WO2022074820A1 - Analysis system and management system, analysis method, and analysis program - Google Patents

Analysis system and management system, analysis method, and analysis program Download PDF

Info

Publication number
WO2022074820A1
WO2022074820A1 PCT/JP2020/038280 JP2020038280W WO2022074820A1 WO 2022074820 A1 WO2022074820 A1 WO 2022074820A1 JP 2020038280 W JP2020038280 W JP 2020038280W WO 2022074820 A1 WO2022074820 A1 WO 2022074820A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid concentration
analysis
sulfuric acid
pure water
boric acid
Prior art date
Application number
PCT/JP2020/038280
Other languages
French (fr)
Japanese (ja)
Inventor
勝 千代丸
寛明 三河
友一 奥崎
満智 岡本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2020/038280 priority Critical patent/WO2022074820A1/en
Publication of WO2022074820A1 publication Critical patent/WO2022074820A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity

Definitions

  • This disclosure relates to an analysis system and a management system, an analysis method, and an analysis program.
  • etching using a treatment liquid and film treatment
  • the liquid property of the treatment liquid is controlled so that the desired surface treatment can be performed.
  • a worker or the like collects the treatment liquid on a regular basis (once / week, etc.) and conducts a liquid property test by manual analysis.
  • Patent Document 1 discloses that an etching treatment liquid (HF solution) is supplied from a treatment tank to a concentration measuring device via a pipe, and a concentration value is detected.
  • HF solution etching treatment liquid
  • the treatment liquid may undergo a sudden change in liquid properties (for example, concentration) depending on the number of parts to be treated and the material of the product. If the liquid properties of the treatment liquid are not properly maintained, the treated product may become a non-conforming product (defective product), so it is becoming more important to more accurately control the liquid properties of the treatment liquid.
  • liquid properties for example, concentration
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an analysis system and a management system capable of analyzing boric acid concentration and sulfuric acid concentration, as well as an analysis method and an analysis program. ..
  • the first aspect of the present disclosure is a measurement unit that measures the density and sound velocity of a sample, and the measurement results are obtained from the measurement unit, and the sample is based on information on the relationship between the density and the concentration of sulfuric acid and sulfuric acid with respect to the sound velocity. It is an analysis system including an analysis unit for analyzing boric acid concentration and sulfuric acid concentration.
  • the second aspect of the present disclosure is the step of measuring the density and the sound velocity of the sample, and the boric acid concentration and the sulfuric acid concentration of the sample based on the information on the relationship between the density and the sound velocity and the concentration of the boric acid and the sulfuric acid. It is an analysis method having a step of analyzing the above.
  • the third aspect of the present disclosure is a process of measuring the density and sound velocity of a sample, acquiring the measurement results, and based on the relationship information of the concentrations of boric acid and sulfuric acid with respect to the density and sound velocity, the boric acid concentration and sulfuric acid concentration of the sample. It is an analysis program for making a computer execute the process of analyzing.
  • the present disclosure has the effect of being able to analyze the boric acid concentration and the sulfuric acid concentration.
  • FIG. 1 is a diagram showing a configuration example of the surface treatment line 120.
  • the surface treatment line 120 is provided with a treatment tank 122 in which a plurality of treatment liquids are stored.
  • the surface treatment line 120 is provided with a treatment tank 122 such as a boric acid sulfuric acid treatment tank 122a and a primary water washing treatment tank 122b and a secondary water washing treatment tank 122c.
  • a crane 121 is provided above the processing tank 122, and the target component 123 is suspended by the crane 121, and the target component 123 is immersed in the processing liquid of the processing tank 122 by vertical movement.
  • Each surface treatment is performed by immersing the target component 123 in each treatment liquid in order from the upstream side of the line.
  • the boric acid sulfuric acid treatment tank 122a film treatment is performed. Then, in the primary water washing treatment tank 122b and the secondary water washing treatment tank 122c, the primary water washing and the secondary water washing are performed on the target component 123 after the film treatment. Pure water is stored in the primary water washing treatment tank 122b and the secondary water washing treatment tank 122c. Since the amount of pure water stored decreases due to evaporation or the like, pure water is replenished from a pure water line (not shown).
  • the treatment liquid stored in the boric acid sulfuric acid treatment tank 122a is used as a liquid analysis target (hereinafter referred to as “sample”) as a liquid analysis target (hereinafter referred to as “sample”) will be described as an example.
  • the treatment liquid of the boric acid sulfuric acid treatment tank 122a is specifically a boric acid sulfuric acid anodizing treatment liquid. That is, the treatment liquid contains three components of boric acid, sulfuric acid, and water (three-component mixed solution).
  • the sample may be the treatment liquid of the other treatment tank 122, or may be the pure water replenished from the pure water line. Other than the above, various solutions can be used as samples.
  • FIG. 2 is a diagram showing a configuration example when the analysis system 40 is applied to the processing tank 122.
  • the treatment tank 122 in FIG. 2 is, for example, a boric acid sulfuric acid treatment tank 122a.
  • a circulation system 130 and an analysis system 40 are connected to the processing tank 122.
  • the circulation system 130 partially extracts the treatment liquid from the treatment tank 122 by the pump 131, and returns the treatment liquid to the treatment tank 122 via the circulation line 133.
  • a part of the treatment liquid of the circulation line 133 flows through the detour line 134, the solid component is removed by the strainer 132, and the process returns to the circulation line 133.
  • a sampling line 135 is connected to the downstream side of the strainer 132 in the detour line 134.
  • the analysis system 40 collects the treatment liquid as a sample from the collection line 135 and performs analysis. In this embodiment, a case where the boric acid concentration and the sulfuric acid concentration of the treatment liquid are measured (analyzed) will be described.
  • FIG. 3 is a diagram showing a schematic configuration of the analysis system 40.
  • the analysis system 40 includes a measurement unit M1, a standard liquid tank T1, a pure water tank T2, and a control device 50 as main configurations.
  • the measurement unit M1 measures the density and sound velocity of the sample.
  • the measurement unit M1 is connected to a supply pipe L1 for supplying the sample acquired from the target device to the measurement unit M1 and a return pipe L2 for returning the sample from the measurement unit M1 to the target device.
  • the target device is the processing tank 122 in the present embodiment.
  • the target for sampling the sample is not limited to the treatment tank 122.
  • the supply pipe L1 is connected to the sampling line 135. Then, the sample is supplied to the measuring unit M1 via the valve MV11, the pump P11, the switching valve DV11, and the flow meter F1.
  • a bypass line having a valve MV14 is connected to the pump P11.
  • the return pipe L2 returns the sample measured by the measuring unit M1 to the processing tank 122.
  • the sample is returned to the processing tank 122 via the valve DV14.
  • a line having a valve MV18 is provided on the downstream side of the pump P11 (and the upstream side of the switching valve DV11) and the downstream side of the valve DV14.
  • a line having a valve MV17 is provided at the inlet and outlet of the measurement unit M1.
  • the measuring unit M1 measures the density and sound velocity of the sample.
  • the sample density is the mass per unit volume.
  • the speed of sound of a sample is the speed (sound velocity) of a wave passing through the sample.
  • FIG. 4 is a diagram illustrating the principle of density measurement.
  • the density is measured by a vibration type (vibration type density meter) as shown in FIG.
  • vibration type vibration type density meter
  • FIG. 4 When a sample is passed through the U-shaped tube K1 and vibration is applied from the outside, the U-shaped tube K1 vibrates naturally.
  • the frequency of this natural vibration depends on the mass of the flowing solution (sample).
  • the frequency of the natural vibration is proportional to the square root of the value obtained by adding the mass of the U-shaped tube K1 and the mass of the liquid. That is, the mass of the liquid can be specified by measuring the frequency of the natural vibration, and the liquid density can be obtained from the volume of the U-shaped tube K1.
  • the measuring unit M1 passes the sample and measures the density of the sample.
  • the measurement unit M1 can measure the density of the sample, it is not limited to the method shown in FIG. 4, and various density measurement methods can be applied.
  • the configuration of the measuring unit M1 is not limited to the configuration shown in FIG.
  • FIG. 5 is a diagram illustrating the principle of sound velocity measurement.
  • the speed of sound is measured by a sonicometer as shown in FIG.
  • the speed of sound of a liquid obtained by mixing a plurality of types (for example, two types) having different sound velocities changes depending on the concentration. Therefore, the ultrasonic wave W is transmitted from the ultrasonic vibrator U1 while the sample is passing through. Then, the speed of sound with respect to the sample can be obtained by measuring the time until the reflected signal is returned from the reflector U2 provided at a fixed distance.
  • the measurement unit M1 can measure the sound velocity with respect to the sample, various sound velocity measurement methods can be applied without being limited to the method shown in FIG.
  • the configuration of the measuring unit M1 is not limited to the configuration shown in FIG.
  • the density and sound velocity with respect to the sample are measured by the measuring unit M1. Since the sample is supplied to the measuring unit M1 via the supply pipe L1, the processing liquid in the processing tank 122 can be automatically measured.
  • the standard liquid tank T1 stores a standard liquid in which the concentrations of boric acid and sulfuric acid are specified in advance. That is, the standard solution is a solution in which the boric acid concentration and the sulfuric acid concentration are adjusted in advance (a three-component mixed solution of boric acid, sulfuric acid and water). Since the standard liquid is stored in the standard liquid tank T1, the liquid property does not change.
  • the standard liquid tank T1 is provided with a standard liquid supply pipe L3.
  • the standard liquid supply pipe L3 is a line for supplying the standard liquid from the standard liquid tank T1 to the measuring unit M1. Specifically, as shown in FIG. 3, the standard liquid is supplied to the measuring unit M1 via the valve MV12, the pump P12, the switching valve DV12, and the flow meter F1.
  • a bypass line having a valve MV15 is connected to the pump P12. Then, the standard liquid is returned to the standard liquid tank T1 via the valve DV15.
  • the pure water tank T2 stores pure water. That is, pure water is a solution having zero boric acid concentration and zero sulfuric acid concentration. Since the pure water is stored in the pure water tank T2, the liquid property does not change.
  • the pure water tank T2 is provided with a pure water supply pipe L4.
  • the pure water supply pipe L4 is a line for supplying pure water from the pure water tank T2 to the measuring unit M1. Specifically, as shown in FIG. 3, pure water is supplied to the measuring unit M1 via the valve MV13, the pump P13, the switching valve DV13, and the flow meter F1.
  • a bypass line having a valve MV16 is connected to the pump P13. Then, the pure water may be returned to the pure water tank T2 or may be discharged to the outside of the system.
  • the control device 50 controls various devices in the analysis system 40. Specifically, various valves and pumps are controlled to control the flow of samples.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the control device 50 according to the present embodiment.
  • the control device 50 is a computer system (computer system), for example, a CPU 11, a ROM (Read Only Memory) 12 for storing a program or the like executed by the CPU 11, and each program at the time of execution. It is provided with a RAM (Random Access Memory) 13 that functions as a work area, a hard disk drive (HDD) 14 as a large-capacity storage device, and a communication unit 15 for connecting to a network or the like.
  • a solid state drive (SSD) may be used as the large-capacity storage device.
  • SSD solid state drive
  • the control device 50 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
  • the storage medium for storing the program or the like executed by the CPU 11 is not limited to the ROM 12.
  • it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
  • a series of processing processes for realizing various functions described later is recorded in the hard disk drive 14 or the like in the form of a program, and the CPU 11 reads this program into the RAM 13 or the like to execute information processing / arithmetic processing.
  • the program may be installed in ROM 12 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • FIG. 7 is a functional block diagram showing the functions of the control device 50.
  • the control device 50 includes a sample supply unit 51, a standard liquid supply unit 52, a pure water supply unit 53, and an analysis unit 54.
  • the sample supply unit 51 controls the supply of the sample for the analysis of the sample. Specifically, the sample supply unit 51 distributes the sample to the distribution channel when measuring the sample. That is, the sample supply unit 51 controls the flow of the sample in the supply pipe L1 and the return pipe L2 so that the sample flows from the sample inlet to the measurement unit M1.
  • FIG. 8 is a diagram showing a sample flow of the analysis system 40 when supplying the sample. That is, the valve MV11, the switching valve DV11, and the valve DV14 are opened, and the sample is circulated to the measurement unit M1 as shown by the thick line in FIG.
  • the sample to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P11.
  • Other valves and pumps are preferably closed (or stopped).
  • the sample is automatically supplied to the measurement unit M1 by the control of the sample supply unit 51, so that automatic measurement can be performed. Since the sample is supplied to the measuring unit M1 through each pipe, contact with the outside air can be suppressed.
  • the standard liquid supply unit 52 controls the supply of the standard liquid (confirmation of the standard liquid). Specifically, the standard liquid supply unit 52 distributes the standard liquid to the distribution channel when measuring the standard liquid. That is, the standard liquid supply unit 52 controls the supply of the standard liquid to the measurement unit M1 by the standard liquid supply pipe L3.
  • FIG. 9 is a diagram showing the flow of the standard solution of the analysis system 40 when the standard solution is supplied. That is, the valve MV12, the switching valve DV12, and the valve DV15 are opened, and the standard liquid is circulated to the measuring unit M1 as shown by the thick line in FIG.
  • the standard liquid to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P12.
  • Other valves and pumps are preferably closed (or stopped).
  • the standard liquid is automatically supplied to the measurement unit M1 under the control of the standard liquid supply unit 52 in this way, automatic measurement with respect to the standard liquid can be performed. Since the standard liquid is supplied to the measuring unit M1 through each pipe, contact with the outside air can be suppressed.
  • the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result.
  • the concentration of boric acid and the concentration of sulfuric acid may be used for confirmation, or the density and sound velocity measured by the measuring unit M1 may be used for confirmation.
  • the standard liquid supply unit 52 supplies the standard liquid to the measurement unit M1 by the standard liquid supply pipe L3 at a predetermined cycle. That is, the reliability of the measuring unit M1 can be maintained more stably by performing the analysis with the standard solution periodically.
  • the standard solution supply unit 52 may compare the known liquid properties of the standard solution with the analysis result for the standard solution (automatic comparison process). In this case, if the analysis result is not within the reference range for the known liquid properties of the standard solution, the measurement unit M1 may be notified that an abnormality may have occurred.
  • the pure water supply unit 53 controls the supply of pure water (confirms 0 points). Specifically, the pure water supply unit 53 distributes pure water to the distribution channel when measuring the pure water. That is, the pure water supply unit 53 controls the supply of pure water to the measurement unit M1 by the pure water supply pipe L4.
  • FIG. 10 is a diagram showing the flow of pure water in the analysis system 40 when supplying pure water. That is, the valve MV13 and the switching valve DV13 are opened, and pure water is circulated to the measuring unit M1 as shown by the thick line in FIG.
  • the pure water to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P13.
  • Other valves and pumps are preferably closed (or stopped).
  • the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water with the analysis result.
  • the confirmation may be performed using the boric acid concentration and the sulfuric acid concentration, or may be confirmed using the density and sound velocity measured by the measuring unit M1.
  • the pure water supply unit 53 supplies pure water to the measurement unit M1 by the pure water supply pipe L4 at a predetermined cycle. That is, by periodically performing the analysis with pure water, the reliability of the measuring unit M1 can be maintained more stably.
