionization parameter deviation, correcting a gel ionization parameter value corresponding to the gel ionization parameter deviation, wherein the gel ionization parameter deviation is larger than the preset gel ionization parameter deviation, for example, the preset gel ionization parameter deviation is set to be 85%, and when the gel ionization parameter deviation corresponding to the gel ionization parameter value 12 is 87%, performing difference correction on the gel ionization parameter value 12, namely, subtracting the corrected gel ionization value from 12;
In specific implementation, the gel ionization parameter values are recombined according to each corrected gel ionization parameter value, so as to obtain a corrected gel ionization parameter value sequence, for example, for the gel ionization parameter values 13, 18, 20 and 32, the gel ionization parameter deviation corresponding to each gel ionization parameter value exceeds the preset gel ionization parameter deviation, then the gel ionization parameter values 13, 18, 20 and 32 are subjected to differential correction, correspondingly 12.13, 17.13, 19.13 and 31.13 are obtained, and the corrected gel ionization parameter values are correspondingly replaced by the original gel ionization parameter values, so that the corrected gel ionization parameter value sequence is obtained.
It should be noted that the offset of the preset gel ionization parameter is set through a large number of experimental analysis summary, and is used for measuring the offset of the numerical value, so as to solve the problem that the data in the acquired data have deviation, and further correct the deviation.
In some embodiments, the gel ionization parameter fitness is determined according to the modified gel ionization parameter value sequence and the gel ionization selection amount by specifically:
Obtaining a gel ionization selection quantity W of a gel ionization parameter value;
Acquiring an s-th corrected gel ionization parameter value theta s in the corrected gel ionization parameter value sequence;
determining a total number N of corrected gel ionization parameter values in the sequence of corrected gel ionization parameter values;
determining a fixed constant power term v of the corrected gel ionization parameter value;
Determining a gel ionization parameter fitness factor delta;
Determining gel ionization parameter fitness according to the gel ionization selection quantity W of the ion exchange ultrapure water, an S-th corrected gel ionization parameter value theta s in the corrected gel ionization parameter value sequence, the total number N of corrected gel ionization parameter values in the corrected gel ionization parameter value sequence and a fixed constant power term v of the corrected gel ionization parameter values, wherein the gel ionization parameter fitness is determined by the following formula:
Wherein ψ represents a gel ionization parameter fitness, W represents a gel ionization selection amount of gel ionization parameter values, θ s represents an s-th modified gel ionization parameter value in the modified gel ionization parameter value sequence, N represents a total number of modified gel ionization parameter values in the modified gel ionization parameter value sequence, v represents a fixed constant power term of the modified gel ionization parameter values, and δ represents a gel ionization parameter fitness factor.
In the embodiment of the application, the fixed constant power term is 3, and the fixed constant power term can be selected to further improve the accuracy and performance of gel ion exchange ultrapure water, so as to better control the energy consumption in the process of ion ultrapure water and improve the exchange efficiency.
In specific implementation, the gel ionization parameter fitness factor is an adjustment coefficient when determining the gel ionization parameter fitness, specifically, the gel ionization parameter fitness factor can be obtained by calculating the variance of the corrected gel ionization parameter value in the corrected gel ionization parameter value sequence and taking the logarithm of the calculated variance, and the gel ionization parameter fitness factor can be determined to help find the optimal gel ionization parameter fitness.
It should be noted that the gel ionization parameter fitness is an index for measuring the adaptability or superiority of the gel ionization parameter value sequence in a specific environment, and this index can be obtained by analyzing and calculating the corrected gel ionization parameter value sequence, specifically, the gel ionization fitness represents the performance degree of the gel ionization parameter in the process of ion exchange of ultrapure water, the purpose of the gel ionization fitness is to evaluate the effect of the gel ionization parameter value in the actual application process, and by calculating the gel ionization fitness, the adaptability degree of the gel ionization parameter value in the actual production or treatment process and the gap between the gel ionization parameter value and the expected target can be obtained, and then the gel resin particle size in the process of ion exchange of ultrapure water can be adjusted according to the gel ionization parameter fitness.
In step 105, comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness, correspondingly adjusting the gel resin particle size of the ion exchange ultrapure water.
In specific implementation, comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly adjusting the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
It should be noted that, the predetermined gel ionization parameter fitness is a value set through machine learning through a lot of experiments and experience, the value is used to measure the fitness of the ionization parameter in the process of ion exchange ultrapure water, and when the gel ionization parameter fitness exceeds the predetermined gel ionization parameter fitness, the gel resin particle size of the ion exchange ultrapure water needs to be correspondingly adjusted to improve the purity of the ion exchange ultrapure water and ensure the adsorption of the ion in the water.
It should be noted that, the size of the gel resin particles may be adjusted accordingly to increase the surface area thereof, thereby providing more adsorption sites or other ways of increasing the adsorption capacity of the resin, so as to improve the efficiency of removing the soluble ions, which is not particularly limited herein.
In addition, in another aspect of the present application, in some embodiments, the present application provides an ion exchange ultrapure water device including an ionization parameter control unit, referring to fig. 2, which is a schematic diagram of exemplary hardware and/or software of the ionization parameter control unit shown in some embodiments according to the present application, the ionization parameter control unit 200 including: the gel ionization parameter value acquisition module 201, the gel ionization selection amount determination module 202, the corrected gel ionization value determination module 203, the gel ionization parameter fitness determination module 204, and the ion exchange ultrapure water adjustment module 205 are respectively described as follows:
The gel ionization parameter value acquisition module 201 is mainly used for sampling gel ionization parameter values when gel resin exchanges ultrapure water in the ion exchange ultrapure water equipment, and determining a gel ionization parameter value sequence according to the gel ionization parameter values obtained by sampling;
The gel ionization selection quantity determining module 202 is mainly used for obtaining a historical gel ionization parameter value sequence, discretizing historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity;
A corrected gel ionization value determining module 203, wherein the corrected gel ionization value determining module 203 is mainly used for obtaining the expected gel ionization efficiency and the reference gel ionization efficiency of the ion exchange ultrapure water at each time point, determining a gel ionization efficiency deviation ratio according to the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining the corrected gel ionization value of the ion exchange ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount;
the gel ionization parameter fitness determining module 204 is mainly used for correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection amount;
The ion exchange ultrapure water regulating module 205 is mainly used for comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly regulating the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
In addition, the present application also provides a computer apparatus including a memory storing a code and a processor configured to acquire the code and execute the above-described ion exchange ultrapure water apparatus control method.
In some embodiments, reference is made to fig. 3, which is a schematic diagram of a computer apparatus to which a control method of an ion exchange ultrapure water apparatus is applied, according to some embodiments of the present application. The ion exchange ultrapure water device control method in the above-described embodiment may be realized by a computer device shown in fig. 3, which includes at least one processor 301, a communication bus 302, a memory 303, and at least one communication interface 304.
Processor 301 may be a general purpose central processing unit (central proceing unit, CPU), application-specific integrated circuit (AIC), or one or more of the methods for controlling the ion exchange ultrapure water device of the present application.
Communication bus 302 may include a path to transfer information between the above components.
The Memory 303 may be, but is not limited to, a read-only Memory (ROM) or other type of static storage device that can store static information and instructions, a random access Memory (random acce Memory, RAM) or other type of dynamic storage device that can store information and instructions, or an electrically erasable programmable read-only Memory (EEPROM), compact disc-read-only Memory (CD-ROM) or other optical disk storage, optical disk storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. The memory 303 may be stand alone and be coupled to the processor 301 via the communication bus 302. Memory 303 may also be integrated with processor 301.
The memory 303 is used for storing program codes for executing the scheme of the present application, and the processor 301 controls the execution. The processor 301 is configured to execute program code stored in the memory 303. One or more software modules may be included in the program code. The determination of the preselected gel ionization coefficient in the above-described embodiments may be accomplished by one or more software modules in program code in the processor 301 and memory 303.
Communication interface 304, using any transceiver-like device for communicating with other devices or communication networks, such as ethernet, radio access network (radio acce network, RAN), wireless local area network (wirele local area network, WLAN), etc.
In particular implementations, as an embodiment, a computer device may include multiple processors, each of which may be a single-core (ingle-CPU) processor or a multi-core (multi-CPU) processor. A processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
The computer device may be a general purpose computer device or a special purpose computer device. In a specific implementation, the computer device may be a desktop, a portable computer, a network server, a palm computer (peronal DIGITAL AITANT, PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, or an embedded device, and the embodiment of the present application is not limited to the type of computer device.
In addition, the application also provides a computer readable storage medium storing a computer program which when executed by a processor realizes the above-mentioned control method of the ion exchange ultrapure water device.
In summary, in the ion exchange ultrapure water device and the control method thereof disclosed by the embodiment of the application, firstly, gel ionization parameter values when gel resin in the ion exchange ultrapure water device exchanges ultrapure water are sampled, and a gel ionization parameter value sequence is determined according to the gel ionization parameter values obtained by sampling; acquiring a historical gel ionization parameter value sequence, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and carrying out selected evaluation on the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain a gel ionization selected quantity; acquiring expected gel ionization efficiency and reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio according to the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount; correcting the gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining the gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity; comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and adjusting the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
In the application, the gel ionization parameter is comprehensively optimized by taking the ion exchange ultrapure water equipment as a background through multiple steps, firstly, a gel ionization parameter value sequence is obtained by sampling from actual operation, the gel ionization parameter dispersion degree and the gel ionization selection quantity are calculated by combining historical gel ionization parameter data so as to evaluate the suitability of the parameter, then, the modified gel ionization value is obtained by comparing the expected gel ionization efficiency with the reference gel ionization efficiency, the ionization parameter of the ion exchange ultrapure water is further optimized, the gel ionization parameter fitness is determined according to the modified parameter value sequence and is used for judging the overall superiority of the parameter, finally, the gel ionization parameter fitness is compared with a preset value, and when the gel ionization parameter fitness is higher than the preset value, the exchange efficiency of the ion exchange ultrapure water process is improved by adjusting the gel resin particle size.
While preferred embodiments of the present application have been described, additional variations and modifications in those embodiments may occur to those skilled in the art once they learn of the basic inventive concepts. It is therefore intended that the following claims be interpreted as including the preferred embodiments and all such alterations and modifications as fall within the scope of the application.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present application without departing from the spirit or scope of the application. Thus, it is intended that the present application also include such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (10)

1. The control method of the ion exchange ultrapure water device is characterized by comprising the following steps:
Sampling gel ionization parameter values when gel resin in the ion exchange ultrapure water equipment exchanges ultrapure water, and determining a gel ionization parameter value sequence according to the gel ionization parameter values obtained by sampling;
Acquiring a historical gel ionization parameter value sequence, discretizing the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity;
acquiring expected gel ionization efficiency and reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio according to the expected gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water according to the gel ionization efficiency deviation ratio and the gel ionization selection amount;
Correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity;
Comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly adjusting the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
2. The method according to claim 1, wherein the gel ionization parameter values when the gel resin exchanges ultrapure water are sampled at equal time intervals.
3. The method of claim 1, wherein discretizing the historical gel ionization parameter values in the sequence of historical gel ionization parameter values to obtain a gel ionization parameter dispersion comprises:
Acquiring each historical gel ionization parameter value in the historical gel ionization parameter value sequence;
acquiring the total number of historical gel ionization parameter values in the historical gel ionization parameter value sequence;
determining the average value of the historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain the average value of the historical gel ionization parameter;
and determining the gel ionization parameter dispersion of the historical gel ionization parameter values according to the total number of the historical gel ionization parameter values and the historical gel ionization parameter mean value.
4. A method according to claim 3, wherein the gel ionization parameter dispersion is determined by the formula:
Wherein M represents the gel ionization parameter dispersion of the historical gel ionization parameter values, K represents the total number of the historical gel ionization parameter values in the historical gel ionization parameter value sequence, x i represents the ith historical gel ionization parameter value in the historical gel ionization parameter value sequence, The average of the historical gel ionization parameter values in the sequence of historical gel ionization parameter values.
5. The method of claim 1, wherein selecting the gel ionization parameter values in the sequence of gel ionization parameter values based on the gel ionization parameter dispersion, the obtaining the gel ionization selection quantity comprising:
obtaining each gel ionization parameter value from the sequence of gel ionization parameter values;
Acquiring gel ionization parameter dispersion of historical gel ionization parameter values;
Determining a gel ionization parameter adjustment efficiency parameter according to the number of all adjustment parameters involved in the gel ionization process;
determining a time information value of each gel ionization parameter value collected in the gel ionization parameter value sequence;
determining an acquisition time upper limit information value corresponding to the gel ionization parameter value in the gel ionization parameter value sequence;
Determining a gel ionization selection amount of the gel ionization parameter value according to the gel ionization parameter value, the gel ionization parameter dispersion, the gel ionization parameter adjustment efficiency parameter, the time information value and the acquired time upper limit information value, wherein the gel ionization selection amount is determined by the following formula:
Wherein W represents a gel ionization selection amount of the gel ionization parameter value, ρ t represents a gel ionization parameter value with a time information value of t in the gel ionization parameter value sequence, η represents a selection coefficient, is calibrated as a constant, The average value of the gel ionization parameter values in the gel ionization parameter value sequence is represented, M represents the dispersion of the gel ionization parameter, l represents the acquisition time upper limit information value of the gel ionization parameter value, t represents the time information value of the acquisition gel ionization parameter value, and ω represents the gel ionization parameter adjustment efficiency parameter.
6. The method of claim 1, wherein determining a gel ionization efficiency deviation ratio from the desired gel ionization efficiency and the reference gel ionization efficiency for each time point specifically comprises:
Determining a sequence of gel ionization efficiency residuals from the expected gel ionization efficiency and the reference gel ionization efficiency residuals for each time point;
determining the average value of gel ionization efficiency residual values in the gel ionization efficiency residual sequence;
determining the fluctuation rate of gel ionization efficiency residual values in the gel ionization efficiency residual value sequence;
And obtaining the gel ionization efficiency deviation ratio of the ion exchange ultrapure water according to the ratio of the average value of the gel ionization efficiency residual values to the fluctuation rate of the gel ionization efficiency residual values.
7. The method of claim 1, wherein correcting each gel ionization parameter value in the sequence of gel ionization parameter values based on the corrected gel ionization value comprises:
Determining the average value of gel ionization parameter values in the gel ionization parameter value sequence to obtain the average value of the gel ionization parameter;
performing offset calculation on each gel ionization parameter value according to the gel ionization parameter mean value to obtain gel ionization parameter offset of each gel ionization parameter value;
comparing the gel ionization parameter deviation with a preset gel ionization parameter deviation, and when the gel ionization parameter deviation is larger than the preset gel ionization parameter deviation, performing difference correction on a gel ionization parameter value corresponding to the gel ionization parameter deviation through the corrected gel ionization value to obtain each corrected gel ionization parameter value;
And recombining the gel ionization parameter values according to each corrected gel ionization parameter value, thereby obtaining a corrected gel ionization parameter value sequence.
8. An ion exchange ultrapure water device, comprising an ionization parameter control unit, the ionization parameter control unit comprising:
The gel ionization parameter value acquisition module is used for sampling gel ionization parameter values when gel resin exchanges ultrapure water in the ion exchange ultrapure water equipment, and determining a gel ionization parameter value sequence according to the gel ionization parameter values obtained by sampling;
The gel ionization selection quantity determining module is used for obtaining a historical gel ionization parameter value sequence, discretizing historical gel ionization parameter values in the historical gel ionization parameter value sequence to obtain gel ionization parameter dispersion, and selecting the gel ionization parameter values in the gel ionization parameter value sequence according to the gel ionization parameter dispersion to obtain gel ionization selection quantity;
a corrected gel ionization value determining module for obtaining a desired gel ionization efficiency and a reference gel ionization efficiency of the ion-exchanged ultrapure water at each time point, determining a gel ionization efficiency deviation ratio from the desired gel ionization efficiency and the reference gel ionization efficiency at each time point, and determining a corrected gel ionization value of the ion-exchanged ultrapure water from the gel ionization efficiency deviation ratio and the gel ionization selection amount;
The gel ionization parameter fitness determining module is used for correcting each gel ionization parameter value in the gel ionization parameter value sequence according to the corrected gel ionization value to obtain a corrected gel ionization parameter value sequence, and determining gel ionization parameter fitness according to the corrected gel ionization parameter value sequence and the gel ionization selection quantity;
The ion exchange ultrapure water regulating module is used for comparing the gel ionization parameter fitness with a preset gel ionization parameter fitness, and correspondingly regulating the gel resin particle size of the ion exchange ultrapure water when the gel ionization parameter fitness exceeds the preset gel ionization parameter fitness.
9. A computer apparatus comprising a memory storing a code and a processor configured to acquire the code and execute the ion exchange ultrapure water apparatus control method as set forth in any one of claims 1 to 7.
10. A computer-readable storage medium storing a computer program, wherein the computer program, when executed by a processor, implements the ion exchange ultrapure water device control method as recited in any one of claims 1 to 7.
CN202311160192.8A 2023-09-08 Ion exchange ultrapure water equipment and control method thereof Active CN117303518B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311160192.8A CN117303518B (en) 2023-09-08 Ion exchange ultrapure water equipment and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311160192.8A CN117303518B (en) 2023-09-08 Ion exchange ultrapure water equipment and control method thereof

Publications (2)

Publication Number Publication Date
CN117303518A CN117303518A (en) 2023-12-29
CN117303518B true CN117303518B (en) 2024-06-04

Family

ID=

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8367906A0 (en) * 1982-08-27 1983-08-29 Autotrol Corp PROCEDURE AND DEVICE FOR CONTROL OF A RESIN BED WATER SOFTENER
US6332110B1 (en) * 1998-12-17 2001-12-18 Perlorica, Inc. Method for monitoring advanced separation and/or ion exchange processes
CN101638255A (en) * 2009-08-07 2010-02-03 重庆汉能环保工程技术有限公司 Method for optimizing operation of desalting system of ion exchanger
EP2481713A1 (en) * 2011-01-28 2012-08-01 Judo Wasseraufbereitung GmbH Method for operating a water softening assembly and water softening assembly for executing the method
CN103439462A (en) * 2013-08-26 2013-12-11 国家电网公司 Method for dynamically monitoring regeneration of high-speed mixed bed resin for condensated water treatment in power plant
JP2015013276A (en) * 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
CN105060402A (en) * 2015-07-02 2015-11-18 杭州安耐杰科技有限公司 Simulation system for ion exchange optimization
CN109174211A (en) * 2017-06-30 2019-01-11 上海轻工业研究所有限公司 Device is monitored and controlled in the transition of ion exchange resin
JP2019166438A (en) * 2018-03-22 2019-10-03 栗田工業株式会社 Operation-control method for electric regeneration type deionization apparatus, and water-treatment apparatus
CN112147315A (en) * 2020-09-30 2020-12-29 广东核电合营有限公司 Nuclear power plant ion exchange resin purification simulation test device and test method
CN113666465A (en) * 2021-09-10 2021-11-19 上海工程技术大学 Optimization method for minimizing power consumption of ultrapure water prepared by electrodeionization method
WO2022172882A1 (en) * 2021-02-12 2022-08-18 栗田工業株式会社 Estimation device, estimation system, estimation program, and estimation method
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device
JP2023110825A (en) * 2022-01-28 2023-08-09 パナソニックIpマネジメント株式会社 Water softening device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8367906A0 (en) * 1982-08-27 1983-08-29 Autotrol Corp PROCEDURE AND DEVICE FOR CONTROL OF A RESIN BED WATER SOFTENER
US6332110B1 (en) * 1998-12-17 2001-12-18 Perlorica, Inc. Method for monitoring advanced separation and/or ion exchange processes
CN101638255A (en) * 2009-08-07 2010-02-03 重庆汉能环保工程技术有限公司 Method for optimizing operation of desalting system of ion exchanger
EP2481713A1 (en) * 2011-01-28 2012-08-01 Judo Wasseraufbereitung GmbH Method for operating a water softening assembly and water softening assembly for executing the method
JP2015013276A (en) * 2013-07-08 2015-01-22 栗田工業株式会社 Method of evaluating performance of ion exchange resin and method of determining replacement time
CN103439462A (en) * 2013-08-26 2013-12-11 国家电网公司 Method for dynamically monitoring regeneration of high-speed mixed bed resin for condensated water treatment in power plant
CN105060402A (en) * 2015-07-02 2015-11-18 杭州安耐杰科技有限公司 Simulation system for ion exchange optimization
CN109174211A (en) * 2017-06-30 2019-01-11 上海轻工业研究所有限公司 Device is monitored and controlled in the transition of ion exchange resin
JP2019166438A (en) * 2018-03-22 2019-10-03 栗田工業株式会社 Operation-control method for electric regeneration type deionization apparatus, and water-treatment apparatus
CN112147315A (en) * 2020-09-30 2020-12-29 广东核电合营有限公司 Nuclear power plant ion exchange resin purification simulation test device and test method
WO2022172882A1 (en) * 2021-02-12 2022-08-18 栗田工業株式会社 Estimation device, estimation system, estimation program, and estimation method
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device
CN113666465A (en) * 2021-09-10 2021-11-19 上海工程技术大学 Optimization method for minimizing power consumption of ultrapure water prepared by electrodeionization method
JP2023110825A (en) * 2022-01-28 2023-08-09 パナソニックIpマネジメント株式会社 Water softening device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex MineWater Matrices;Angela Isabel Pedregal Montes等;《water》;20211204(第13期);第1-19 *
Process Parameters Optimization of Gallic Acid Removal from Water by MIEX Resin Based on Response Surface Methodology;Qiang Zhou等;《processes》;20200227(第8期);第1-11页 *
延长己内酰胺离子交换树脂使用周期的方法;许科等;《云南化工》;20210630;第48卷(第6期);第79-81页 *
离子交换再生废水优化处理工艺;郎立萌等;《环境工程》;20181231;第36卷;第42-45页 *

Similar Documents

Publication Publication Date Title
CN114705990B (en) Method and system for estimating state of charge of battery cluster, electronic device and storage medium
CN104281779A (en) Abnormal data judging and processing method and device
CN117303518B (en) Ion exchange ultrapure water equipment and control method thereof
CN115980588A (en) Lithium ion battery health state estimation method based on self-encoder extraction features
CN117303518A (en) Ion exchange ultrapure water equipment and control method thereof
CN113492724B (en) SOP prediction method, storage medium and device for power battery based on Hurst index
CN116070719B (en) Distributed training efficient communication method and system across computing nodes
CN117214742A (en) State analysis method and device for lithium battery and electronic equipment
CN116165547A (en) Method, system, device and storage medium for calculating and correcting voltage of lithium battery
CN116125291A (en) Battery energy state estimation method based on OCV curve segmentation and storage medium
CN113777497B (en) Online SOC and SOH joint estimation method and device for degraded battery, storage medium and electronic equipment
CN113988676B (en) Safety management method and system for water treatment equipment
CN115221153A (en) Missing data filling method and device and computer readable storage medium
CN111239615A (en) Method and device for determining parameters of battery model, storage medium and computer equipment
CN112036607A (en) Wind power output fluctuation prediction method and device based on output level and storage medium
CN110826023A (en) Method for improving resolution of running data of battery system
CN112418611B (en) Method for determining time stability of relationship between lake chlorophyll and nutrient salt and electronic equipment
CN117233629B (en) Method, system, equipment and medium for testing electrical performance of lithium ion battery
CN113435058B (en) Data dimension reduction method, system, terminal and medium for distribution network self-healing test model
CN114646891B (en) Residual life prediction method combining LSTM network and wiener process
CN116299038B (en) Method, system, equipment and storage medium for detecting micro short circuit of battery cell
CN117310521B (en) Method, system, equipment and storage medium for calibrating charging state of lithium ion battery
CN117290171B (en) Memory chip testing equipment and method
CN113447881B (en) Measuring method and device of intelligent electric energy meter and terminal equipment
CN111191669B (en) Data processing method, device and storage medium

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant