JP2015013276A - Method of evaluating performance of ion exchange resin and method of determining replacement time - Google Patents

Method of evaluating performance of ion exchange resin and method of determining replacement time Download PDF

Info

Publication number
JP2015013276A
JP2015013276A JP2013142789A JP2013142789A JP2015013276A JP 2015013276 A JP2015013276 A JP 2015013276A JP 2013142789 A JP2013142789 A JP 2013142789A JP 2013142789 A JP2013142789 A JP 2013142789A JP 2015013276 A JP2015013276 A JP 2015013276A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
performance
ion
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013142789A
Other languages
Japanese (ja)
Other versions
JP6191289B2 (en
Inventor
守 岩▲崎▼
Mamoru Iwasaki
守 岩▲崎▼
中馬 高明
Takaaki Chuma
高明 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013142789A priority Critical patent/JP6191289B2/en
Publication of JP2015013276A publication Critical patent/JP2015013276A/en
Application granted granted Critical
Publication of JP6191289B2 publication Critical patent/JP6191289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method of evaluating the performance of an ion exchange resin by determining equilibrium and kinetic parameters for the ion exchange reaction and a method of determining a replacement time for the ion exchange resin using the parameters obtained by the evaluation method.SOLUTION: The performance of an ion exchange resin is evaluated by mixing a salt aqueous solution of a specified concentration with a specified quantity of a regeneration type ion exchange resin to bring the salt aqueous solution in contact with the ion exchange resin, measuring the time-dependent change the electric conductivity of the salt aqueous solution after the mixing contact and evaluating the performance of the ion exchange resin on the basis of the measurement value. Preferably, a mass transfer capacity coefficient and a selectivity coefficient are determined so that a calculated value of the electric conductivity calculated on the basis of concentrations of individual ions in the aqueous solution brought into contact with the ion exchange resin fit mol electric conductivities of individual ions and measurement value of the electric conductivity.

Description

本発明はイオン交換樹脂の性能評価方法及び交換時期判断方法に関する。   The present invention relates to a method for evaluating the performance of an ion exchange resin and a method for determining a replacement time.

イオン交換樹脂(以下、単に樹脂ということがある。)を用いた純水装置において、使用樹脂の性能低下による新品樹脂との交換は、造水コストの増加を伴うため、樹脂は可能な限り、長期に渡って使用することが望ましい。その一方で、イオン交換樹脂を用いた純水製造の目的は、その用途に応じた基準を満足する水質の純水を、最適な再生頻度で必要量だけ、採水する事である。従って、製造する純水の水質が低下したり、採水量が低減する事があってはならない。   In a pure water apparatus using an ion exchange resin (hereinafter, simply referred to as a resin), replacement with a new resin due to a decrease in the performance of the resin used involves an increase in water production cost. It is desirable to use for a long time. On the other hand, the purpose of pure water production using an ion exchange resin is to collect only a necessary amount of pure water having water quality that satisfies the standard according to its use at an optimum regeneration frequency. Therefore, the quality of the pure water to be manufactured should not be reduced, and the amount of water collected should not be reduced.

従って、イオン交換樹脂が経年の使用に伴って受ける汚染や劣化によって、水質の低下や採水量の低減といった不具合を引き起こす前に、最適な使用期間で樹脂交換を行うことが望まれている。   Therefore, it is desired to perform resin replacement in an optimal period of use before causing problems such as deterioration in water quality and reduction in water collection due to contamination and deterioration that the ion exchange resin undergoes over time.

イオン交換樹脂の交換時期の判断方法の従来技術として、次の1)〜4)がある。
1) イオン交換樹脂塔の過去の運転データに基づいて、予め採水量の低下速度を一定と見なし、必要な採水量を得られなくなると想定される時期に、定期的に樹脂交換を実施する場合がある。この方法は、定量的な評価尺度を持たないため、安全側すなわちイオン交換樹脂の性能に余裕を持った状態で交換が行われ、コスト高な運転に陥る傾向となる。
2) 定期開放検査時に、イオン交換塔から、イオン交換樹脂のサンプルを採取し、イオン交換樹脂の評価指標(全交換容量、中性塩分解容量、反応速度、含水率、押し潰し強度など)を計測し、新品樹脂の指標値と相対的な比較を行って、性能の低下傾向が確認された場合に、樹脂交換を行う方法も広く行われている。しかしながら、このような指標の数値的な変化を測定することにより樹脂性能の経年的な低下を知ることができるものの、製品水質や採水量といった装置性能への直接的かつ定量的な影響評価を行うことは困難であり、これも安全側の運転となり、コスト高となる。
There are the following 1) to 4) as conventional techniques for a method for determining the replacement time of an ion exchange resin.
1) Based on the past operation data of the ion exchange resin tower, assuming that the rate of decrease in the sampling rate is assumed to be constant in advance, and periodically performing resin replacement at a time when it is assumed that the required sampling rate cannot be obtained. There is. Since this method does not have a quantitative evaluation scale, the replacement is performed on the safe side, that is, with a margin in the performance of the ion exchange resin, and the cost tends to be reduced.
2) Samples of the ion exchange resin are collected from the ion exchange tower during periodic open inspections, and the evaluation indices (total exchange capacity, neutral salt decomposition capacity, reaction rate, moisture content, crushing strength, etc.) of the ion exchange resin are obtained. A method of exchanging the resin is also widely performed when a tendency to decrease in performance is confirmed by measuring and comparing with a new resin index value. However, although it is possible to know the deterioration of the resin performance over time by measuring the numerical change of such an index, the evaluation of the direct and quantitative influence on the device performance such as product water quality and water sampling amount is performed. This is difficult, and this also leads to safe operation and high costs.

また、これらの指標が示すのは、新品と比較した相対評価でしかなく、原水の水質や装置条件、製品純水の要求水質、採水量が異なる個々の純水装置において、純水の水質や採水量に、どのような影響を及ぼすのか、直接的かつ定量的な判定を行うことが困難であった。
3) 特開2002−48776(特許4600617)には、イオン交換樹脂の速度論的なパラメータである物質移動係数(MTC)の低下を指標とする交換時期の判定方法が記載されている。しかしながら、ここで定義されたパラメータは、平衡論を考慮しない不可逆一次反応速度的なパラメータであるために、吸着された固体側イオン濃度の影響を受けるイオン交換反応速度を正確に表現することができない。そのため、装置規模のシミュレーションに用いることができないという欠点があった。その結果、これも樹脂の相対的な評価尺度の範囲を超えるものではなかった。
4) イオン交換装置の被処理水電気伝導度とイオン濃度から、総イオン負荷を計算して、イオン交換装置の採水可能量を予測計算し、再生動作の制御を行う制御装置が特開平6−55082に開示されている。この方法を用いれば、イオン交換装置の予測採水可能量をリアルタイムに推定することが可能である。しかし、イオン交換樹脂の性能低下の影響を反映させることはできないため、交換時期の判断に用いることはできない。
In addition, these indicators show only relative evaluations compared to new products, and the quality of pure water in individual water purifiers with different raw water quality and equipment conditions, product pure water requirement water quality, and sampled water volume It was difficult to make a direct and quantitative determination of how it affects the amount of water collected.
3) Japanese Patent Application Laid-Open No. 2002-48776 (Patent No. 4600617) describes a method for determining an exchange time using a decrease in mass transfer coefficient (MTC), which is a kinetic parameter of an ion exchange resin, as an index. However, since the parameters defined here are irreversible first-order kinetic parameters that do not take into account the equilibrium theory, it is not possible to accurately represent the ion-exchange reaction rate affected by the concentration of the adsorbed solid side ions. . For this reason, there has been a drawback that it cannot be used for simulation of an apparatus scale. As a result, this also did not exceed the range of the relative evaluation scale of the resin.
4) A control device that calculates the total ion load from the electric conductivity and ion concentration of the water to be treated of the ion exchange device, predicts and calculates the water sampling capacity of the ion exchange device, and controls the regeneration operation. -55082. If this method is used, it is possible to estimate in real time the predicted water withdrawal capacity of the ion exchange device. However, since the influence of the performance deterioration of the ion exchange resin cannot be reflected, it cannot be used for determining the replacement time.

特開2002−48776JP 2002-48776 A 特開平6−55082JP-A-6-55082

本発明の目的は、イオン交換樹脂の性能評価項目を用いた相対評価ではなく、イオン交換反応の平衡論、速度論的なパラメータを求める簡易なイオン交換樹脂の性能評価方法と、この方法で求めたパラメータを用いたイオン交換樹脂の交換時期判断方法を提供することにある。   The object of the present invention is not a relative evaluation using the performance evaluation items of the ion exchange resin, but a simple ion exchange resin performance evaluation method for obtaining equilibrium and kinetic parameters of the ion exchange reaction, and this method. Another object of the present invention is to provide a method for determining the replacement time of an ion exchange resin using the parameters.

本発明のイオン交換樹脂の性能評価方法は、所定濃度の塩類水溶液と、所定量の再生型イオン交換樹脂とを混合接触させ、該混合接触させた後の該塩類水溶液の電気伝導度の経時変化を測定し、この測定結果に基づいてイオン交換樹脂の性能を評価することを特徴とするものである。   The method for evaluating the performance of the ion exchange resin of the present invention is a method in which a salt aqueous solution having a predetermined concentration and a predetermined amount of a regenerative ion exchange resin are mixed and contacted, and the electrical conductivity of the salt aqueous solution after the mixed contact is changed over time. And the performance of the ion exchange resin is evaluated based on the measurement result.

前記塩類としては、アルカリ金属のハロゲン化物が好ましい。   As the salts, alkali metal halides are preferable.

本発明のイオン交換樹脂の性能評価方法の一態様では、電気伝導度の経時変化を、アニオン交換樹脂の場合にはハロゲン化物イオン濃度の経時変化曲線に変換し、カチオン交換樹脂の場合にはアルカリ金属イオン濃度の経時変化曲線に変換する。この場合、前記濃度経時変化曲線と別途実測したイオン交換樹脂の交換容量から、総括物質移動容量係数(Kfav)と選択係数(K)を決定することが好ましい。特に、イオン交換樹脂と混合接触した水溶液中の各イオンの濃度及び各イオンのモル電気伝導度とに基づいて計算した電気伝導度計算値と、電気伝導度測定値とがフィッティングするように総括物質移動容量係数と選択係数を決定することが好ましい。   In one embodiment of the performance evaluation method of the ion exchange resin of the present invention, the change in electrical conductivity over time is converted into a change curve over time in the halide ion concentration in the case of an anion exchange resin, and an alkali in the case of a cation exchange resin. Convert to a time course curve of metal ion concentration. In this case, it is preferable to determine the overall mass transfer capacity coefficient (Kfav) and the selection coefficient (K) from the concentration change curve with time and the exchange capacity of the ion exchange resin actually measured separately. In particular, the summary substance is such that the calculated electrical conductivity and the measured electrical conductivity are based on the concentration of each ion in the aqueous solution mixed and contacted with the ion exchange resin and the molar electrical conductivity of each ion. It is preferable to determine the moving capacity coefficient and the selection coefficient.

本発明のイオン交換樹脂の交換時期判断方法は、イオン交換樹脂の交換容量と、上記のイオン交換樹脂の性能評価方法で決定した総括物質移動容量係数と、選択係数との積によってイオン交換樹脂の交換時期を判断することを特徴とするものである。   The ion exchange resin replacement time determination method of the present invention is based on the product of the ion exchange resin exchange capacity, the overall mass transfer capacity coefficient determined by the above-described ion exchange resin performance evaluation method, and the selection coefficient. It is characterized by determining the replacement time.

本発明に基づいて得られた平衡論的パラメータおよび速度論的なパラメータを用いることで、原水水質、装置条件(液線速度、空間速度)や再生条件を考慮したシミュレーションが可能となり、実際に得られる水質や採水量を評価することができる。   By using the equilibrium and kinetic parameters obtained based on the present invention, it is possible to perform a simulation in consideration of the raw water quality, equipment conditions (liquid velocity, space velocity) and regeneration conditions. The quality of water and the amount of water collected can be evaluated.

シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. 実験データを示すグラフである。It is a graph which shows experimental data. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result.

本発明のイオン交換樹脂の性能評価方法は、所定濃度の塩類水溶液と、所定量の再生型イオン交換樹脂とを混合接触させ、該混合接触させた後の該塩類水溶液の電気伝導度の経時変化を測定し、この測定結果に基づいてイオン交換樹脂の性能を評価することを特徴とするものである。   The method for evaluating the performance of the ion exchange resin of the present invention is a method in which a salt aqueous solution having a predetermined concentration and a predetermined amount of a regenerative ion exchange resin are mixed and contacted, and the electrical conductivity of the salt aqueous solution after the mixed contact changes with time. And the performance of the ion exchange resin is evaluated based on the measurement result.

この塩類としては、アルカリ金属のハロゲン化物、特にNaClが好適である。この塩類水溶液は、好ましくは、下記(3)の方法で調製された濃度を有する。   As the salts, alkali metal halides, particularly NaCl, are suitable. This aqueous salt solution preferably has a concentration prepared by the following method (3).

[試験手順]
本発明方法に従って、イオン交換樹脂装置のイオン交換樹脂の性能評価を行うには、イオン交換樹脂装置の定期開放検査時に、イオン交換樹脂の一部をサンプリングし、以下の(1)〜(7)の手順よりなる回分イオン交換試験(イオン交換樹脂を塩類水溶液中に投じたときの該水溶液の電気伝導度の経時変化の測定試験)を行うのが好ましい。
[Test procedure]
In order to evaluate the performance of the ion exchange resin of the ion exchange resin apparatus according to the method of the present invention, a part of the ion exchange resin is sampled during the periodic open inspection of the ion exchange resin apparatus, and the following (1) to (7) It is preferable to carry out a batch ion exchange test (measurement test of change over time in the electric conductivity of the aqueous solution when the ion exchange resin is poured into an aqueous salt solution).

(1) 採取したイオン交換樹脂の交換容量(q[meq/mL])を計測する。 (1) The exchange capacity (q T [meq / mL]) of the collected ion exchange resin is measured.

(2) 採取したイオン交換樹脂を再生型(カチオン交換樹脂の場合はH型、アニオン交換樹脂の場合はOH型)とする。 (2) The collected ion exchange resin is regenerated (H type for cation exchange resin, OH type for anion exchange resin).

(3) 再生型としたイオン交換樹脂を正確に一定量(v[mL])計り取り、(1)で計測した交換容量にこの計り取った樹脂容量を乗じて得られる最大イオン交換可能量(q×v[meq])を演算する。そして、この最大イオン交換可能量の20〜90%、好ましくは20〜75%、より好ましくは、30〜50%に相当するNaClを、計り取った樹脂容量(v[mL])の好ましくは2〜50倍、特に好ましくは10〜30倍の超純水に溶解させる。これは、実際のイオン交換樹脂の飽和吸着量以下で行われないと、選択係数が正確に出せないことがあるからである。 (3) Accurately measure a certain amount (v [mL]) of regenerated ion exchange resin and multiply the exchange capacity measured in (1) by the measured resin capacity (maximum ion exchangeable amount ( q T × v [meq]) is calculated. Then, 20 to 90%, preferably 20 to 75%, more preferably 30 to 50% of the maximum ion exchangeable amount of NaCl corresponding to the measured resin capacity (v [mL]) is preferably 2 It is dissolved in ultrapure water of ˜50 times, particularly preferably 10 to 30 times. This is because the selection coefficient may not be accurately obtained unless it is performed below the saturated adsorption amount of the actual ion exchange resin.

NaCl濃度が高すぎると、到達電気伝導度に余ったNaClが影響し、イオン交換樹脂の吸着の影響が見えにくくなる。また、少ないとイオン交換樹脂の吸着速度が速すぎて変化の観測が困難となる。   If the NaCl concentration is too high, the excess NaCl affects the ultimate electrical conductivity, making it difficult to see the effect of adsorption of the ion exchange resin. On the other hand, if the amount is too small, the adsorption rate of the ion exchange resin is too fast, making it difficult to observe the change.

(4) 上記(3)で得られた水溶液を撹拌機付きの容器に入れる。容器の容積は、溶液の体積の1.1〜5.0倍程度が好ましい。容器は、円筒形や丸底など様々なものが用いられるが、液体が均一に撹拌されるように丸底フラスコを用いることが好ましい。 (4) The aqueous solution obtained in (3) above is placed in a container equipped with a stirrer. The volume of the container is preferably about 1.1 to 5.0 times the volume of the solution. Various containers such as a cylindrical shape and a round bottom are used, but it is preferable to use a round bottom flask so that the liquid is uniformly stirred.

このNaCl水溶液を入れる容器、張り込む液量および撹拌機インペラーの形状/寸法と回転数は、常に一定とすることが重要である。(なお、回転数は、インペラーの径によるが、周端速度が樹脂粒子の沈降速度の1〜10倍になる回転数の範囲から選ばれることが好ましい。また、回転数を上げすぎると、樹脂が粉砕して微細化し、表面積が大きくなりKfavが実際より大きくなってしまう。回転数が小さすぎると、均一に撹拌することができない。通常は600〜800rpm程度である。)これは、後で求める速度論的パラメータである総括物質移動容量係数Kfavが、イオン交換塔に当該樹脂を充填し、通水した場合、どのような液線速で用いた場合の総括物質移動容量係数に相当するかを確認し、実際の原水水質や装置条件で通水した場合のシミュレーションを行う場合に、回分試験で得られた総括物質移動容量係数を実際に運転で用いる液線速で補正して用いる必要があるためである。   It is important that the container containing the NaCl aqueous solution, the amount of liquid to be put in, and the shape / size and rotation speed of the stirrer impeller are always constant. (Note that the rotational speed depends on the diameter of the impeller, but the peripheral end speed is preferably selected from the range of the rotational speed that is 1 to 10 times the sedimentation speed of the resin particles. The surface area becomes larger and the Kfav becomes larger than the actual size.If the rotational speed is too small, uniform stirring cannot be achieved. Usually, it is about 600 to 800 rpm.) The overall mass transfer capacity coefficient Kfav, which is the kinetic parameter to be calculated, corresponds to the overall mass transfer capacity coefficient when the ion exchange column is filled with the resin and passed through the water, and at what liquid linear velocity is used. When conducting simulations when water is passed with actual raw water quality and equipment conditions, the overall mass transfer capacity coefficient obtained in the batch test is corrected with the liquid line speed actually used in operation. This is because there is a need.

また、アニオン交換樹脂の評価では、Clイオンの吸着に伴って、溶液のpHが中性からアルカリ性に変化する。そのため、試験溶液を大気と接触させておくと、大気中の炭酸ガス(CO)を吸収し、このために、計測するデータに影響を与えるところから、アニオン樹脂の評価を行う場合、試験液を張り込む容器はガスパージ可能なものとし、不活性ガス(例えばN2、Arなど)でパージしながら行うのが望ましい。 In the evaluation of the anion exchange resin, the pH of the solution changes from neutral to alkaline with the adsorption of Cl ions. Therefore, when the test solution is kept in contact with the atmosphere, carbon dioxide (CO 2 ) in the atmosphere is absorbed, and for this reason, when the anion resin is evaluated from the point that affects the data to be measured, It is desirable that the container in which the gas is put be purged with an inert gas (for example, N 2, Ar, etc.) while purging with an inert gas.

(5) 上記(4)の容器に、NaCl水溶液を張り込んだ後、液中に電気伝導度計を挿入する。 (5) After putting NaCl aqueous solution in the container of said (4), an electrical conductivity meter is inserted in a liquid.

(6) 上記(3)で計り取った再生型のイオン交換樹脂を、(4)のようにNaCl水溶液を張った撹拌機付き容器に、できるだけ瞬時に投入する。具体的には、投入する樹脂容量と同容量程度超純水を用いて、押しこむような方法が好ましい。電気伝導度の変化は投入後すぐに現れるため、5秒以内、好ましくは2秒以内に全量が投入が完了することが好ましい。ただし、本発明における樹脂の投入方法は、これに限定されるものではない。 (6) The regenerative ion exchange resin measured in (3) above is charged as quickly as possible into a container with a stirrer in which an aqueous NaCl solution is stretched as in (4). Specifically, a method of pushing in using ultrapure water having the same capacity as the resin capacity to be charged is preferable. Since the change in electrical conductivity appears immediately after charging, it is preferable that the charging is completed within 5 seconds, preferably within 2 seconds. However, the resin charging method in the present invention is not limited to this.

(7) (6)の樹脂投入完了時間を時刻ゼロとし、樹脂のイオン交換反応の進行に伴う電気伝導度の経時変化を計測する。このような回分式のイオン交換反応試験では、最も好ましいのは、カチオン交換樹脂であれば着目するカチオンの濃度変化を、アニオン交換樹脂であれば着目するアニオンの濃度変化を経時的に追跡することであるが、イオン交換反応速度は非常に速く、その濃度変化をリアルタイムで追跡するオンライン分析手法がないのが現状である。また、イオン交換反応の進行に伴って、試験液のpHも変化するが、pH計は計測に時間を要し、実際のイオン交換反応速度を追跡することはできない。従って、本発明では、電気伝導度を測定して樹脂のイオン交換反応の進行の進行を測定する。 (7) The resin charging completion time in (6) is set to time zero, and the change with time in the electrical conductivity accompanying the progress of the ion exchange reaction of the resin is measured. In such a batch-type ion exchange reaction test, it is most preferable to track the change in the concentration of the cation of interest in the case of a cation exchange resin and the change in concentration of the anion of interest in the case of an anion exchange resin over time. However, the ion exchange reaction rate is very fast, and there is no online analysis method for tracking the concentration change in real time. Further, as the ion exchange reaction proceeds, the pH of the test solution also changes. However, the pH meter requires time for measurement, and the actual ion exchange reaction rate cannot be traced. Therefore, in the present invention, the progress of the ion exchange reaction of the resin is measured by measuring the electrical conductivity.

なお、上記では、NaClを用いる例を示したが、塩類としてはこれに限定されず、アルカリ金属のハロゲン化物であれば問題なく用いることができる。好ましくは、NaCl、KClである。   In the above example, NaCl is used. However, the salt is not limited to this, and any alkali metal halide can be used without any problem. Preferred are NaCl and KCl.

また、塩類水溶液とイオン交換樹脂の容量比(塩類水溶液/イオン交換樹脂)は、2〜50、特に10〜30であることが好ましい。塩類水溶液の量が多すぎると変化量が小さく、少なすぎると分散状態が不均一になる場合があるためである。   Moreover, it is preferable that the volume ratio (salt aqueous solution / ion exchange resin) of salt aqueous solution and ion exchange resin is 2-50, especially 10-30. This is because if the amount of the salt aqueous solution is too large, the amount of change is small, and if it is too small, the dispersion state may become non-uniform.

さらに、上記の例では、塩類水溶液中にイオン交換樹脂を投入する場合について説明したが、イオン交換樹脂を攪拌機付き容器に入れておき、塩類水溶液を投入するようにしても良い。いずれの場合においても、塩類水溶液とイオン交換樹脂とのイオン交換反応による電気伝導度の経時変化を測定する。   Furthermore, in the above example, the case where the ion exchange resin is charged into the aqueous salt solution has been described. However, the aqueous salt solution may be charged after the ion exchange resin is placed in a container with a stirrer. In either case, the change over time in electrical conductivity due to the ion exchange reaction between the aqueous salt solution and the ion exchange resin is measured.

この電気伝導度の経時変化の測定値と、次の計算による電気伝導度の計算値とを対比して総括物質移動容量係数及び選択係数を求める。   The overall mass transfer capacity coefficient and the selection coefficient are obtained by comparing the measured value of the electrical conductivity with time and the calculated value of the electrical conductivity by the following calculation.

[電気伝導度の計算式]
前述の回分イオン交換試験における試験液中の着目イオン(なお、以下では塩類としてNaClを用いた場合を例示する。NaClを用いた場合、着目イオンはアニオン交換樹脂ではClイオン、カチオン交換樹脂ではNaイオンである。)の物質収支式は次式(1)で表される。
(1) 液側物質収支
[Calculation formula of electrical conductivity]
The target ion in the test solution in the batch ion exchange test described above (in the following, the case where NaCl is used as the salt is exemplified. When NaCl is used, the target ion is Cl ion in the anion exchange resin and in the cation exchange resin. The mass balance equation of Na + ions is expressed by the following equation (1).
(1) Liquid side material balance

Figure 2015013276
(2) 樹脂側物質収支
Figure 2015013276
(2) Resin-side material balance

Figure 2015013276
(3) イオン平衡関係
Figure 2015013276
(3) Ion equilibrium relationship

Figure 2015013276
Figure 2015013276

Figure 2015013276
Figure 2015013276

Figure 2015013276
Figure 2015013276

(6) 交換容量
アニオン交換樹脂の場合、その交換容量qTotal anion,を、カチオン交換樹脂の場合、その交換容量qTotal cation,を予め所定の方法で測定しておき、その測定値を以下の解析に用いる。
(6) Exchange capacity In the case of an anion exchange resin, its exchange capacity q Total anion is measured in advance by a predetermined method , and in the case of a cation exchange resin, its exchange capacity q Total cation is measured in a predetermined method. Used for analysis.

(7) 連立方程式の解法
なお、アニオン交換樹脂及びカチオン交換樹脂について、それぞれ下記のように選択係数を平衡論的パラメータとし、総括物質移動容量係数を速度論的パラメータとする。これらのパラメータの値は、後述のように、算出される電気伝導度の計算値が電気伝導度測定値と合致するように設定(フィッティング)される。例えば、パラメータの値を種々変えて電気伝導度を計算し、計算値と電気伝導度測定値とが合致したときの値をパラメータ値として設定する。
(7) Solution of simultaneous equations For the anion exchange resin and the cation exchange resin, the selection coefficient is set as an equilibrium parameter and the overall mass transfer capacity coefficient is set as a kinetic parameter as follows. As will be described later, the values of these parameters are set (fitted) so that the calculated value of calculated electrical conductivity matches the measured value of electrical conductivity. For example, the electric conductivity is calculated by changing various parameter values, and the value when the calculated value and the electric conductivity measurement value match is set as the parameter value.

Figure 2015013276
Figure 2015013276

アニオン交換樹脂の場合、式(1)、式(2)、式(3−1)、式(4)、式(5)を、カチオン交換樹脂の場合、式(1)、式(2)、式(3−2)、式(4)、式(5)を、以下の条件で連立して解くことにより、任意の時刻θにおける各イオン種の濃度、すなわち、C、CNa、COH、CClを求める。前述の通り、この濃度計測値にはパラメータの影響を受ける。
<カチオン樹脂の場合>
Na=CNa,0 at θ=0(6−1−1)
Cl=CCl,0 at θ=0〜θ(6−1−2)
ここで、CNa,0:Naの初期濃度
Cl,0:Clの初期濃度
<アニオン樹脂の場合>
Na=CNa,0 at θ=0〜θ(6−2−1)
Cl=CCl,0 at θ=0(6−2−2)
ここで、CNa,0:Naの初期濃度
Cl,0:Clの初期濃度
In the case of an anion exchange resin, the formula (1), the formula (2), the formula (3-1), the formula (4), and the formula (5) are changed. In the case of a cation exchange resin, the formula (1), the formula (2), By simultaneously solving Equations (3-2), (4), and (5) under the following conditions, the concentration of each ion species at any time θ, that is, C H , C Na , C OH , CCl is determined. As described above, this concentration measurement value is affected by parameters.
<In the case of cationic resin>
C Na = C Na, 0 at θ = 0 (6-1-1)
C Cl = C Cl, 0 at θ = 0 to θ (6-1-2)
Where C Na, 0 : Initial concentration of Na
C Cl, 0 : Initial concentration of Cl <In the case of anionic resin>
C Na = C Na, 0 at θ = 0− θ (6-2-1)
C Cl = C Cl, 0 at θ = 0 (6-2-2)
Where C Na, 0 : Initial concentration of Na
C Cl, 0 : Initial concentration of Cl

各イオンの室温(25℃)におけるモル電気伝導度は、化学便覧に、以下のように与えられている。   The molar electrical conductivity of each ion at room temperature (25 ° C.) is given in the chemical handbook as follows.

Figure 2015013276
Figure 2015013276

一般に、水溶液の電気伝導度ECSO1は、その水溶液中のイオン種、イオン濃度及びイオンのモル電気伝導度に基づいて、次式(7)によって表される。 In general, the electrical conductivity EC SO1 of an aqueous solution is expressed by the following equation (7) based on the ionic species, ion concentration, and molar electrical conductivity of ions in the aqueous solution.

Figure 2015013276
Figure 2015013276

この式(7)に、上記連立方程式を解いて得たイオン濃度CNa,CCl,C,COH,CHSiO3(これらのイオン濃度は前記パラメータ(総括物質移動容量係数及び選択係数)を含んでいる。)と、上記表1のモル電気伝導度とを代入する。そして、この(7)式で算出される電気伝導度が回分式イオン交換試験による電気伝導度の経時変化の測定値と合致するように上記パラメータ(総括物質移動容量係数、選択係数)を定める。そして、前記(1)で測定した交換容量測定値と、(2)〜(7)によって求めた総括物質移動容量係数及び選択係数とから、イオン交換樹脂の交換時期を判断する。 In this equation (7), ion concentrations C Na , C Cl , C H , C OH , C HSiO 3 obtained by solving the above simultaneous equations (these ion concentrations are the above-mentioned parameters (total mass transfer capacity coefficient and selection coefficient)). And the molar electrical conductivity of Table 1 above are substituted. Then, the above parameters (overall mass transfer capacity coefficient and selection coefficient) are determined so that the electrical conductivity calculated by the equation (7) matches the measured value of the change over time in the batch type ion exchange test. And the exchange time of an ion exchange resin is judged from the exchange capacity measured value measured by said (1), and the general mass transfer capacity | capacitance coefficient and selection coefficient which were calculated | required by (2)-(7).

具体的には、たとえば、新品のイオン交換樹脂の総括物質移動容量係数、選択係数、交換容量をそれぞれ1とし、使用後のイオン交換樹脂の総括物質移動容量係数、選択係数、交換容量の3つのパラメータの積が規定値以下となった場合に、交換時期であると判断する。この規定値は、好ましくは、0.001〜0.01の間から選択した値である。   Specifically, for example, the total mass transfer capacity coefficient, the selection coefficient, and the exchange capacity of a new ion exchange resin are each set to 1, and the total mass transfer capacity coefficient, the selection coefficient, and the exchange capacity of the ion exchange resin after use are three. When the product of the parameters falls below the specified value, it is determined that it is time to replace. This specified value is preferably a value selected from 0.001 to 0.01.

[参考例1]
新品の強塩基性アニオン交換樹脂(三菱化学株式会社製,SA12A)を用い、後述の実施例1と同一の条件で回分イオン交換試験を実施した。
[Reference Example 1]
Using a new strong basic anion exchange resin (SA12A, manufactured by Mitsubishi Chemical Corporation), a batch ion exchange test was performed under the same conditions as in Example 1 described later.

新品のSA12Aの樹脂物性値は、以下の通りである。この物性値のうち(OH,Cl)の選択係数はメーカーのカタログ値を用いている。総括物質移動容量係数Kは、回分イオン交換試験結果をフィッティングして得た値である。 The resin property values of new SA12A are as follows. The manufacturer's catalog value is used for the selection coefficient of (OH, Cl) among these physical property values. The overall mass transfer capacity coefficient K f a v is a value obtained by fitting the batch ion exchange test results.

Figure 2015013276
Figure 2015013276

これらの値を用いて計算した回分試験における溶液中のCl濃度および吸着量と平衡にある濃度Cの時間変化(計算値)を図1に示した。また、回分試験における溶液中のCl濃度および吸着量と電気伝導度の時間変化(計算値)を図2に示し、回分試験におけるpH変化(計算値)を図3に示した。 The time change (calculated value) of the concentration C * in equilibrium with the Cl concentration and the adsorption amount in the solution in the batch test calculated using these values is shown in FIG. In addition, FIG. 2 shows the time change (calculated value) of Cl concentration, adsorption amount and electric conductivity in the solution in the batch test, and FIG. 3 shows the pH change (calculated value) in the batch test.

図1の実線は、イオン交換樹脂をNaCl水溶液と接触させたときの該水溶液中のCl濃度の時間変化を示している。また点線は、水溶液中のClイオンを吸着したことで樹脂中の吸着濃度が上昇することによって、その樹脂吸着量と平衡にある水溶液中のCl濃度(仮想濃度)の計算結果を示している。任意の時間における両者の差が、イオン交換速度のドライビングフォース(式(1)における(C−C *))となる。図1の通り、当然ながら、時間の経過と共にドライビングフォースが減少し、イオン交換速度が小さくなっていく。 The solid line in FIG. 1 shows the time change of the Cl concentration in the aqueous solution when the ion exchange resin is brought into contact with the NaCl aqueous solution. The dotted line indicates the calculation result of the Cl concentration (virtual concentration) in the aqueous solution in equilibrium with the resin adsorption amount by increasing the adsorption concentration in the resin by adsorbing Cl ions in the aqueous solution. The difference between the two at an arbitrary time is the ion exchange rate driving force ((C i −C i * ) in the equation (1)). As shown in FIG. 1, as a matter of course, the driving force decreases with the passage of time, and the ion exchange rate decreases.

イオン交換樹脂をNaCl水溶液と接触させた初期の電気伝導率の変化速度は、イオン交換樹脂のイオン交換速度定数である総括物質移動係数Kの影響を受ける。一方、到達電気伝導率は、NaClがほぼ平衡吸着となるまで時間が経過した時点での電気伝導度であり、交換容量および選択係数の影響を受ける。 The initial rate of change in electrical conductivity when the ion exchange resin is brought into contact with the NaCl aqueous solution is affected by the overall mass transfer coefficient K f a v which is the ion exchange rate constant of the ion exchange resin. On the other hand, the ultimate electrical conductivity is the electrical conductivity at the time when NaCl has almost reached equilibrium adsorption, and is affected by the exchange capacity and the selection coefficient.

[実施例1]
新品のSA12Aと、実際に3年用いたSA12A(以下、使用品ということがある。)を用い、下記(1)〜(7)の手順に従って回分イオン交換試験を行った。
[Example 1]
Using a new SA12A and SA12A actually used for 3 years (hereinafter sometimes referred to as a used product), a batch ion exchange test was performed according to the following procedures (1) to (7).

≪回分イオン交換試験手順≫
(1) 各イオン交換樹脂の交換容量(q)を計測した。
新品のSA12Aの交換容量は1.29eq/Lであった。3年用いたSA12Aの交換容量は0.56eq/Lであった。
(2) 各イオン交換樹脂を4%−NaOH水溶液で十分通液し、その後超純水で一夜リンスすることによりOH型とした。
(3) 再生型としたイオン交換樹脂を正確に一定量(v=10[mL])計り取った。
≪Batch ion exchange test procedure≫
(1) The exchange capacity (q T ) of each ion exchange resin was measured.
The replacement capacity of the new SA12A was 1.29 eq / L. The exchange capacity of SA12A used for 3 years was 0.56 eq / L.
(2) Each ion exchange resin was sufficiently passed with a 4% -NaOH aqueous solution and then rinsed with ultrapure water overnight to obtain an OH type.
(3) A certain amount (v = 10 [mL]) of the regenerated ion exchange resin was accurately measured.

上記(1)で測定した交換容量に、この計り取った樹脂容量を乗じて得られる最大イオン交換可能量(q×v[meq])の35%に相当するNaCl(117mg)を、計り取った樹脂容量(v[mL])の100倍の超純水(200mL)に溶解させ、0.01mol/LのNaCl水溶液を調製した。
(4) 上記(3)で得られたNaCl水溶液の全量(200mL)を、撹拌機付きの容器(容積300mL丸底フラスコ)に入れた。撹拌機インペラーの形状は半円形状とし、寸法は直径20mm、回転数は600rpmとした。容器内をNガスでパージしながら撹拌を行った。
The exchange capacity measured in the above (1), the NaCl (117 mg) corresponding to 35% of the maximum ion-exchangeable amount obtained by multiplying the resin volume taken the balance (q T × v [meq] ), weighed Was dissolved in ultrapure water (200 mL) 100 times the resin volume (v [mL]) to prepare a 0.01 mol / L NaCl aqueous solution.
(4) The total amount (200 mL) of the NaCl aqueous solution obtained in (3) above was placed in a container with a stirrer (volume 300 mL round bottom flask). The stirrer impeller had a semicircular shape, a diameter of 20 mm, and a rotation speed of 600 rpm. Stirring was performed while purging the container with N 2 gas.

(5) 上記(4)の容器内のNaCl水溶液(200mL)中に電気伝導度計(堀場製作所(株)製ES−51)の浸漬型電極を挿入した。
(6) 上記(3)で計り取った再生型のイオン交換樹脂を、(5)の撹拌機付き容器に、10mLの超純水を用いて2秒以内で押し込んだ。
(7) 上記(6)の樹脂投入時刻を時刻ゼロとし、樹脂のイオン交換反応の進行に伴う電気伝導度の経時変化を計測した。この結果を図4に示す。
(5) The immersion type electrode (ES-51 manufactured by Horiba, Ltd.) was inserted into the NaCl aqueous solution (200 mL) in the container of (4).
(6) The regenerative ion exchange resin measured in (3) above was pushed into the container with a stirrer in (5) within 2 seconds using 10 mL of ultrapure water.
(7) The resin charging time in (6) was set to time zero, and the change with time in the electrical conductivity accompanying the progress of the ion exchange reaction of the resin was measured. The result is shown in FIG.

図4に示すように、イオン交換樹脂投入直後の電気伝導度の変化は、新品と使用品との間に大きな違いは見られない。一方、到達電気伝導度は、新品と使用品とでは、著しく異なっている。このことから、樹脂が劣化すると、速度定数が変化するだけでなく、平衡吸着物性である交換容量qや、選択係数が変化する場合があることが分かる。 As shown in FIG. 4, there is no significant difference between the new product and the used product in the change in electrical conductivity immediately after the ion exchange resin is charged. On the other hand, the ultimate electrical conductivity is remarkably different between new and used products. Therefore, when the resin is deteriorated, not only the rate constant changes, equilibrium and exchange capacity q T is adsorbed properties, it can be seen that there is a case where the selected coefficient changes.

[電気伝導度の計算値と実測値との対比によるパラメータの設定]
交換容量測定値を用いて、総括物質移動容量係数を0.25(1/sec)とし、選択係数をKCl OH=22とし、回分試験の電気伝導度変化を計算した。結果を図5に示す。図5のように、この選択係数KCl OH=22では、新品SA12A(交換容量1.29[eq/L])と使用品(同0.56[eq/L])との場合で電気伝導度に殆ど差はなかった。
[Parameter setting based on comparison between calculated and measured electrical conductivity]
Using the exchange capacity measurements, the overall mass transfer capacity coefficient was 0.25 (1 / sec), the selectivity coefficient was K 2 Cl OH = 22, and the change in electrical conductivity of the batch test was calculated. The results are shown in FIG. As shown in FIG. 5, with this selection coefficient K Cl OH = 22, the electric conduction between the new SA12A (exchange capacity 1.29 [eq / L]) and the product used (0.56 [eq / L]). There was little difference in degrees.

そこで、次に、選択係数を種々変えて、到達電気伝導率の計算を行った。結果を図6に示す。図6のように、選択係数の値を小さく設定するほど、到達電気伝導度が低下する。なお、この交換容量が0.56eq/Lである劣化SA12Aの場合、選択係数を0.4(−)に設定すると、電気伝導度の計算値と実測値が合致(フィッティング)することが認められた。その結果、電気伝導度の経時変化曲線の計算値と実測値が合致した。なお、パラメータを変化させて、計算値の曲線が実測値の曲線に合致したかの判断は、最小二乗法や各時間の実測値と計算値の誤差の絶対値の総和が最小となるパラメータの決定等、既知の方法により行われる。   Then, the ultimate electrical conductivity was calculated by changing various selection coefficients. The results are shown in FIG. As shown in FIG. 6, the ultimate electrical conductivity decreases as the value of the selection coefficient is set smaller. In the case of the deteriorated SA12A having an exchange capacity of 0.56 eq / L, when the selection coefficient is set to 0.4 (−), it is recognized that the calculated value of electrical conductivity matches the measured value (fitting). It was. As a result, the calculated value and the measured value of the electrical conductivity aging curve matched. It should be noted that by changing the parameter, the judgment of whether the calculated value curve matches the actual value curve can be made by the least square method or the parameter that minimizes the sum of the absolute value of the actual value and the calculated value error at each time. It is performed by a known method such as determination.

このように、イオン交換樹脂の性能低下は、速度論的パラメータである総括物質移動容量係数の変化だけではなく、平衡論的パラメータである交換容量及び選択係数の変化に起因する場合もある。   Thus, the performance degradation of the ion exchange resin may be caused not only by changes in the overall mass transfer capacity coefficient, which is a kinetic parameter, but also by changes in the exchange capacity and the selection coefficient, which are equilibrium parameters.

[実施例2]
新品の強塩基性アニオン交換樹脂(ランクセス会社製、M500)と、実際に3年使用したM500を用い、実施例1と同一の条件で、回分イオン交換試験を行い、交換容量、総括物質移動容量係数、選択係数を決定した。その結果を表2に示す。
[Example 2]
Using a new strong basic anion exchange resin (manufactured by LANXESS, M500) and M500 actually used for 3 years, a batch ion exchange test was conducted under the same conditions as in Example 1, and the exchange capacity and overall mass transfer capacity. Coefficients and selection coefficients were determined. The results are shown in Table 2.

Figure 2015013276
Figure 2015013276

≪イオン交換樹脂の交換時期の判断≫
上記(1)で測定した交換容量と、上記のようにして求めた総括物質移動容量係数及び選択係数からイオン交換樹脂の交換時期を判断することができる。
≪Judgment of ion exchange resin replacement time≫
The exchange time of the ion exchange resin can be determined from the exchange capacity measured in the above (1) and the general mass transfer capacity coefficient and the selection coefficient obtained as described above.

具体的には、たとえば、新品のイオン交換樹脂の総括物質移動容量係数、選択係数、交換容量をそれぞれ1とし、使用後のイオン交換樹脂の総括物質移動容量係数、選択係数、交換容量の3つのパラメータの積が規定値以下となった場合に、交換時期であると判断する。この規定値は、0.001〜0.01の間から選択された値であることが好ましい。ただし、これら判断の閾値は原水の水質や要求水質によって変動する。   Specifically, for example, the total mass transfer capacity coefficient, the selection coefficient, and the exchange capacity of a new ion exchange resin are each set to 1, and the total mass transfer capacity coefficient, the selection coefficient, and the exchange capacity of the ion exchange resin after use are three. When the product of the parameters falls below the specified value, it is determined that it is time to replace. This specified value is preferably a value selected from 0.001 to 0.01. However, the threshold for these judgments varies depending on the quality of raw water and the required water quality.

なお、上記実施例においては、総括物質移動容量係数と選択係数をフィッティングによって求めたが、実測値である電気伝導度や塩類濃度の経時変化のグラフにおいて、初期値から平衡到達伝導度の10〜70%まで、好ましくは20〜50%まで変化したときの変化率(傾き)から総括物質移動容量係数を算出しても良い。   In the above examples, the overall mass transfer capacity coefficient and the selection coefficient were determined by fitting. In the graph of the electrical conductivity and the salt concentration with time, which are actually measured values, 10 to 10 of the equilibrium reached conductivity from the initial value. The overall mass transfer capacity coefficient may be calculated from the rate of change (slope) when it changes to 70%, preferably 20 to 50%.

また、選択係数は、平衡に達した溶液の上澄組成から、式3−1又は式3−2を用いて決定してもよい。   In addition, the selection coefficient may be determined using Equation 3-1 or Equation 3-2 from the supernatant composition of the solution that has reached equilibrium.

さらに、イオン交換樹脂の交換時期については、3つのパラメータの積で判断するが、特開2012−205996号公報の段落[0031]−[0045]に記載されている破過予測シミュレーションを用いて判断することもできる。   Further, the replacement time of the ion exchange resin is determined by the product of three parameters, but is determined using a breakthrough prediction simulation described in paragraphs [0031]-[0045] of Japanese Patent Application Laid-Open No. 2012-205996. You can also

Claims (6)

所定濃度の塩類水溶液と、所定量の再生型イオン交換樹脂とを混合接触させ、該混合接触させた後の該塩類水溶液の電気伝導度の経時変化を測定し、この測定結果に基づいてイオン交換樹脂の性能を評価することを特徴とするイオン交換樹脂の性能評価方法。   A salt aqueous solution having a predetermined concentration and a predetermined amount of a regenerative ion exchange resin are mixed and contacted, and the change over time of the electrical conductivity of the salt aqueous solution after the mixed contact is measured, and ion exchange is performed based on the measurement result. A method for evaluating the performance of an ion exchange resin, characterized by evaluating the performance of the resin. 前記塩類は、アルカリ金属のハロゲン化物であることを特徴とする請求項1のイオン交換樹脂の性能評価方法。   2. The method for evaluating the performance of an ion exchange resin according to claim 1, wherein the salt is an alkali metal halide. 電気伝導度の経時変化を、アニオン交換樹脂の場合にはハロゲン化物イオン濃度の経時変化曲線に変換し、カチオン交換樹脂の場合にはアルカリ金属イオン濃度の経時変化曲線に変換することを特徴とする請求項1または2に記載のイオン交換樹脂の性能評価方法。   The time-dependent change in electrical conductivity is converted into a time-dependent curve of halide ion concentration in the case of an anion exchange resin, and is converted into a time-change curve of alkali metal ion concentration in the case of a cation exchange resin. The performance evaluation method of the ion exchange resin of Claim 1 or 2. 前記濃度経時変化曲線と別途実測したイオン交換樹脂の交換容量から、総括物質移動容量係数(Kfav)と選択係数(K)を決定することを特徴とする請求項3に記載のイオン交換樹脂の性能評価方法。   4. The performance of the ion exchange resin according to claim 3, wherein an overall mass transfer capacity coefficient (Kfav) and a selection coefficient (K) are determined from the concentration change curve and the exchange capacity of the ion exchange resin actually measured separately. Evaluation method. 水溶液中の各イオンの濃度及び各イオンのモル電気伝導度とに基づいて計算した電気伝導度計算値と、電気伝導度測定値とがフィッティングするように総括物質移動容量係数と選択係数を決定することを特徴とする請求項4に記載のイオン交換樹脂の性能評価方法。   The overall mass transfer capacity coefficient and the selection coefficient are determined so that the calculated electric conductivity calculated based on the concentration of each ion in the aqueous solution and the molar electric conductivity of each ion and the measured electric conductivity are fitted. The method for evaluating the performance of an ion exchange resin according to claim 4. イオン交換樹脂の交換容量と、請求項5のイオン交換樹脂の性能評価方法で決定した総括物質移動容量と、選択係数との積によって樹脂の交換時期を判断することを特徴とするイオン交換樹脂の交換時期判断方法。   A resin exchange time is determined by the product of the exchange capacity of the ion exchange resin, the overall mass transfer capacity determined by the performance evaluation method of the ion exchange resin according to claim 5, and a selection coefficient. Replacement time judgment method.
JP2013142789A 2013-07-08 2013-07-08 Ion-exchange resin performance evaluation method and replacement time judgment method Active JP6191289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142789A JP6191289B2 (en) 2013-07-08 2013-07-08 Ion-exchange resin performance evaluation method and replacement time judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142789A JP6191289B2 (en) 2013-07-08 2013-07-08 Ion-exchange resin performance evaluation method and replacement time judgment method

Publications (2)

Publication Number Publication Date
JP2015013276A true JP2015013276A (en) 2015-01-22
JP6191289B2 JP6191289B2 (en) 2017-09-06

Family

ID=52435483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142789A Active JP6191289B2 (en) 2013-07-08 2013-07-08 Ion-exchange resin performance evaluation method and replacement time judgment method

Country Status (1)

Country Link
JP (1) JP6191289B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114003A (en) * 2019-06-21 2020-12-22 江苏宜青众博节能环保技术研究院有限公司 Equipment for judging pollution degree of ion exchange membrane and using method thereof
CN112285043A (en) * 2020-10-15 2021-01-29 西安热工研究院有限公司 Method for testing exchange capacity of nuclear-grade lithium type cation exchange resin
CN113791043A (en) * 2021-08-16 2021-12-14 西安理工大学 Method for evaluating failure degree of ion exchange resin
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device
CN116571284A (en) * 2023-07-14 2023-08-11 湖北工业大学 Control method, system and storage medium for multistage ion exchange resin tank
CN117303518A (en) * 2023-09-08 2023-12-29 深圳市伊科赛尔环保科技有限公司 Ion exchange ultrapure water equipment and control method thereof
CN117303518B (en) * 2023-09-08 2024-06-04 深圳市伊科赛尔环保科技有限公司 Ion exchange ultrapure water equipment and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253159A (en) * 1989-03-28 1990-10-11 Hitachi Ltd Performance diagnosing device for water treating device
JPH08248019A (en) * 1995-03-08 1996-09-27 Japan Organo Co Ltd Method and system for evaluating performance of cation-exchange resin, and method for managing water processing system using the evaluation method
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2012154634A (en) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd Breakthrough time prediction method of non-regenerative ion-exchange resin device and maintenance method
JP2012205996A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253159A (en) * 1989-03-28 1990-10-11 Hitachi Ltd Performance diagnosing device for water treating device
JPH08248019A (en) * 1995-03-08 1996-09-27 Japan Organo Co Ltd Method and system for evaluating performance of cation-exchange resin, and method for managing water processing system using the evaluation method
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2012154634A (en) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd Breakthrough time prediction method of non-regenerative ion-exchange resin device and maintenance method
JP2012205996A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Operation method of ion exchange apparatus and ion exchange system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114003A (en) * 2019-06-21 2020-12-22 江苏宜青众博节能环保技术研究院有限公司 Equipment for judging pollution degree of ion exchange membrane and using method thereof
CN112285043A (en) * 2020-10-15 2021-01-29 西安热工研究院有限公司 Method for testing exchange capacity of nuclear-grade lithium type cation exchange resin
CN113791043A (en) * 2021-08-16 2021-12-14 西安理工大学 Method for evaluating failure degree of ion exchange resin
CN113791043B (en) * 2021-08-16 2023-12-22 西安理工大学 Evaluation method for failure degree of ion exchange resin
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device
JP2023034710A (en) * 2021-08-31 2023-03-13 栗田工業株式会社 Method of operating ion exchanger
JP7327450B2 (en) 2021-08-31 2023-08-16 栗田工業株式会社 How to operate an ion exchange device
CN116571284A (en) * 2023-07-14 2023-08-11 湖北工业大学 Control method, system and storage medium for multistage ion exchange resin tank
CN116571284B (en) * 2023-07-14 2023-11-10 湖北工业大学 Control method, system and storage medium for multistage ion exchange resin tank
CN117303518A (en) * 2023-09-08 2023-12-29 深圳市伊科赛尔环保科技有限公司 Ion exchange ultrapure water equipment and control method thereof
CN117303518B (en) * 2023-09-08 2024-06-04 深圳市伊科赛尔环保科技有限公司 Ion exchange ultrapure water equipment and control method thereof

Also Published As

Publication number Publication date
JP6191289B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6191289B2 (en) Ion-exchange resin performance evaluation method and replacement time judgment method
JP5923518B2 (en) Method for predicting the conductivity of a liquid mixture
CN103940946B (en) A kind of gravimetric titrimetry device and titration method with titration protection assembly
Pitkänen et al. Partial molar volume, ionization, viscosity and structure of glycine betaine in aqueous solutions
Zachariou et al. Potentiometric investigations into the acid− base and metal ion binding properties of immobilized metal ion affinity chromatographic (IMAC) adsorbents
CN103344667B (en) Lubricating oil moisture calorimetric titration rapid assay methods
CN108344789A (en) A kind of method of fluorine content in measurement continuous casting covering slag
KR102131004B1 (en) Analytical apparatus of component concentration of mixed acid solution for pickling of metal
Schrödle et al. Ion association and hydration in 3: 2 electrolyte solutions by dielectric spectroscopy: Aluminum sulfate
CN107727715A (en) A kind of content of fluoride ion assay method of soda ash product and bittern
Wang et al. Standard operating protocol for ion-exchange capacity of anion exchange membranes
JP2019098317A (en) Pure water manufacturing apparatus and pure water manufacturing method
JP6462402B2 (en) Sodium chloride concentration analysis method, sodium chloride concentration analyzer and sodium hypochlorite analyzer
JP2950534B2 (en) Method and apparatus for analyzing potassium ion content of salt
EP3614143A1 (en) Method and device to determine the hardness of water and iex material used in this method
CN105474009B (en) Coulometric titration unit
Xie et al. An Improved Hydroxide Conversion Process of Anionic Exchange Membranes for Alkaline Fuel Cells
Safronova et al. Effect of modification of the MF-4SC membranes in the potassium form with acid salts of heteropolyacids on membrane properties and characteristics of dp sensors based on them
Al’tshuler et al. Thermodynamics of ion exchange in a sulfonated polymer based on cis-tetraphenylmetacyclophanoctol
CN102590310B (en) Cuprous ion selective electrode and cuprous ion measuring method thereof
Majer et al. Adsorption of calcium and magnesium ions on surfaces
CN105353001A (en) Analysis method of high lithium potassium aluminum electrolyte molecular ratio
Spadini et al. On the stability of the AlOSi (OH) 3 2+ complex in aqueous solution
JP3401387B2 (en) Solution composition measurement system
Burakowski et al. Ultrasonic and densimetric titration applied for acid-base reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150