  • the pure water supply unit 53 may compare the known liquid properties of the pure water with the analysis result for the pure water (automatic comparison process). In this case, if the analysis result is not within the reference range for the known liquid properties of pure water, the measuring unit M1 may be notified that an abnormality may have occurred.
  • the pure water supply process, the standard liquid supply process, and the pure water supply process are executed at different timings, but if the processes can be performed in parallel, the processes may be executed in parallel.
  • the analysis unit 54 acquires the measurement result from the measurement unit M1 and analyzes the boric acid concentration and the sulfuric acid concentration of the sample based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and the speed of sound. In this way, the analysis unit 54 converts the measurement results of the density and the speed of sound into the boric acid concentration and the sulfuric acid concentration.
  • FIG. 11 is a diagram showing an example of related information.
  • the horizontal axis is the speed of sound and the vertical axis is the density.
  • the boric acid concentration and the sulfuric acid concentration are associated with the density and the speed of sound.
  • the boric acid concentration increases as the speed of sound increases.
  • the sulfuric acid concentration increases.
  • the boric acid concentration and the sulfuric acid concentration in the sample are C1 and C2, respectively, using the relational information as shown in FIG. Can be identified.
  • the calibration curve as shown in FIG. 11 can be obtained by conducting a test or the like in advance using, for example, a three-component mixed solution of boric acid, sulfuric acid, and water.
  • the related information is not limited to the calibration curve shown in FIG. 11 as long as the density, the speed of sound, the boric acid concentration, and the sulfuric acid concentration with respect to the solution are related to each other.
  • FIG. 12 is a flowchart showing an example of the procedure of the analysis process according to the present embodiment.
  • the flow shown in FIG. 12 is executed, for example, at a predetermined timing for performing analysis.
  • the flow shown in FIG. 12 may be executed at a preset cycle for performing the analysis.
  • the sample line configuration is performed (S101). Specifically, the valve MV11, the switching valve DV11, and the valve DV14 are opened. The other valves are preferably closed.
  • the pump P11 is controlled to supply the sample to the measurement unit M1 (S102).
  • the control of the pump P11 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
  • measurement is performed by the measurement unit M1 (S103). Specifically, the density and the speed of sound are measured for the distributed samples.
  • the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S104).
  • S104 the relational information as shown in FIG. 11 is used.
  • FIG. 13 is a flowchart showing an example of the procedure of the standard liquid supply process according to the present embodiment.
  • the flow shown in FIG. 13 is executed, for example, at a predetermined timing for performing confirmation using a standard solution.
  • the flow shown in FIG. 13 may be executed at a preset cycle for performing confirmation using the standard solution.
  • the line configuration is performed (S201). Specifically, the valve MV12, the switching valve DV12, and the valve DV15 are opened. The other valves are preferably closed.
  • the pump P12 is controlled to supply the standard liquid to the measuring unit M1 (S202).
  • the control of the pump P12 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
  • measurement is performed by the measurement unit M1 (S203). Specifically, the density and the speed of sound are measured with respect to the standard liquid that is distributed.
  • the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S204).
  • the relational information as shown in FIG. 11 is used.
  • the concentration analysis of boric acid and sulfuric acid with respect to the standard solution is performed.
  • the analysis result may be compared with the known boric acid concentration and sulfuric acid concentration of the standard solution by, for example, a worker or the like.
  • the analysis result may be subjected to a comparison process with the known boric acid concentration and sulfuric acid concentration of the standard solution in the control device 50.
  • FIG. 14 is a flowchart showing an example of the procedure of the pure water supply process according to the present embodiment.
  • the flow shown in FIG. 14 is executed at a predetermined timing for performing confirmation using, for example, pure water.
  • the flow shown in FIG. 14 may be executed at a preset cycle for performing confirmation using pure water.
  • the pump P13 is controlled to supply pure water to the measurement unit M1 (S302).
  • the control of the pump P13 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
  • measurement is performed by the measurement unit M1 (S303). Specifically, the density and the speed of sound are measured with respect to the circulating pure water.
  • the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S304).
  • the relational information as shown in FIG. 11 is used.
  • the concentration analysis of boric acid and sulfuric acid with respect to pure water is performed.
  • the analysis result may be compared with the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water, for example, by a worker or the like.
  • the analysis result may be subjected to a comparison process with the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water in the control device 50.
  • the sample is based on the relationship (relationship information) of the concentrations of boric acid and sulfuric acid with respect to the density and the speed of sound.
  • the boric acid density and sulfuric acid density in the sample can be specified from the measurement results of the density and the speed of sound.
  • the relational information is represented, for example, as a calibration curve.
  • a supply pipe L1 and a return pipe L2 are provided, and the flow of the sample is controlled by the control device 50, so that automatic measurement in the measurement unit M1 becomes possible.
  • the measuring unit M1 By supplying the standard liquid to the measuring unit M1 by the standard liquid supply pipe L3, it is possible to analyze the standard liquid. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result.
  • the measuring unit M1 By supplying pure water to the measuring unit M1 through the pure water supply pipe L4, it is possible to analyze the pure water. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration (that is, 0 points) of pure water with the analysis result.
  • the management system according to this embodiment is applied to the processing tank 122 as shown in FIG. Similar to FIG. 2, the circulation system 130 and the analysis system 40 are connected to the processing tank 122.
  • An adjustment system 160 is connected to the processing tank 122. That is, the management system is composed of the analysis system 40 and the adjustment system 160.
  • the adjustment system 160 acquires the analysis result in the analysis system 40 and adjusts at least one of the boric acid concentration and the sulfuric acid concentration with respect to the sample based on the analysis result. As shown in FIG. 15, the adjustment system 160 is provided with a tank 163, a tank 162, and an addition control device 161.
  • the tank 163 stores a boric acid concentration adjusting chemical solution.
  • the tank 163 is connected to the processing tank 122 by the supply line W1. That is, the boric acid concentration adjusting chemical solution is added to the treatment solution in the treatment tank 122.
  • the supply line W1 is provided with a solenoid valve (not shown), a flow meter (not shown), and a pump (not shown). The solenoid valve and the pump are controlled by the addition control device 161 described later. The measurement result of the flow meter is transmitted to the addition control device 161.
  • the tank 162 stores the sulfuric acid concentration adjusting chemical solution.
  • the tank 162 is connected to the processing tank 122 by the supply line W2. That is, the sulfuric acid concentration adjusting chemical solution is added to the treatment solution in the treatment tank 122.
  • the supply line W2 is provided with a solenoid valve (not shown), a flow meter (not shown), and a pump (not shown).
  • the solenoid valve and the pump are controlled by the addition control device 161 described later.
  • the measurement result of the flow meter is transmitted to the addition control device 161.
  • the addition control device 161 controls the addition amount based on the analysis result of the analysis system 40.
  • the control device 50 is composed of a computer system (computer system) as shown in FIG.
  • the control device 50 and the addition control device 161 may be configured by different computer systems, or may be integrated into one computer system.
  • the addition control device 161 adjusts the boric acid concentration by adjusting the input amount of the boric acid concentration adjusting chemical solution.
  • the boric acid concentration of the treatment solution is controlled so as to be within a predetermined reference range. For example, when the boric acid concentration exceeds the upper limit of the reference range, the boric acid concentration adjusting chemical solution is added so as to reduce the boric acid concentration by a predetermined value. When the boric acid concentration falls below the lower limit of the reference range, the boric acid concentration adjusting chemical solution is added so as to raise the boric acid concentration by a predetermined value.
  • the solenoid valve is opened and the pump is used while checking the input amount with a flow meter.
  • the method for adjusting the boric acid concentration is not limited to the above. For example, the input amount may be determined according to the value of the detected boric acid concentration.
  • the addition control device 161 adjusts the sulfuric acid concentration by adjusting the input amount of the sulfuric acid concentration adjusting chemical solution.
  • the sulfuric acid concentration of the treatment solution is controlled so as to be within a predetermined reference range. For example, when the sulfuric acid concentration exceeds the upper limit of the reference range, the sulfuric acid concentration adjusting chemical solution is added so as to lower the sulfuric acid concentration by a predetermined value. When the sulfuric acid concentration falls below the lower limit of the reference range, the sulfuric acid concentration adjusting chemical solution is added so as to raise the sulfuric acid concentration by a predetermined value.
  • the solenoid valve is opened and the pump is used while checking the input amount with a flow meter.
  • the method for adjusting the sulfuric acid concentration is not limited to the above. For example, the input amount may be determined according to the value of the detected sulfuric acid concentration.
  • the management system may be provided with a notification system (not shown).
  • the notification system acquires the analysis result from the analysis system 40 and notifies the abnormality when the analysis result is not within the preset control standard range.
  • the notification may be performed in the equipment provided with the surface treatment line 120, or may be performed by transmitting information to the remote equipment. By notifying the abnormality when it is out of the control standard range, it is possible to prevent the abnormal state from being left unattended.
  • FIG. 16 is an overall configuration example when the management system according to this embodiment is applied to a production line. As shown in FIG. 16, a sample is collected from a controlled processing tank in a production line and analyzed by an analysis system 40. Then, the adjustment system 160 automatically inputs the chemical solution and the like. In this way, the treatment liquid in each management target treatment tank is managed.
  • the analysis method, and the analysis program according to the present embodiment at least one of the boric acid concentration and the sulfuric acid concentration is adjusted based on the measurement result.
  • the liquid property of the sample can be automatically adjusted. This makes it possible to reduce human error and work time by workers and the like.
  • the analysis system and management system, the analysis method, and the analysis program described in each of the above-described embodiments are grasped as follows, for example.
  • the analysis system (40) acquires measurement results from a measurement unit (M1) that measures the density and sound velocity of a sample, and the measurement unit (M1), and concentrates boric acid and sulfuric acid with respect to the density and sound velocity. It is provided with an analysis unit (54) for analyzing the boric acid concentration and the sulfuric acid concentration of the sample based on the relational information of the above.
  • the boric acid density and the sulfuric acid density in the sample are obtained from the measurement results of the sample density and the speed of sound. Can be identified.
  • the relational information is represented, for example, as a calibration curve.
  • the analysis system (40) includes a supply pipe (L1) for supplying the sample acquired from the target device to the measurement unit (M1) and a return pipe for returning the sample from the measurement unit (M1) to the target device. (L2) and a control unit for controlling the flow of the sample in the supply pipe (L1) and the return pipe (L2) may be provided.
  • a supply pipe (L1) and a feedback pipe (L2) are provided, and the flow of the sample is controlled by the control unit, so that the measurement unit (M1) can be used. Automatic measurement is possible.
  • the analysis system (40) includes a standard liquid tank (T1) for storing a standard liquid in which the concentrations of boric acid and sulfuric acid are specified in advance, and a standard liquid supply pipe for supplying the standard liquid to the measuring unit (M1). (L3) may be provided, and the control unit may control the supply of the standard liquid to the measurement unit (M1) by the standard liquid supply pipe (L3).
  • the standard liquid can be analyzed by supplying the standard liquid to the measuring unit (M1) by the standard liquid supply pipe (L3). That is, the reliability of the measuring unit (M1) can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result.
  • control unit may supply the standard liquid to the measurement unit (M1) by the standard liquid supply pipe (L3) at a predetermined cycle.
  • the analysis system (40) it is possible to periodically confirm the reliability of the measuring unit (M1) by supplying the standard liquid to the measuring unit (M1) at a predetermined cycle. Become.
  • the analysis system (40) includes a pure water tank (T2) for storing pure water and a pure water supply pipe (L4) for supplying pure water to the measurement unit (M1), and the control unit. May control the supply of pure water to the measuring unit (M1) by the pure water supply pipe (L4).
  • pure water can be analyzed for pure water by being supplied to the measuring unit (M1) by the pure water supply pipe (L4). That is, the reliability of the measuring unit (M1) can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration (that is, 0 points) of pure water with the analysis result.
  • control unit may supply pure water to the measurement unit (M1) by the pure water supply pipe (L4) at a predetermined cycle.
  • the analysis system (40) it is possible to periodically confirm the reliability of the measuring unit (M1) by supplying pure water to the measuring unit (M1) at a predetermined cycle. Become.
  • the management system acquires the analysis results of the analysis system (40) and the analysis system (40), and based on the analysis results, at least one of the boric acid concentration and the sulfuric acid concentration with respect to the sample. It is equipped with an adjustment system (160) that adjusts one side.
  • the liquid property of the sample can be automatically adjusted by adjusting at least one of the boric acid concentration and the sulfuric acid concentration based on the measurement result.
  • the adjustment system (160) may adjust the boric acid concentration by adjusting the input amount of the boric acid concentration adjusting chemical solution.
  • the boric acid concentration can be adjusted.
  • the adjustment system (160) may adjust the sulfuric acid concentration by adjusting the input amount of the sulfuric acid concentration adjusting chemical solution.
  • the sulfuric acid concentration can be adjusted.
  • the management system according to the present disclosure may be provided with a notification system for notifying an abnormality when the analysis result is not within the preset management standard range.
  • the management system it is possible to prevent the abnormal state from being left unattended by notifying the abnormality when it deviates from the control standard range.
  • the analysis method according to the present disclosure is a step of measuring the density and sound velocity of a sample, and based on the information on the relationship between the density and sound velocity and the concentration of boric acid and sulfuric acid, the boric acid concentration and sulfuric acid concentration of the sample are obtained.
  • the analysis program according to the present disclosure is a process for measuring the density and sound velocity of a sample, and the measurement results are acquired, and the boric acid concentration and sulfuric acid concentration of the sample are obtained based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and sound velocity. And let the computer perform the process of analyzing.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The objective of the present invention is to provide an analysis system and management system, an analysis method, and an analysis program capable of analyzing a boric acid concentration and a sulfuric acid concentration. An analysis system (40) comprises: a measurement unit (M1) that measures density and sound velocity with respect to a sample; and a control device (50) that acquires measurement results from the measurement unit (M1) and analyzes the sulfuric acid concentration and boric acid concentration of the sample on the basis of relationship information between the boric acid and sulfuric acid concentrations with respect to the density and sound velocity.

Description

分析システム及び管理システム、並びに分析方法、並びに分析プログラムAnalytical systems and management systems, as well as analytical methods and analytical programs
 本開示は、分析システム及び管理システム、並びに分析方法、並びに分析プログラムに関するものである。 This disclosure relates to an analysis system and a management system, an analysis method, and an analysis program.
 例えば航空機部品の生産では、処理液を用いたエッチングや皮膜処理などといった表面処理が行われる。所望の表面処理が行われるように処理液の液性は管理されている。例えば、作業員等により定期的(1回/週など)に処理液を採取して手分析により液性検査が行われている。 For example, in the production of aircraft parts, surface treatments such as etching using a treatment liquid and film treatment are performed. The liquid property of the treatment liquid is controlled so that the desired surface treatment can be performed. For example, a worker or the like collects the treatment liquid on a regular basis (once / week, etc.) and conducts a liquid property test by manual analysis.
 特許文献1には、エッチング処理液(HF溶液)をパイプを介して処理槽から濃度測定器へ供給し、濃度値を検出することが開示されている。 Patent Document 1 discloses that an etching treatment liquid (HF solution) is supplied from a treatment tank to a concentration measuring device via a pipe, and a concentration value is detected.
特開平7-306146号公報Japanese Unexamined Patent Publication No. 7-306146
 処理液は、処理を行う部品数や製品の材質などに応じて、液性(例えば濃度)の急激な変化が起こる場合がある。処理液の液性が適切に保たれないと、処理した製品が不適合製品(不良品)となる場合もあるため、処理液の液性をより正確に管理することの重要性が高まっている。 The treatment liquid may undergo a sudden change in liquid properties (for example, concentration) depending on the number of parts to be treated and the material of the product. If the liquid properties of the treatment liquid are not properly maintained, the treated product may become a non-conforming product (defective product), so it is becoming more important to more accurately control the liquid properties of the treatment liquid.
 例えば硼酸と硫酸と水の3成分を含む液体に対しては、効率よく硼酸濃度と硫酸濃度を分析することが求められている。 For example, for a liquid containing three components of boric acid, sulfuric acid and water, it is required to efficiently analyze the boric acid concentration and the sulfuric acid concentration.
 本開示は、このような事情に鑑みてなされたものであって、硼酸濃度及び硫酸濃度を分析することのできる分析システム及び管理システム、並びに分析方法、並びに分析プログラムを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an analysis system and a management system capable of analyzing boric acid concentration and sulfuric acid concentration, as well as an analysis method and an analysis program. ..
 本開示の第1態様は、試料に対して密度及び音速を計測する計測部と、前記計測部から計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する分析部と、を備える分析システムである。 The first aspect of the present disclosure is a measurement unit that measures the density and sound velocity of a sample, and the measurement results are obtained from the measurement unit, and the sample is based on information on the relationship between the density and the concentration of sulfuric acid and sulfuric acid with respect to the sound velocity. It is an analysis system including an analysis unit for analyzing boric acid concentration and sulfuric acid concentration.
 本開示の第2態様は、試料に対して密度及び音速を計測する工程と、計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する工程と、を有する分析方法である。 The second aspect of the present disclosure is the step of measuring the density and the sound velocity of the sample, and the boric acid concentration and the sulfuric acid concentration of the sample based on the information on the relationship between the density and the sound velocity and the concentration of the boric acid and the sulfuric acid. It is an analysis method having a step of analyzing the above.
 本開示の第3態様は、試料に対して密度及び音速を計測する処理と、計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する処理と、をコンピュータに実行させるための分析プログラムである。 The third aspect of the present disclosure is a process of measuring the density and sound velocity of a sample, acquiring the measurement results, and based on the relationship information of the concentrations of boric acid and sulfuric acid with respect to the density and sound velocity, the boric acid concentration and sulfuric acid concentration of the sample. It is an analysis program for making a computer execute the process of analyzing.
 本開示によれば、硼酸濃度及び硫酸濃度を分析することができるという効果を奏する。 According to the present disclosure, it has the effect of being able to analyze the boric acid concentration and the sulfuric acid concentration.
本開示の第1実施形態に係る表面処理ラインの構成例を示す図である。It is a figure which shows the structural example of the surface treatment line which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る処理槽に分析システムを適用した場合の構成例を示す図である。It is a figure which shows the configuration example when the analysis system is applied to the processing tank which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る分析システムの概略構成を示す図である。It is a figure which shows the schematic structure of the analysis system which concerns on 1st Embodiment of this disclosure. 密度計測の原理を説明する図である。It is a figure explaining the principle of density measurement. 音速計測の原理を説明する図である。It is a figure explaining the principle of sound velocity measurement. 本開示の第1実施形態に係る制御装置のハードウェア構成の一例を示した図である。It is a figure which showed an example of the hardware composition of the control device which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る制御装置が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the control device which concerns on 1st Embodiment of this disclosure has. 本開示の第1実施形態に係る試料の流れを示す図である。It is a figure which shows the flow of the sample which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る標準液の流れを示す図である。It is a figure which shows the flow of the standard liquid which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る純水の流れを示す図である。It is a figure which shows the flow of pure water which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る関係情報の一例を示す図である。It is a figure which shows an example of the relational information which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る分析処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the analysis process which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る標準液供給処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the standard liquid supply processing which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る純水供給処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of pure water supply processing which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る管理システムの構成例を示す図である。It is a figure which shows the structural example of the management system which concerns on 2nd Embodiment of this disclosure. 本開示の第2実施形態に係る管理システムを生産ラインに適用した場合の構成例を示す図である。It is a figure which shows the configuration example when the management system which concerns on 2nd Embodiment of this disclosure is applied to a production line.
〔第1実施形態〕
 以下に、本開示に係る分析システム及び管理システム、並びに分析方法、並びに分析プログラムの第1実施形態について、図面を参照して説明する。
[First Embodiment]
Hereinafter, the analysis system and the management system according to the present disclosure, the analysis method, and the first embodiment of the analysis program will be described with reference to the drawings.
 図1は、表面処理ライン120の構成例を示す図である。表面処理ライン120では、複数の処理液が溜められた処理槽122が設けられている。例えば図1に示すように、表面処理ライン120には、硼酸硫酸処理槽122aや、1次水洗処理槽122b、2次水洗処理槽122cといった処理槽122が設けられている。そして、処理槽122の上部にはクレーン121が設けられており、クレーン121によって対象部品123を吊るして、上下動作により対象部品123を処理槽122の処理液に浸漬する。ラインの上流側から順番に対象部品123を各処理液に浸漬することによって、各表面処理が行われる。 FIG. 1 is a diagram showing a configuration example of the surface treatment line 120. The surface treatment line 120 is provided with a treatment tank 122 in which a plurality of treatment liquids are stored. For example, as shown in FIG. 1, the surface treatment line 120 is provided with a treatment tank 122 such as a boric acid sulfuric acid treatment tank 122a and a primary water washing treatment tank 122b and a secondary water washing treatment tank 122c. A crane 121 is provided above the processing tank 122, and the target component 123 is suspended by the crane 121, and the target component 123 is immersed in the processing liquid of the processing tank 122 by vertical movement. Each surface treatment is performed by immersing the target component 123 in each treatment liquid in order from the upstream side of the line.
 硼酸硫酸処理槽122aでは、皮膜処理が行われる。そして、1次水洗処理槽122b及び2次水洗処理槽122cでは、皮膜処理後の対象部品123に対して、1次水洗及び2次水洗が行われる。1次水洗処理槽122b及び2次水洗処理槽122cには純水が溜められている。純水は蒸発等により貯留量が減少するため、純水ライン(不図示)から純水の補給がされる。 In the boric acid sulfuric acid treatment tank 122a, film treatment is performed. Then, in the primary water washing treatment tank 122b and the secondary water washing treatment tank 122c, the primary water washing and the secondary water washing are performed on the target component 123 after the film treatment. Pure water is stored in the primary water washing treatment tank 122b and the secondary water washing treatment tank 122c. Since the amount of pure water stored decreases due to evaporation or the like, pure water is replenished from a pure water line (not shown).
 本実施形態では、硼酸硫酸処理槽122aに貯められた処理液を、液性の分析対象(以下、「試料」という)とする場合を例として説明する。硼酸硫酸処理槽122aの処理液は、具体的には硼酸硫酸アノダイズ処理液である。すなわち、処理液には、硼酸と硫酸と水の3成分が含まれている(3成分混合溶液)。試料としては、その他の処理槽122の処理液としてもよいし、純水ラインから補給される純水とすることとしてもよい。上記以外であっても、様々な溶液を試料とすることが可能である。 In the present embodiment, a case where the treatment liquid stored in the boric acid sulfuric acid treatment tank 122a is used as a liquid analysis target (hereinafter referred to as “sample”) will be described as an example. The treatment liquid of the boric acid sulfuric acid treatment tank 122a is specifically a boric acid sulfuric acid anodizing treatment liquid. That is, the treatment liquid contains three components of boric acid, sulfuric acid, and water (three-component mixed solution). The sample may be the treatment liquid of the other treatment tank 122, or may be the pure water replenished from the pure water line. Other than the above, various solutions can be used as samples.
 図2は、処理槽122に分析システム40を適用した場合の構成例を示す図である。図2の処理槽122とは、例えば硼酸硫酸処理槽122aである。処理槽122には循環システム130と分析システム40とが接続されている。 FIG. 2 is a diagram showing a configuration example when the analysis system 40 is applied to the processing tank 122. The treatment tank 122 in FIG. 2 is, for example, a boric acid sulfuric acid treatment tank 122a. A circulation system 130 and an analysis system 40 are connected to the processing tank 122.
 循環システム130は、処理槽122の処理液をポンプ131によって一部抜き取り、循環ライン133を介して処理液を処理槽122に戻す。循環ライン133におけるポンプ131の下流側では、循環ライン133の処理液の一部が迂回ライン134を流通し、ストレーナー132で固形成分が取り除かれ、循環ライン133へ戻る。迂回ライン134におけるストレーナー132の下流側には採取ライン135が接続されている。 The circulation system 130 partially extracts the treatment liquid from the treatment tank 122 by the pump 131, and returns the treatment liquid to the treatment tank 122 via the circulation line 133. On the downstream side of the pump 131 in the circulation line 133, a part of the treatment liquid of the circulation line 133 flows through the detour line 134, the solid component is removed by the strainer 132, and the process returns to the circulation line 133. A sampling line 135 is connected to the downstream side of the strainer 132 in the detour line 134.
 分析システム40は、採取ライン135より処理液を試料として採取して分析を行う。本実施形態では、処理液の硼酸濃度と硫酸濃度とを計測(分析)する場合について説明する。 The analysis system 40 collects the treatment liquid as a sample from the collection line 135 and performs analysis. In this embodiment, a case where the boric acid concentration and the sulfuric acid concentration of the treatment liquid are measured (analyzed) will be described.
 図3は、分析システム40の概略構成を示す図である。図3に示すように、分析システム40は、計測部M1と、標準液タンクT1と、純水タンクT2と、制御装置50とを主な構成として備えている。 FIG. 3 is a diagram showing a schematic configuration of the analysis system 40. As shown in FIG. 3, the analysis system 40 includes a measurement unit M1, a standard liquid tank T1, a pure water tank T2, and a control device 50 as main configurations.
 計測部M1は、試料に対して密度及び音速を計測する。計測部M1には、対象装置から取得した試料を計測部M1へ供給する供給配管L1と、計測部M1から対象装置へ試料を戻す帰還配管L2とが接続されている。対象装置とは、本実施形態では処理槽122である。試料をサンプルする対象であれは、処理槽122に限定されない。 The measurement unit M1 measures the density and sound velocity of the sample. The measurement unit M1 is connected to a supply pipe L1 for supplying the sample acquired from the target device to the measurement unit M1 and a return pipe L2 for returning the sample from the measurement unit M1 to the target device. The target device is the processing tank 122 in the present embodiment. The target for sampling the sample is not limited to the treatment tank 122.
 供給配管L1は、採取ライン135に接続されている。そして、試料は、バルブMV11、ポンプP11、切替バルブDV11、及び流量計F1を介して計測部M1へ供給される。ポンプP11にはバルブMV14を有するバイパスラインが接続されている。 The supply pipe L1 is connected to the sampling line 135. Then, the sample is supplied to the measuring unit M1 via the valve MV11, the pump P11, the switching valve DV11, and the flow meter F1. A bypass line having a valve MV14 is connected to the pump P11.
 帰還配管L2は、計測部M1において計測された試料を処理槽122へ戻している。試料は、バルブDV14を介して、処理槽122へ戻される。供給配管L1と、帰還配管L2とでは、ポンプP11の下流側(及び切替バルブDV11の上流側)とバルブDV14の下流側においてバルブMV18を有するラインが設けられている。そして、計測部M1の入口及び出口には、バルブMV17を有するラインが設けられている。 The return pipe L2 returns the sample measured by the measuring unit M1 to the processing tank 122. The sample is returned to the processing tank 122 via the valve DV14. In the supply pipe L1 and the return pipe L2, a line having a valve MV18 is provided on the downstream side of the pump P11 (and the upstream side of the switching valve DV11) and the downstream side of the valve DV14. A line having a valve MV17 is provided at the inlet and outlet of the measurement unit M1.
 計測部M1は、試料の密度と音速を計測する。試料の密度とは、単位体積当たりの質量である。試料の音速とは、試料中を通過する波の速度(音速)である。 The measuring unit M1 measures the density and sound velocity of the sample. The sample density is the mass per unit volume. The speed of sound of a sample is the speed (sound velocity) of a wave passing through the sample.
 図4は、密度計測の原理を説明する図である。例えば、密度は図4のように振動式(振動式密度計)で計測される。U字管K1に試料を通液した状態において、外部から振動を加えると、U字管K1は固有振動する。この固有振動の周波数は、通液している溶液(試料)の質量に依存する。具体的には、固有振動の周波数は、U字管K1の質量と液体の質量とを加算した値の平方根に比例する。すなわち、固有振動の周波数を測定することによって、液体の質量を特定することができ、U字管K1の容積から液体密度を求めることができる。このようにして、計測部M1では試料を通液して試料の密度を計測している。 FIG. 4 is a diagram illustrating the principle of density measurement. For example, the density is measured by a vibration type (vibration type density meter) as shown in FIG. When a sample is passed through the U-shaped tube K1 and vibration is applied from the outside, the U-shaped tube K1 vibrates naturally. The frequency of this natural vibration depends on the mass of the flowing solution (sample). Specifically, the frequency of the natural vibration is proportional to the square root of the value obtained by adding the mass of the U-shaped tube K1 and the mass of the liquid. That is, the mass of the liquid can be specified by measuring the frequency of the natural vibration, and the liquid density can be obtained from the volume of the U-shaped tube K1. In this way, the measuring unit M1 passes the sample and measures the density of the sample.
 計測部M1では試料に対して密度を計測することができれば、図4の方式に限定されず、様々な密度計測法を適用することができる。計測部M1の構成も図4の構成に限定されない。 If the measurement unit M1 can measure the density of the sample, it is not limited to the method shown in FIG. 4, and various density measurement methods can be applied. The configuration of the measuring unit M1 is not limited to the configuration shown in FIG.
 図5は、音速計測の原理を説明する図である。例えば、音速は、図5のような音波計で計測される。複数種類(例えば2種類)の音速の違うものを混ぜ合わせた液体は、濃度によって音速が変化する。このため、試料を通液している状態において超音波振動子U1から超音波Wを発信する。そして、定距離に設けた反射板U2から反射信号が返ってくるまでの時間を計測することで、試料に対する音速を求めることができる。 FIG. 5 is a diagram illustrating the principle of sound velocity measurement. For example, the speed of sound is measured by a sonicometer as shown in FIG. The speed of sound of a liquid obtained by mixing a plurality of types (for example, two types) having different sound velocities changes depending on the concentration. Therefore, the ultrasonic wave W is transmitted from the ultrasonic vibrator U1 while the sample is passing through. Then, the speed of sound with respect to the sample can be obtained by measuring the time until the reflected signal is returned from the reflector U2 provided at a fixed distance.
 計測部M1では試料に対して音速を計測することができれば、図4の方式に限定されず、様々な音速計測法を適用することができる。計測部M1の構成も図5の構成に限定されない。 If the measurement unit M1 can measure the sound velocity with respect to the sample, various sound velocity measurement methods can be applied without being limited to the method shown in FIG. The configuration of the measuring unit M1 is not limited to the configuration shown in FIG.
 このように、計測部M1において試料に対する密度と音速が計測される。計測部M1に対しては供給配管L1を介して試料が供給されるため、処理槽122の処理液の自動計測が可能となる。 In this way, the density and sound velocity with respect to the sample are measured by the measuring unit M1. Since the sample is supplied to the measuring unit M1 via the supply pipe L1, the processing liquid in the processing tank 122 can be automatically measured.
 標準液タンクT1は、硼酸及び硫酸の濃度が予め特定されている標準液を溜める。すなわち、標準液は、硼酸濃度及び硫酸濃度が予め調整された溶液(硼酸と硫酸と水の3成分混合溶液)である。標準液は標準液タンクT1に貯留されているため、液性変動は発生しない。 The standard liquid tank T1 stores a standard liquid in which the concentrations of boric acid and sulfuric acid are specified in advance. That is, the standard solution is a solution in which the boric acid concentration and the sulfuric acid concentration are adjusted in advance (a three-component mixed solution of boric acid, sulfuric acid and water). Since the standard liquid is stored in the standard liquid tank T1, the liquid property does not change.
 標準液タンクT1には、標準液供給配管L3が設けられている。標準液供給配管L3は、標準液タンクT1から計測部M1へ標準液を供給するためのラインである。具体的には、図3に示すように、標準液は、バルブMV12、ポンプP12、切替バルブDV12、及び流量計F1を介して計測部M1へ供給される。ポンプP12にはバルブMV15を有するバイパスラインが接続されている。そして、標準液は、バルブDV15を介して、標準液タンクT1へ戻される。 The standard liquid tank T1 is provided with a standard liquid supply pipe L3. The standard liquid supply pipe L3 is a line for supplying the standard liquid from the standard liquid tank T1 to the measuring unit M1. Specifically, as shown in FIG. 3, the standard liquid is supplied to the measuring unit M1 via the valve MV12, the pump P12, the switching valve DV12, and the flow meter F1. A bypass line having a valve MV15 is connected to the pump P12. Then, the standard liquid is returned to the standard liquid tank T1 via the valve DV15.
 純水タンクT2は、純水を溜める。すなわち、純水は、硼酸濃度及び硫酸濃度が零の溶液である。純水は純水タンクT2に貯留されているため、液性変動は発生しない。 The pure water tank T2 stores pure water. That is, pure water is a solution having zero boric acid concentration and zero sulfuric acid concentration. Since the pure water is stored in the pure water tank T2, the liquid property does not change.
 純水タンクT2には、純水供給配管L4が設けられている。純水供給配管L4は、純水タンクT2から計測部M1へ純水を供給するためのラインである。具体的には、図3に示すように、純水は、バルブMV13、ポンプP13、切替バルブDV13、及び流量計F1を介して計測部M1へ供給される。ポンプP13にはバルブMV16を有するバイパスラインが接続されている。そして、純水は、純水タンクT2へ戻されてもよいし、系外へ排出されてもよい。 The pure water tank T2 is provided with a pure water supply pipe L4. The pure water supply pipe L4 is a line for supplying pure water from the pure water tank T2 to the measuring unit M1. Specifically, as shown in FIG. 3, pure water is supplied to the measuring unit M1 via the valve MV13, the pump P13, the switching valve DV13, and the flow meter F1. A bypass line having a valve MV16 is connected to the pump P13. Then, the pure water may be returned to the pure water tank T2 or may be discharged to the outside of the system.
 制御装置50は、分析システム40における各種機器を制御する。具体的には、各種のバルブやポンプを制御して試料の流通を制御する。 The control device 50 controls various devices in the analysis system 40. Specifically, various valves and pumps are controlled to control the flow of samples.
 図6は、本実施形態に係る制御装置50のハードウェア構成の一例を示した図である。
 図6に示すように、制御装置50は、コンピュータシステム(計算機システム)であり、例えば、CPU11と、CPU11が実行するプログラム等を記憶するためのROM(Read Only Memory)12と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)13と、大容量記憶装置としてのハードディスクドライブ(HDD)14と、ネットワーク等に接続するための通信部15とを備えている。大容量記憶装置としては、ソリッドステートドライブ(SSD)を用いることとしてもよい。これら各部は、バス18を介して接続されている。
FIG. 6 is a diagram showing an example of the hardware configuration of the control device 50 according to the present embodiment.
As shown in FIG. 6, the control device 50 is a computer system (computer system), for example, a CPU 11, a ROM (Read Only Memory) 12 for storing a program or the like executed by the CPU 11, and each program at the time of execution. It is provided with a RAM (Random Access Memory) 13 that functions as a work area, a hard disk drive (HDD) 14 as a large-capacity storage device, and a communication unit 15 for connecting to a network or the like. As the large-capacity storage device, a solid state drive (SSD) may be used. Each of these parts is connected via a bus 18.
 制御装置50は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。 The control device 50 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
 CPU11が実行するプログラム等を記憶するための記憶媒体は、ROM12に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。 The storage medium for storing the program or the like executed by the CPU 11 is not limited to the ROM 12. For example, it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
 後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でハードディスクドライブ14等に記録されており、このプログラムをCPU11がRAM13等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。プログラムは、ROM12やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 A series of processing processes for realizing various functions described later is recorded in the hard disk drive 14 or the like in the form of a program, and the CPU 11 reads this program into the RAM 13 or the like to execute information processing / arithmetic processing. As a result, various functions described later are realized. The program may be installed in ROM 12 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 図7は、制御装置50が備える機能を示した機能ブロック図である。図7に示されるように、制御装置50は、試料供給部51と、標準液供給部52と、純水供給部53と、分析部54とを備えている。 FIG. 7 is a functional block diagram showing the functions of the control device 50. As shown in FIG. 7, the control device 50 includes a sample supply unit 51, a standard liquid supply unit 52, a pure water supply unit 53, and an analysis unit 54.
 試料供給部51は、試料の分析のために試料の供給制御を行う。具体的には、試料供給部51は、試料に対する計測を行う場合に、試料を流通経路へ流通させる。すなわち、試料供給部51は、供給配管L1と帰還配管L2における試料の流通を制御して、試料入口から計測部M1へ試料が流通するように制御を行う。 The sample supply unit 51 controls the supply of the sample for the analysis of the sample. Specifically, the sample supply unit 51 distributes the sample to the distribution channel when measuring the sample. That is, the sample supply unit 51 controls the flow of the sample in the supply pipe L1 and the return pipe L2 so that the sample flows from the sample inlet to the measurement unit M1.
 図8は試料の供給を行う場合の分析システム40の試料の流れを示す図である。すなわち、バルブMV11と、切替バルブDV11と、バルブDV14とを開として、図8の太線として示すように試料を計測部M1へ流通させる。計測部M1への試料は、ポンプP11が制御されることにより計測部M1へ供給される。その他のバルブ及びポンプは閉(または停止)となっていることが好ましい。 FIG. 8 is a diagram showing a sample flow of the analysis system 40 when supplying the sample. That is, the valve MV11, the switching valve DV11, and the valve DV14 are opened, and the sample is circulated to the measurement unit M1 as shown by the thick line in FIG. The sample to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P11. Other valves and pumps are preferably closed (or stopped).
 このように試料供給部51の制御によって試料が自動的に計測部M1へ供給されるため、自動計測を行うことができる。各配管を通じて計測部M1へ試料が供給されるため、外気との接触も抑制することができる。 In this way, the sample is automatically supplied to the measurement unit M1 by the control of the sample supply unit 51, so that automatic measurement can be performed. Since the sample is supplied to the measuring unit M1 through each pipe, contact with the outside air can be suppressed.
 標準液供給部52は、標準液の供給制御を行う(標準液確認)。具体的には、標準液供給部52は、標準液に対する計測を行う場合に、標準液を流通経路へ流通させる。すなわち、標準液供給部52は、標準液供給配管L3による計測部M1への標準液の供給を制御する。 The standard liquid supply unit 52 controls the supply of the standard liquid (confirmation of the standard liquid). Specifically, the standard liquid supply unit 52 distributes the standard liquid to the distribution channel when measuring the standard liquid. That is, the standard liquid supply unit 52 controls the supply of the standard liquid to the measurement unit M1 by the standard liquid supply pipe L3.
 図9は標準液の供給を行う場合の分析システム40の標準液の流れを示す図である。すなわち、バルブMV12と、切替バルブDV12と、バルブDV15とを開として、図9の太線として示すように標準液を計測部M1へ流通させる。計測部M1への標準液は、ポンプP12が制御されることにより計測部M1へ供給される。その他のバルブ及びポンプは閉(または停止)となっていることが好ましい。 FIG. 9 is a diagram showing the flow of the standard solution of the analysis system 40 when the standard solution is supplied. That is, the valve MV12, the switching valve DV12, and the valve DV15 are opened, and the standard liquid is circulated to the measuring unit M1 as shown by the thick line in FIG. The standard liquid to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P12. Other valves and pumps are preferably closed (or stopped).
 このように標準液供給部52の制御によって標準液が自動的に計測部M1へ供給されるため、標準液に対する自動計測を行うことができる。各配管を通じて計測部M1へ標準液が供給されるため、外気との接触も抑制することができる。 Since the standard liquid is automatically supplied to the measurement unit M1 under the control of the standard liquid supply unit 52 in this way, automatic measurement with respect to the standard liquid can be performed. Since the standard liquid is supplied to the measuring unit M1 through each pipe, contact with the outside air can be suppressed.
 標準液供給配管L3によって標準液が計測部M1へ供給されることで、標準液に対する分析を行うことができる。すなわち、標準液の既知の硼酸濃度及び硫酸濃度と、分析結果とを比較して計測部M1の信頼性を確認することができる。標準液を用いた信頼性の確認では、硼酸濃度及び硫酸濃度を用いて確認することとしてもよいし、計測部M1により計測される密度及び音速を用いて確認することとしてもよい。 By supplying the standard liquid to the measuring unit M1 by the standard liquid supply pipe L3, it is possible to analyze the standard liquid. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result. In the confirmation of reliability using the standard solution, the concentration of boric acid and the concentration of sulfuric acid may be used for confirmation, or the density and sound velocity measured by the measuring unit M1 may be used for confirmation.
 標準液供給部52は、所定の周期で標準液供給配管L3により標準液を計測部M1へ供給することがより好ましい。すなわち、周期的に標準液による分析を行うことで、より安定的に計測部M1における信頼性を維持することができる。 It is more preferable that the standard liquid supply unit 52 supplies the standard liquid to the measurement unit M1 by the standard liquid supply pipe L3 at a predetermined cycle. That is, the reliability of the measuring unit M1 can be maintained more stably by performing the analysis with the standard solution periodically.
 標準液供給部52は、標準液の供給処理を行う場合には、標準液の既知の液性と標準液に対する分析結果とを比較することとしてもよい(自動比較処理)。この場合には、標準液の既知の液性に対して分析結果が基準範囲内でない場合には、計測部M1に異常が発生している可能性があるとして通知を行うこととしてもよい。 When the standard solution supply unit 52 performs the standard solution supply process, the standard solution supply unit 52 may compare the known liquid properties of the standard solution with the analysis result for the standard solution (automatic comparison process). In this case, if the analysis result is not within the reference range for the known liquid properties of the standard solution, the measurement unit M1 may be notified that an abnormality may have occurred.
 純水供給部53は、純水の供給制御を行う(0点確認)。具体的には、純水供給部53は、純水に対する計測を行う場合に、純水を流通経路へ流通させる。すなわち、純水供給部53は、純水供給配管L4による計測部M1への純水の供給を制御する。 The pure water supply unit 53 controls the supply of pure water (confirms 0 points). Specifically, the pure water supply unit 53 distributes pure water to the distribution channel when measuring the pure water. That is, the pure water supply unit 53 controls the supply of pure water to the measurement unit M1 by the pure water supply pipe L4.
 図10は純水の供給を行う場合の分析システム40の純水の流れを示す図である。すなわち、バルブMV13と、切替バルブDV13とを開として、図10の太線として示すように純水を計測部M1へ流通させる。計測部M1への純水は、ポンプP13が制御されることにより計測部M1へ供給される。その他のバルブ及びポンプは閉(または停止)となっていることが好ましい。 FIG. 10 is a diagram showing the flow of pure water in the analysis system 40 when supplying pure water. That is, the valve MV13 and the switching valve DV13 are opened, and pure water is circulated to the measuring unit M1 as shown by the thick line in FIG. The pure water to the measuring unit M1 is supplied to the measuring unit M1 by controlling the pump P13. Other valves and pumps are preferably closed (or stopped).
 このように純水供給部53の制御によって純水が自動的に計測部M1へ供給されるため、純水に対する自動計測を行うことができる。各配管を通じて計測部M1へ純水が供給されるため、外気との接触も抑制することができる。 Since pure water is automatically supplied to the measuring unit M1 under the control of the pure water supply unit 53 in this way, automatic measurement of pure water can be performed. Since pure water is supplied to the measuring unit M1 through each pipe, contact with the outside air can be suppressed.
 純水供給配管L4によって純水が計測部M1へ供給されることで、純水に対する分析を行うことができる。すなわち、純水の既知の硼酸濃度(零)及び硫酸濃度(零)と、分析結果とを比較して計測部M1の信頼性を確認することができる。純水を用いた信頼性の確認では、硼酸濃度及び硫酸濃度を用いて確認することとしてもよいし、計測部M1により計測される密度及び音速を用いて確認することとしてもよい。 By supplying pure water to the measuring unit M1 through the pure water supply pipe L4, it is possible to analyze the pure water. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water with the analysis result. In the confirmation of reliability using pure water, the confirmation may be performed using the boric acid concentration and the sulfuric acid concentration, or may be confirmed using the density and sound velocity measured by the measuring unit M1.
 純水供給部53は、所定の周期で純水供給配管L4により純水を計測部M1へ供給することがより好ましい。すなわち、周期的に純水による分析を行うことで、より安定的に計測部M1における信頼性を維持することができる。 It is more preferable that the pure water supply unit 53 supplies pure water to the measurement unit M1 by the pure water supply pipe L4 at a predetermined cycle. That is, by periodically performing the analysis with pure water, the reliability of the measuring unit M1 can be maintained more stably.
 純水供給部53は、純水の供給処理を行う場合には、純水の既知の液性と純水に対する分析結果とを比較することとしてもよい(自動比較処理)。この場合には、純水の既知の液性に対して分析結果が基準範囲内でない場合には、計測部M1に異常が発生している可能性があるとして通知を行うこととしてもよい。 When the pure water supply unit 53 performs the pure water supply process, the pure water supply unit 53 may compare the known liquid properties of the pure water with the analysis result for the pure water (automatic comparison process). In this case, if the analysis result is not within the reference range for the known liquid properties of pure water, the measuring unit M1 may be notified that an abnormality may have occurred.
 純水供給処理、標準液供給処理、及び純水供給処理についてはそれぞれ異なるタイミングで実行されることが好ましいが、並列して処理が可能な場合には並列して処理が実行されてもよい。 It is preferable that the pure water supply process, the standard liquid supply process, and the pure water supply process are executed at different timings, but if the processes can be performed in parallel, the processes may be executed in parallel.
 分析部54は、計測部M1から計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する。このように、分析部54では、密度及び音速の計測結果から、硼酸濃度及び硫酸濃度へ変換を行う。 The analysis unit 54 acquires the measurement result from the measurement unit M1 and analyzes the boric acid concentration and the sulfuric acid concentration of the sample based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and the speed of sound. In this way, the analysis unit 54 converts the measurement results of the density and the speed of sound into the boric acid concentration and the sulfuric acid concentration.
 密度及び音速に対する硼酸及び硫酸の濃度の関係情報とは、例えば検量線である。図11は、関係情報の一例を示す図である。図11では、横軸を音速とし、縦軸を密度としている。そして、密度及び音速に対して、硼酸濃度と硫酸濃度が対応付けられている。図11では、音速が増加するにしたがって、硼酸濃度が増加する。そして、密度が増加するにしたがって、硫酸濃度が増加する。 The information on the relationship between the density and the concentration of boric acid and sulfuric acid with respect to the speed of sound is, for example, a calibration curve. FIG. 11 is a diagram showing an example of related information. In FIG. 11, the horizontal axis is the speed of sound and the vertical axis is the density. Then, the boric acid concentration and the sulfuric acid concentration are associated with the density and the speed of sound. In FIG. 11, the boric acid concentration increases as the speed of sound increases. Then, as the density increases, the sulfuric acid concentration increases.
 例えば、ある試料に対する計測結果として、密度がα1、音速がβ1である場合には、図11のような関係情報を用いて、該試料における硼酸濃度と硫酸濃度とがそれぞれC1、C2であると特定することができる。 For example, when the density is α1 and the speed of sound is β1 as the measurement result for a certain sample, the boric acid concentration and the sulfuric acid concentration in the sample are C1 and C2, respectively, using the relational information as shown in FIG. Can be identified.
 図11のような検量線は、例えば、硼酸、硫酸、及び水の3成分混合溶液を用いて予め試験等を行うことによって得ることができる。 The calibration curve as shown in FIG. 11 can be obtained by conducting a test or the like in advance using, for example, a three-component mixed solution of boric acid, sulfuric acid, and water.
 関係情報は、溶液に対する、密度と、音速と、硼酸濃度と、硫酸濃度とが互いに関連づけられている情報であれば、図11に示す検量線に限定されない。 The related information is not limited to the calibration curve shown in FIG. 11 as long as the density, the speed of sound, the boric acid concentration, and the sulfuric acid concentration with respect to the solution are related to each other.
 次に、上述の制御装置50による分析処理の一例について図12を参照して説明する。図12は、本実施形態に係る分析処理の手順の一例を示すフローチャートである。図12に示すフローは、例えば、分析を実施する所定のタイミングで実行される。図12に示すフローは、分析を実施するために予め設定された周期で実行されてもよい。 Next, an example of the analysis process by the above-mentioned control device 50 will be described with reference to FIG. FIG. 12 is a flowchart showing an example of the procedure of the analysis process according to the present embodiment. The flow shown in FIG. 12 is executed, for example, at a predetermined timing for performing analysis. The flow shown in FIG. 12 may be executed at a preset cycle for performing the analysis.
 まず、試料のライン構成を行う(S101)。具体的には、バルブMV11、切替バルブDV11、及びバルブDV14を開とする。他のバルブは閉であることが好ましい。 First, the sample line configuration is performed (S101). Specifically, the valve MV11, the switching valve DV11, and the valve DV14 are opened. The other valves are preferably closed.
 次に、ポンプP11を制御して、試料を計測部M1へ供給する(S102)。ポンプP11の制御は、所定流量を流通させるように制御することとしてもよいし、流量計F1の計測結果をみながら流量が所定値を維持するように制御することとしてもよい。 Next, the pump P11 is controlled to supply the sample to the measurement unit M1 (S102). The control of the pump P11 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
 次に、計測部M1において計測を行う(S103)。具体的には、流通する試料に対して、密度と音速が計測される。 Next, measurement is performed by the measurement unit M1 (S103). Specifically, the density and the speed of sound are measured for the distributed samples.
 次に、計測結果に基づいて、硼酸濃度と硫酸濃度を特定する(S104)。S104では、図11に示されるような関係情報が用いられる。 Next, the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S104). In S104, the relational information as shown in FIG. 11 is used.
 このようにして、試料に対する硼酸及び硫酸の濃度分析が行われる。 In this way, the concentration analysis of boric acid and sulfuric acid on the sample is performed.
 次に、上述の制御装置50による標準液供給処理の一例について図13を参照して説明する。図13は、本実施形態に係る標準液供給処理の手順の一例を示すフローチャートである。図13に示すフローは、例えば、標準液を用いた確認を実施する所定のタイミングで実行される。図13に示すフローは、標準液を用いた確認を実施するために予め設定された周期で実行されてもよい。 Next, an example of the standard liquid supply process by the above-mentioned control device 50 will be described with reference to FIG. FIG. 13 is a flowchart showing an example of the procedure of the standard liquid supply process according to the present embodiment. The flow shown in FIG. 13 is executed, for example, at a predetermined timing for performing confirmation using a standard solution. The flow shown in FIG. 13 may be executed at a preset cycle for performing confirmation using the standard solution.
 まず、ライン構成を行う(S201)。具体的には、バルブMV12、切替バルブDV12、及びバルブDV15を開とする。他のバルブは閉であることが好ましい。 First, the line configuration is performed (S201). Specifically, the valve MV12, the switching valve DV12, and the valve DV15 are opened. The other valves are preferably closed.
 次に、ポンプP12を制御して、標準液を計測部M1へ供給する(S202)。ポンプP12の制御は、所定流量を流通させるように制御することとしてもよいし、流量計F1の計測結果をみながら流量が所定値を維持するように制御することとしてもよい。 Next, the pump P12 is controlled to supply the standard liquid to the measuring unit M1 (S202). The control of the pump P12 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
 次に、計測部M1において計測を行う(S203)。具体的には、流通する標準液に対して、密度と音速が計測される。 Next, measurement is performed by the measurement unit M1 (S203). Specifically, the density and the speed of sound are measured with respect to the standard liquid that is distributed.
 次に、計測結果に基づいて、硼酸濃度と硫酸濃度を特定する(S204)。S204では、図11に示されるような関係情報が用いられる。 Next, the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S204). In S204, the relational information as shown in FIG. 11 is used.
 このようにして、標準液に対する硼酸及び硫酸の濃度分析が行われる。分析結果は、例えば作業員等によって標準液の既知の硼酸濃度及び硫酸濃度と比較が行われることとしてもよい。もしくは、分析結果は、制御装置50において、標準液の既知の硼酸濃度及び硫酸濃度と比較処理が実行されることとしてもよい。 In this way, the concentration analysis of boric acid and sulfuric acid with respect to the standard solution is performed. The analysis result may be compared with the known boric acid concentration and sulfuric acid concentration of the standard solution by, for example, a worker or the like. Alternatively, the analysis result may be subjected to a comparison process with the known boric acid concentration and sulfuric acid concentration of the standard solution in the control device 50.
 次に、上述の制御装置50による純水供給処理の一例について図14を参照して説明する。図14は、本実施形態に係る純水供給処理の手順の一例を示すフローチャートである。図14に示すフローは、例えば、純水を用いた確認を実施する所定のタイミングで実行される。図14に示すフローは、純水を用いた確認を実施するために予め設定された周期で実行されてもよい。 Next, an example of the pure water supply process by the above-mentioned control device 50 will be described with reference to FIG. FIG. 14 is a flowchart showing an example of the procedure of the pure water supply process according to the present embodiment. The flow shown in FIG. 14 is executed at a predetermined timing for performing confirmation using, for example, pure water. The flow shown in FIG. 14 may be executed at a preset cycle for performing confirmation using pure water.
 まず、ライン構成を行う(S301)。具体的には、バルブMV13、及び切替バルブDV13を開とする。他のバルブは閉であることが好ましい。 First, configure the line (S301). Specifically, the valve MV13 and the switching valve DV13 are opened. The other valves are preferably closed.
 次に、ポンプP13を制御して、純水を計測部M1へ供給する(S302)。ポンプP13の制御は、所定流量を流通させるように制御することとしてもよいし、流量計F1の計測結果をみながら流量が所定値を維持するように制御することとしてもよい。 Next, the pump P13 is controlled to supply pure water to the measurement unit M1 (S302). The control of the pump P13 may be controlled so as to circulate a predetermined flow rate, or may be controlled so that the flow rate maintains a predetermined value while observing the measurement result of the flow meter F1.
 次に、計測部M1において計測を行う(S303)。具体的には、流通する純水に対して、密度と音速が計測される。 Next, measurement is performed by the measurement unit M1 (S303). Specifically, the density and the speed of sound are measured with respect to the circulating pure water.
 次に、計測結果に基づいて、硼酸濃度と硫酸濃度を特定する(S304)。S304では、図11に示されるような関係情報が用いられる。 Next, the boric acid concentration and the sulfuric acid concentration are specified based on the measurement results (S304). In S304, the relational information as shown in FIG. 11 is used.
 このようにして、純水に対する硼酸及び硫酸の濃度分析が行われる。分析結果は、例えば作業員等によって純水の既知の硼酸濃度(零)及び硫酸濃度(零)と比較が行われることとしてもよい。もしくは、分析結果は、制御装置50において、純水の既知の硼酸濃度(零)及び硫酸濃度(零)と比較処理が実行されることとしてもよい。 In this way, the concentration analysis of boric acid and sulfuric acid with respect to pure water is performed. The analysis result may be compared with the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water, for example, by a worker or the like. Alternatively, the analysis result may be subjected to a comparison process with the known boric acid concentration (zero) and sulfuric acid concentration (zero) of pure water in the control device 50.
 以上説明したように、本実施形態に係る分析システム及び管理システム、並びに分析方法、並びに分析プログラムによれば、密度及び音速に対する硼酸及び硫酸の濃度の関係性(関係情報)に基づいて、試料の密度及び音速の計測結果から該試料における硼酸密度及び硫酸密度を特定することができる。関係情報とは、例えば検量線として表される。 As described above, according to the analysis system and management system, the analysis method, and the analysis program according to the present embodiment, the sample is based on the relationship (relationship information) of the concentrations of boric acid and sulfuric acid with respect to the density and the speed of sound. The boric acid density and sulfuric acid density in the sample can be specified from the measurement results of the density and the speed of sound. The relational information is represented, for example, as a calibration curve.
 供給配管L1と帰還配管L2とが設けられており、制御装置50によって試料の流通が制御されることで、計測部M1おける自動計測が可能となる。 A supply pipe L1 and a return pipe L2 are provided, and the flow of the sample is controlled by the control device 50, so that automatic measurement in the measurement unit M1 becomes possible.
 標準液供給配管L3によって標準液が計測部M1へ供給されることで、標準液に対する分析を行うことができる。すなわち、標準液の既知の硼酸濃度及び硫酸濃度と、分析結果とを比較して計測部M1の信頼性を確認することができる。 By supplying the standard liquid to the measuring unit M1 by the standard liquid supply pipe L3, it is possible to analyze the standard liquid. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result.
 純水供給配管L4によって純水が計測部M1へ供給されることで、純水に対する分析を行うことができる。すなわち、純水の既知の硼酸濃度及び硫酸濃度(ずなわち0点)と、分析結果とを比較して計測部M1の信頼性を確認することができる。 By supplying pure water to the measuring unit M1 through the pure water supply pipe L4, it is possible to analyze the pure water. That is, the reliability of the measuring unit M1 can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration (that is, 0 points) of pure water with the analysis result.
〔第2実施形態〕
 次に、本開示の第2実施形態に係る分析システム及び管理システム、並びに分析方法、並びに分析プログラムについて説明する。
 本実施形態では、試料の液性を自動調整する場合について説明する。以下、本実施形態に係る分析システム及び管理システム、並びに分析方法、並びに分析プログラムについて、第1実施形態と異なる点について主に説明する。
[Second Embodiment]
Next, the analysis system and the management system, the analysis method, and the analysis program according to the second embodiment of the present disclosure will be described.
In this embodiment, a case where the liquid property of the sample is automatically adjusted will be described. Hereinafter, the analysis system and the management system, the analysis method, and the analysis program according to the present embodiment will be mainly described with respect to the differences from the first embodiment.
 本実施形態に係る管理システムは、図15に示すように処理槽122に適用される。図2と同様に、処理槽122に対して循環システム130と分析システム40とが接続されている。そして、処理槽122には調整システム160が接続されている。すなわち、分析システム40と調整システム160とで管理システムが構成される。 The management system according to this embodiment is applied to the processing tank 122 as shown in FIG. Similar to FIG. 2, the circulation system 130 and the analysis system 40 are connected to the processing tank 122. An adjustment system 160 is connected to the processing tank 122. That is, the management system is composed of the analysis system 40 and the adjustment system 160.
 調整システム160は、分析システム40における分析結果を取得し、分析結果に基づいて試料に対して硼酸濃度及び硫酸濃度の少なくともいずれか1方を調整する。調整システム160は、図15に示すように、タンク163と、タンク162と、添加制御装置161とが設けられている。 The adjustment system 160 acquires the analysis result in the analysis system 40 and adjusts at least one of the boric acid concentration and the sulfuric acid concentration with respect to the sample based on the analysis result. As shown in FIG. 15, the adjustment system 160 is provided with a tank 163, a tank 162, and an addition control device 161.
 タンク163は、硼酸濃度調整薬液が貯留されている。そして、タンク163は、供給ラインW1によって処理槽122と接続されている。すなわち、硼酸濃度調整薬液は処理槽122の処理液に対して添加される。供給ラインW1には、電磁弁(不図示)と、流量計(不図示)と、ポンプ(不図示)とが設けられている。電磁弁とポンプは後述する添加制御装置161によって制御される。流量計の計測結果は添加制御装置161へ送信される。 The tank 163 stores a boric acid concentration adjusting chemical solution. The tank 163 is connected to the processing tank 122 by the supply line W1. That is, the boric acid concentration adjusting chemical solution is added to the treatment solution in the treatment tank 122. The supply line W1 is provided with a solenoid valve (not shown), a flow meter (not shown), and a pump (not shown). The solenoid valve and the pump are controlled by the addition control device 161 described later. The measurement result of the flow meter is transmitted to the addition control device 161.
 タンク162は、硫酸濃度調整薬液が貯留されている。そして、タンク162は、供給ラインW2によって処理槽122と接続されている。すなわち、硫酸濃度調整薬液は処理槽122の処理液に対して添加される。供給ラインW2には、電磁弁(不図示)と、流量計(不図示)と、ポンプ(不図示)とが設けられている。電磁弁とポンプは後述する添加制御装置161によって制御される。流量計の計測結果は添加制御装置161へ送信される。 The tank 162 stores the sulfuric acid concentration adjusting chemical solution. The tank 162 is connected to the processing tank 122 by the supply line W2. That is, the sulfuric acid concentration adjusting chemical solution is added to the treatment solution in the treatment tank 122. The supply line W2 is provided with a solenoid valve (not shown), a flow meter (not shown), and a pump (not shown). The solenoid valve and the pump are controlled by the addition control device 161 described later. The measurement result of the flow meter is transmitted to the addition control device 161.
 添加制御装置161は、分析システム40の分析結果に基づいて添加量を制御する。例えば制御装置50と同様に図6に示すようなコンピュータシステム(計算機システム)で構成される。制御装置50と添加制御装置161とは、異なるコンピュータシステムにより構成されることとしてもよいし、1つのコンピュータシステムに集約することとしてもよい。 The addition control device 161 controls the addition amount based on the analysis result of the analysis system 40. For example, like the control device 50, it is composed of a computer system (computer system) as shown in FIG. The control device 50 and the addition control device 161 may be configured by different computer systems, or may be integrated into one computer system.
 添加制御装置161は、硼酸濃度調整薬液の投入量を調整することによって硼酸濃度を調整する。硼酸濃度調整薬液を投入することによって処理液の硼酸濃度を所定の基準範囲内に収まるように制御する。例えば、硼酸濃度が基準範囲の上限を上回った場合には、硼酸濃度を所定値分下げるように硼酸濃度調整薬液が投入される。硼酸濃度が基準範囲の下限を下回った場合には、硼酸濃度を所定値分上げるように硼酸濃度調整薬液が投入される。例えば電磁弁を開として流量計で投入量をみながらポンプで投入を行う。硼酸濃度の調整方法については、上記に限定されない。例えば、検出された硼酸濃度の値に応じて投入量を決定することとしてもよい。 The addition control device 161 adjusts the boric acid concentration by adjusting the input amount of the boric acid concentration adjusting chemical solution. By adding a boric acid concentration adjusting chemical solution, the boric acid concentration of the treatment solution is controlled so as to be within a predetermined reference range. For example, when the boric acid concentration exceeds the upper limit of the reference range, the boric acid concentration adjusting chemical solution is added so as to reduce the boric acid concentration by a predetermined value. When the boric acid concentration falls below the lower limit of the reference range, the boric acid concentration adjusting chemical solution is added so as to raise the boric acid concentration by a predetermined value. For example, the solenoid valve is opened and the pump is used while checking the input amount with a flow meter. The method for adjusting the boric acid concentration is not limited to the above. For example, the input amount may be determined according to the value of the detected boric acid concentration.
 添加制御装置161は、硫酸濃度調整薬液の投入量を調整することによって硫酸濃度を調整する。硫酸濃度調整薬液を投入することによって処理液の硫酸濃度を所定の基準範囲内に収まるように制御する。例えば、硫酸濃度が基準範囲の上限を上回った場合には、硫酸濃度を所定値分下げるように硫酸濃度調整薬液が投入される。硫酸濃度が基準範囲の下限を下回った場合には、硫酸濃度を所定値分上げるように硫酸濃度調整薬液が投入される。例えば電磁弁を開として流量計で投入量をみながらポンプで投入を行う。硫酸濃度の調整方法については、上記に限定されない。例えば、検出された硫酸濃度の値に応じて投入量を決定することとしてもよい。 The addition control device 161 adjusts the sulfuric acid concentration by adjusting the input amount of the sulfuric acid concentration adjusting chemical solution. By adding a sulfuric acid concentration adjusting chemical solution, the sulfuric acid concentration of the treatment solution is controlled so as to be within a predetermined reference range. For example, when the sulfuric acid concentration exceeds the upper limit of the reference range, the sulfuric acid concentration adjusting chemical solution is added so as to lower the sulfuric acid concentration by a predetermined value. When the sulfuric acid concentration falls below the lower limit of the reference range, the sulfuric acid concentration adjusting chemical solution is added so as to raise the sulfuric acid concentration by a predetermined value. For example, the solenoid valve is opened and the pump is used while checking the input amount with a flow meter. The method for adjusting the sulfuric acid concentration is not limited to the above. For example, the input amount may be determined according to the value of the detected sulfuric acid concentration.
 管理システムには、通知システム(不図示)を設けることとしてもよい。通知システムは、分析システム40から分析結果を取得して、分析結果が予め設定した管理基準範囲内でない場合に、異常を通知する。通知は、表面処理ライン120が設けられた設備内に行うこととしてもよいし、遠隔の設備に情報を送信して行うこととしてもよい。管理基準範囲から外れた場合には異常を通知することで、異常状態が放置されてしまうことを抑制することができる。 The management system may be provided with a notification system (not shown). The notification system acquires the analysis result from the analysis system 40 and notifies the abnormality when the analysis result is not within the preset control standard range. The notification may be performed in the equipment provided with the surface treatment line 120, or may be performed by transmitting information to the remote equipment. By notifying the abnormality when it is out of the control standard range, it is possible to prevent the abnormal state from being left unattended.
 図16は、本実施形態に係る管理システムを生産ラインに適用した場合の全体構成例である。図16のように、生産ラインにおける管理対象処理槽から試料を採取し、分析システム40で分析を行う。そして、調整システム160において薬液等の自動投入を行う。このようにして、各管理対象処理槽における処理液の管理を行う。 FIG. 16 is an overall configuration example when the management system according to this embodiment is applied to a production line. As shown in FIG. 16, a sample is collected from a controlled processing tank in a production line and analyzed by an analysis system 40. Then, the adjustment system 160 automatically inputs the chemical solution and the like. In this way, the treatment liquid in each management target treatment tank is managed.
 以上説明したように、本実施形態に係る分析システム及び管理システム、並びに分析方法、並びに分析プログラムによれば、計測結果に基づいて硼酸濃度及び硫酸濃度の少なくともいずれか1方が調整されることで、試料の液性を自動調整することができる。これによって作業員等による人的ミスや作業時間の短縮が可能となる。 As described above, according to the analysis system and management system, the analysis method, and the analysis program according to the present embodiment, at least one of the boric acid concentration and the sulfuric acid concentration is adjusted based on the measurement result. , The liquid property of the sample can be automatically adjusted. This makes it possible to reduce human error and work time by workers and the like.
 本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。各実施形態を組み合わせることも可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention. It is also possible to combine each embodiment.
 以上説明した各実施形態に記載の分析システム及び管理システム、並びに分析方法、並びに分析プログラムは例えば以下のように把握される。
 本開示に係る分析システム(40)は、試料に対して密度及び音速を計測する計測部(M1)と、前記計測部(M1)から計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する分析部(54)と、を備える。
The analysis system and management system, the analysis method, and the analysis program described in each of the above-described embodiments are grasped as follows, for example.
The analysis system (40) according to the present disclosure acquires measurement results from a measurement unit (M1) that measures the density and sound velocity of a sample, and the measurement unit (M1), and concentrates boric acid and sulfuric acid with respect to the density and sound velocity. It is provided with an analysis unit (54) for analyzing the boric acid concentration and the sulfuric acid concentration of the sample based on the relational information of the above.
 本開示に係る分析システム(40)によれば、密度及び音速に対する硼酸及び硫酸の濃度の関係性(関係情報)に基づいて、試料の密度及び音速の計測結果から該試料における硼酸密度及び硫酸密度を特定することができる。関係情報とは、例えば検量線として表される。 According to the analysis system (40) according to the present disclosure, based on the relationship (relationship information) of the boric acid and sulfuric acid concentrations with respect to the density and the speed of sound, the boric acid density and the sulfuric acid density in the sample are obtained from the measurement results of the sample density and the speed of sound. Can be identified. The relational information is represented, for example, as a calibration curve.
 本開示に係る分析システム(40)は、対象装置から取得した試料を前記計測部(M1)へ供給する供給配管(L1)と、前記計測部(M1)から前記対象装置へ試料を戻す帰還配管(L2)と、前記供給配管(L1)と前記帰還配管(L2)における試料の流通を制御する制御部と、を備えることとしてもよい。 The analysis system (40) according to the present disclosure includes a supply pipe (L1) for supplying the sample acquired from the target device to the measurement unit (M1) and a return pipe for returning the sample from the measurement unit (M1) to the target device. (L2) and a control unit for controlling the flow of the sample in the supply pipe (L1) and the return pipe (L2) may be provided.
 本開示に係る分析システム(40)によれば、供給配管(L1)と帰還配管(L2)とが設けられており、制御部によって試料の流通が制御されることで、計測部(M1)おける自動計測が可能となる。 According to the analysis system (40) according to the present disclosure, a supply pipe (L1) and a feedback pipe (L2) are provided, and the flow of the sample is controlled by the control unit, so that the measurement unit (M1) can be used. Automatic measurement is possible.
 本開示に係る分析システム(40)は、硼酸及び硫酸の濃度が予め特定されている標準液を溜める標準液タンク(T1)と、標準液を前記計測部(M1)へ供給する標準液供給配管(L3)と、を備え、前記制御部は、前記標準液供給配管(L3)による前記計測部(M1)への標準液の供給を制御することとしてもよい。 The analysis system (40) according to the present disclosure includes a standard liquid tank (T1) for storing a standard liquid in which the concentrations of boric acid and sulfuric acid are specified in advance, and a standard liquid supply pipe for supplying the standard liquid to the measuring unit (M1). (L3) may be provided, and the control unit may control the supply of the standard liquid to the measurement unit (M1) by the standard liquid supply pipe (L3).
 本開示に係る分析システム(40)によれば、標準液供給配管(L3)によって標準液が計測部(M1)へ供給されることで、標準液に対する分析を行うことができる。すなわち、標準液の既知の硼酸濃度及び硫酸濃度と、分析結果とを比較して計測部(M1)の信頼性を確認することができる。 According to the analysis system (40) according to the present disclosure, the standard liquid can be analyzed by supplying the standard liquid to the measuring unit (M1) by the standard liquid supply pipe (L3). That is, the reliability of the measuring unit (M1) can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration of the standard solution with the analysis result.
 本開示に係る分析システム(40)は、前記制御部は、所定の周期で前記標準液供給配管(L3)により標準液を前記計測部(M1)へ供給することとしてもよい。 In the analysis system (40) according to the present disclosure, the control unit may supply the standard liquid to the measurement unit (M1) by the standard liquid supply pipe (L3) at a predetermined cycle.
 本開示に係る分析システム(40)によれば、所定の周期で標準液が計測部(M1)へ供給されることによって、定期的に計測部(M1)の信頼性を確認することが可能となる。 According to the analysis system (40) according to the present disclosure, it is possible to periodically confirm the reliability of the measuring unit (M1) by supplying the standard liquid to the measuring unit (M1) at a predetermined cycle. Become.
 本開示に係る分析システム(40)は、純水を溜める純水タンク(T2)と、純水を前記計測部(M1)へ供給する純水供給配管(L4)と、を備え、前記制御部は、前記純水供給配管(L4)による前記計測部(M1)への純水の供給を制御することとしてもよい。 The analysis system (40) according to the present disclosure includes a pure water tank (T2) for storing pure water and a pure water supply pipe (L4) for supplying pure water to the measurement unit (M1), and the control unit. May control the supply of pure water to the measuring unit (M1) by the pure water supply pipe (L4).
 本開示に係る分析システム(40)によれば、純水供給配管(L4)によって純水が計測部(M1)へ供給されることで、純水に対する分析を行うことができる。すなわち、純水の既知の硼酸濃度及び硫酸濃度(ずなわち0点)と、分析結果とを比較して計測部(M1)の信頼性を確認することができる。 According to the analysis system (40) according to the present disclosure, pure water can be analyzed for pure water by being supplied to the measuring unit (M1) by the pure water supply pipe (L4). That is, the reliability of the measuring unit (M1) can be confirmed by comparing the known boric acid concentration and sulfuric acid concentration (that is, 0 points) of pure water with the analysis result.
 本開示に係る分析システム(40)は、前記制御部は、所定の周期で前記純水供給配管(L4)により純水を前記計測部(M1)へ供給することとしてもよい。 In the analysis system (40) according to the present disclosure, the control unit may supply pure water to the measurement unit (M1) by the pure water supply pipe (L4) at a predetermined cycle.
 本開示に係る分析システム(40)によれば、所定の周期で純水が計測部(M1)へ供給されることによって、定期的に計測部(M1)の信頼性を確認することが可能となる。 According to the analysis system (40) according to the present disclosure, it is possible to periodically confirm the reliability of the measuring unit (M1) by supplying pure water to the measuring unit (M1) at a predetermined cycle. Become.
 本開示に係る管理システムは、上記の分析システム(40)と、前記分析システム(40)における分析結果を取得し、前記分析結果に基づいて前記試料に対して硼酸濃度及び硫酸濃度の少なくともいずれか1方を調整する調整システム(160)と、を備える。 The management system according to the present disclosure acquires the analysis results of the analysis system (40) and the analysis system (40), and based on the analysis results, at least one of the boric acid concentration and the sulfuric acid concentration with respect to the sample. It is equipped with an adjustment system (160) that adjusts one side.
 本開示に係る管理システムによれば、計測結果に基づいて硼酸濃度及び硫酸濃度の少なくともいずれか1方が調整されることで、試料の液性を自動調整することができる。 According to the management system according to the present disclosure, the liquid property of the sample can be automatically adjusted by adjusting at least one of the boric acid concentration and the sulfuric acid concentration based on the measurement result.
 本開示に係る管理システムは、前記調整システム(160)は、硼酸濃度調整薬液の投入量を調整することによって硼酸濃度を調整することとしてもよい。 In the management system according to the present disclosure, the adjustment system (160) may adjust the boric acid concentration by adjusting the input amount of the boric acid concentration adjusting chemical solution.
 本開示に係る管理システムによれば、硼酸濃度を調整することができる。 According to the management system according to the present disclosure, the boric acid concentration can be adjusted.
 本開示に係る管理システムは、前記調整システム(160)は、硫酸濃度調整薬液の投入量を調整することによって硫酸濃度を調整することとしてもよい。 In the management system according to the present disclosure, the adjustment system (160) may adjust the sulfuric acid concentration by adjusting the input amount of the sulfuric acid concentration adjusting chemical solution.
 本開示に係る管理システムによれば、硫酸濃度を調整することができる。 According to the management system according to the present disclosure, the sulfuric acid concentration can be adjusted.
 本開示に係る管理システムは、前記分析結果が予め設定した管理基準範囲内でない場合に、異常を通知する通知システムを備えることとしてもよい。 The management system according to the present disclosure may be provided with a notification system for notifying an abnormality when the analysis result is not within the preset management standard range.
 本開示に係る管理システムによれば、管理基準範囲から外れた場合には異常を通知することで、異常状態が放置されてしまうことを抑制することができる。 According to the management system according to the present disclosure, it is possible to prevent the abnormal state from being left unattended by notifying the abnormality when it deviates from the control standard range.
 本開示に係る分析方法は、試料に対して密度及び音速を計測する工程と、計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する工程と、を有する。 The analysis method according to the present disclosure is a step of measuring the density and sound velocity of a sample, and based on the information on the relationship between the density and sound velocity and the concentration of boric acid and sulfuric acid, the boric acid concentration and sulfuric acid concentration of the sample are obtained. Has a step of analyzing.
 本開示に係る分析プログラムは、試料に対して密度及び音速を計測する処理と、計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する処理と、をコンピュータに実行させる。 The analysis program according to the present disclosure is a process for measuring the density and sound velocity of a sample, and the measurement results are acquired, and the boric acid concentration and sulfuric acid concentration of the sample are obtained based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and sound velocity. And let the computer perform the process of analyzing.
11   :CPU
12   :ROM
13   :RAM
14   :ハードディスクドライブ
15   :通信部
18   :バス
40   :分析システム
50   :制御装置
51   :試料供給部
52   :標準液供給部
53   :純水供給部
54   :分析部
120  :表面処理ライン
121  :クレーン
122  :処理槽
122a :硼酸硫酸処理槽
122b :1次水洗処理槽
122c :2次水洗処理槽
123  :対象部品
130  :循環システム
131  :ポンプ
132  :ストレーナー
133  :循環ライン
134  :迂回ライン
135  :採取ライン
160  :調整システム
161  :添加制御装置
DV11 :切替バルブ
DV12 :切替バルブ
DV13 :切替バルブ
DV14 :バルブ
DV15 :バルブ
F1   :流量計
K1   :U字管
L1   :供給配管
L2   :帰還配管
L3   :標準液供給配管
L4   :純水供給配管
M1   :計測部
MV11~MV18:バルブ
P11~P13:ポンプ
T1   :標準液タンク
T2   :純水タンク
U1   :超音波振動子
U2   :反射板
W    :超音波
W1   :供給ライン
W2   :供給ライン
11: CPU
12: ROM
13: RAM
14: Hard disk drive 15: Communication unit 18: Bus 40: Analysis system 50: Control device 51: Sample supply unit 52: Standard liquid supply unit 53: Pure water supply unit 54: Analysis unit 120: Surface treatment line 121: Crane 122: Treatment tank 122a: Boric acid sulfuric acid treatment tank 122b: Primary water washing treatment tank 122c: Secondary water washing treatment tank 123: Target parts 130: Circulation system 131: Pump 132: Strainer 133: Circulation line 134: Bypass line 135: Collection line 160: Adjustment system 161: Addition control device DV11: Switching valve DV12: Switching valve DV13: Switching valve DV14: Valve DV15: Valve F1: Flow meter K1: U-shaped pipe L1: Supply pipe L2: Return pipe L3: Standard liquid supply pipe L4: Pure water supply pipe M1: Measurement unit MV11 to MV18: Valves P11 to P13: Pump T1: Standard liquid tank T2: Pure water tank U1: Ultrasonic transducer U2: Reflector W: Ultrasonic W1: Supply line W2: Supply line

Claims (12)

  1.  試料に対して密度及び音速を計測する計測部と、
     前記計測部から計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する分析部と、
    を備える分析システム。
    A measuring unit that measures the density and sound velocity of a sample,
    An analysis unit that acquires measurement results from the measurement unit and analyzes the boric acid concentration and sulfuric acid concentration of the sample based on the relationship information between the boric acid and sulfuric acid concentrations with respect to the density and sound velocity.
    Analytical system with.
  2.  対象装置から取得した試料を前記計測部へ供給する供給配管と、
     前記計測部から前記対象装置へ試料を戻す帰還配管と、
     前記供給配管と前記帰還配管における試料の流通を制御する制御部と、
    を備える請求項1に記載の分析システム。
    A supply pipe that supplies the sample obtained from the target device to the measurement unit, and
    A feedback pipe that returns the sample from the measuring unit to the target device,
    A control unit that controls the flow of samples in the supply pipe and the feedback pipe,
    The analysis system according to claim 1.
  3.  硼酸及び硫酸の濃度が予め特定されている標準液を溜める標準液タンクと、
     標準液を前記計測部へ供給する標準液供給配管と、
    を備え、
     前記制御部は、前記標準液供給配管による前記計測部への標準液の供給を制御する請求項2に記載の分析システム。
    A standard liquid tank that stores a standard liquid whose concentration of boric acid and sulfuric acid is specified in advance,
    The standard liquid supply pipe that supplies the standard liquid to the measurement unit,
    Equipped with
    The analysis system according to claim 2, wherein the control unit controls the supply of the standard liquid to the measurement unit by the standard liquid supply pipe.
  4.  前記制御部は、所定の周期で前記標準液供給配管により標準液を前記計測部へ供給する請求項3に記載の分析システム。 The analysis system according to claim 3, wherein the control unit supplies a standard liquid to the measurement unit by the standard liquid supply pipe at a predetermined cycle.
  5.  純水を溜める純水タンクと、
     純水を前記計測部へ供給する純水供給配管と、
    を備え、
     前記制御部は、前記純水供給配管による前記計測部への純水の供給を制御する請求項2から4のいずれか1項に記載の分析システム。
    A pure water tank that stores pure water and a pure water tank
    A pure water supply pipe that supplies pure water to the measurement unit,
    Equipped with
    The analysis system according to any one of claims 2 to 4, wherein the control unit controls the supply of pure water to the measurement unit by the pure water supply pipe.
  6.  前記制御部は、所定の周期で前記純水供給配管により純水を前記計測部へ供給する請求項5に記載の分析システム。 The analysis system according to claim 5, wherein the control unit supplies pure water to the measurement unit by the pure water supply pipe at a predetermined cycle.
  7.  請求項1から6のいずれか1項に記載の分析システムと、
     前記分析システムにおける分析結果を取得し、前記分析結果に基づいて前記試料に対して硼酸濃度及び硫酸濃度の少なくともいずれか1方を調整する調整システムと、
    を備える管理システム。
    The analysis system according to any one of claims 1 to 6.
    An adjustment system that acquires the analysis results of the analysis system and adjusts at least one of the boric acid concentration and the sulfuric acid concentration with respect to the sample based on the analysis results.
    Management system equipped with.
  8.  前記調整システムは、硼酸濃度調整薬液の投入量を調整することによって硼酸濃度を調整する請求項7に記載の管理システム。 The management system according to claim 7, wherein the adjustment system adjusts the boric acid concentration by adjusting the input amount of the boric acid concentration adjusting chemical solution.
  9.  前記調整システムは、硫酸濃度調整薬液の投入量を調整することによって硫酸濃度を調整する請求項7または8に記載の管理システム。 The management system according to claim 7 or 8, wherein the adjustment system adjusts the sulfuric acid concentration by adjusting the input amount of the sulfuric acid concentration adjusting chemical solution.
  10.  前記分析結果が予め設定した管理基準範囲内でない場合に、異常を通知する通知システムを備える請求項7から9のいずれか1項に記載の管理システム。 The management system according to any one of claims 7 to 9, further comprising a notification system for notifying an abnormality when the analysis result is not within the preset management standard range.
  11.  試料に対して密度及び音速を計測する工程と、
     計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する工程と、
    を有する分析方法。
    The process of measuring the density and sound velocity of a sample,
    The process of acquiring the measurement results and analyzing the boric acid concentration and sulfuric acid concentration of the sample based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and sound velocity.
    Analytical method with.
  12.  試料に対して密度及び音速を計測する処理と、
     計測結果を取得し、密度及び音速に対する硼酸及び硫酸の濃度の関係情報に基づいて、試料の硼酸濃度及び硫酸濃度を分析する処理と、
    をコンピュータに実行させるための分析プログラム。
     
    Processing to measure the density and sound velocity of the sample,
    The process of acquiring the measurement results and analyzing the boric acid concentration and sulfuric acid concentration of the sample based on the relationship information of the boric acid and sulfuric acid concentrations with respect to the density and sound velocity.
    An analysis program to make a computer run.
PCT/JP2020/038280 2020-10-09 2020-10-09 Analysis system and management system, analysis method, and analysis program WO2022074820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038280 WO2022074820A1 (en) 2020-10-09 2020-10-09 Analysis system and management system, analysis method, and analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038280 WO2022074820A1 (en) 2020-10-09 2020-10-09 Analysis system and management system, analysis method, and analysis program

Publications (1)

Publication Number Publication Date
WO2022074820A1 true WO2022074820A1 (en) 2022-04-14

Family

ID=81126348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038280 WO2022074820A1 (en) 2020-10-09 2020-10-09 Analysis system and management system, analysis method, and analysis program

Country Status (1)

Country Link
WO (1) WO2022074820A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344164A (en) * 1986-08-12 1988-02-25 Hakutsuru Syuzo Kk Measurement of alcohol component and extract component
JPH08159946A (en) * 1994-12-09 1996-06-21 Mitsubishi Gas Chem Co Inc Method and device for measuring solution concentration
US5760297A (en) * 1997-03-24 1998-06-02 Mesa Laboratories, Inc. System for measuring acid concentration in an alkylation process
JP2006184258A (en) * 2004-12-28 2006-07-13 Fuji Kogyo Kk Ultrasonic method and ultrasonic apparatus for computing concentration
JP2015134963A (en) * 2014-01-17 2015-07-27 株式会社荏原製作所 Plating method and plating device
US20150325490A1 (en) * 2014-05-12 2015-11-12 Samsung Electronics Co., Ltd. Apparatus for and method of processing substrate
JP2017028090A (en) * 2015-07-22 2017-02-02 株式会社平間理化研究所 Component concentration measurement device of developing solution, component concentration measurement method, and developing solution management method
US20190127872A1 (en) * 2017-11-01 2019-05-02 Lam Research Corporation Controlling plating electrolyte concentration on an electrochemical plating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344164A (en) * 1986-08-12 1988-02-25 Hakutsuru Syuzo Kk Measurement of alcohol component and extract component
JPH08159946A (en) * 1994-12-09 1996-06-21 Mitsubishi Gas Chem Co Inc Method and device for measuring solution concentration
US5760297A (en) * 1997-03-24 1998-06-02 Mesa Laboratories, Inc. System for measuring acid concentration in an alkylation process
JP2006184258A (en) * 2004-12-28 2006-07-13 Fuji Kogyo Kk Ultrasonic method and ultrasonic apparatus for computing concentration
JP2015134963A (en) * 2014-01-17 2015-07-27 株式会社荏原製作所 Plating method and plating device
US20150325490A1 (en) * 2014-05-12 2015-11-12 Samsung Electronics Co., Ltd. Apparatus for and method of processing substrate
JP2017028090A (en) * 2015-07-22 2017-02-02 株式会社平間理化研究所 Component concentration measurement device of developing solution, component concentration measurement method, and developing solution management method
US20190127872A1 (en) * 2017-11-01 2019-05-02 Lam Research Corporation Controlling plating electrolyte concentration on an electrochemical plating apparatus

Similar Documents

Publication Publication Date Title
US20190011490A1 (en) Fluid tank sensor network fault detection method
KR100997009B1 (en) The method for dynamic detection and on-time warning of industrial process
WO2022074820A1 (en) Analysis system and management system, analysis method, and analysis program
Hamby et al. A probabilistic approach to run-to-run control
Bhagwat et al. Fault detection during process transitions: a model-based approach
Jämsä-Jounela et al. Evaluation of control performance: methods, monitoring tool and applications in a flotation plant
JP6886563B2 (en) How to evaluate heat exchanger fouling
Babichenko et al. Identification of heat exchange process in the evaporators of absorption refrigerating units under conditions of uncertainty
WO2021059754A1 (en) Concentration monitoring system, concentration management system, and concentration monitoring method
AU2021385477A1 (en) Computer surrogate model to predict the single-phase mixing quality in steady state mixing tanks
US10928801B2 (en) Manufacturing statistical process control in the presence of multiple batch effects
JPH02253159A (en) Performance diagnosing device for water treating device
WO2022074814A1 (en) Analysis system and management system, and analysis method and analysis program
US10816524B2 (en) Method for calculating amount of ammonia in gas sample
Michelena et al. A Novel Method for Failure Detection Based on Real-Time Systems Identification
Motomura et al. Model-based analysis and evaluation of sensor faults in heat source system
Wang et al. Base on bias and process capability index monitoring mechanism to improve tool consistency
US20240142417A1 (en) Systems and methods for automatic online analyzer validation and calibration
RU2480700C2 (en) Device for automatic analysis of heat carrier parameters, and method for its implementation
CN108829641B (en) Measurement process checking method based on statistical technology
Al Reeshi et al. Average outgoing quality of calibration Lab facilities
Jämsä-Jounela et al. Evaluation of level control performance
Minghui et al. A study of identification of wide-sense stationary in chemical processes
Oliveira Risk Assessment in the Monitoring of Works
Григоренко et al. The usage of statistical analysis methods for controlling the operational stability of Gas Treatment Facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP