JPH02250326A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus

Info

Publication number
JPH02250326A
JPH02250326A JP7143889A JP7143889A JPH02250326A JP H02250326 A JPH02250326 A JP H02250326A JP 7143889 A JP7143889 A JP 7143889A JP 7143889 A JP7143889 A JP 7143889A JP H02250326 A JPH02250326 A JP H02250326A
Authority
JP
Japan
Prior art keywords
core tube
gas supply
furnace core
tip
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7143889A
Other languages
Japanese (ja)
Inventor
Yoshio Kirino
桐野 好生
Kimitoshi Iwasaki
岩崎 公俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP7143889A priority Critical patent/JPH02250326A/en
Publication of JPH02250326A publication Critical patent/JPH02250326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PURPOSE:To prevent a life of a core tube from being lowered by a loss at a tip part of a hydrogen-gas supply tube and to enhance a yield of a semiconductor device by a method wherein the tip part of the hydrogen-gas supply tube is made of a ceramic whose heat resistance is high and whose purity is high. CONSTITUTION:A tip part 3 of a hydrogen-gas supply tube 1 for a semiconductor manufacturing apparatus provided with a core tube 4 used for pyrogenic oxidation is made of a ceramic whose heat resistance is high and whose purity is high. It is preferable that a heat-resistant temperature of this ceramic is 1500 deg.C and that its purity is 99% or higher. Thereby, it is possible to prevent a life of the core tube from being lowered by a loss at the tip part of the hydrogen-gas supply tube at a high temperature; it is possible to reduce defective wafers caused by impurity particles and to enhance a yield of semiconductor devices to be oxidized.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は半導体製造工程におけるシリコンウェーハの酸
化工程において、燃焼酸化用炉芯管の寿命を延ばすとと
もに、この燃焼酸化用炉芯管からの発塵をおさえ、半導
体デバイスの歩留を向上できる炉芯管を備えた半導体製
造装置に関する。
[Detailed Description of the Invention] Field of Industrial Application] The present invention extends the life of a combustion oxidation furnace core tube in the oxidation process of silicon wafers in a semiconductor manufacturing process, and also reduces the amount of gas generated from this combustion oxidation furnace core tube. The present invention relates to semiconductor manufacturing equipment equipped with a furnace core tube that suppresses dust and improves the yield of semiconductor devices.

[従来の技術] 従来使用されている燃焼酸化用炉芯管を備えた半導体製
造装置は、この炉芯管の材質が主として石英であり、特
に高温で使用する場合にはSiCで製造する場合もある
[Prior Art] In conventional semiconductor manufacturing equipment equipped with a furnace core tube for combustion oxidation, the material of the furnace core tube is mainly quartz, and when used at particularly high temperatures, it may be manufactured from SiC. be.

従来のパイロジェニック酸化(酸素−水素燃焼酸化)法
では、炉芯管の内部に供給管から夫々水素及び酸素ガス
を供給し、炉芯管の内部に突出した水素ガス供給管の先
端で水素ガスを燃焼させ炉芯管の内部に配置したシリコ
ンウェーハを酸化している。この炉芯管及びガス供給管
は従来はすべて石英でつくられている。
In the conventional pyrogenic oxidation (oxygen-hydrogen combustion oxidation) method, hydrogen and oxygen gas are supplied into the furnace core tube from supply tubes, respectively, and hydrogen gas is released at the tip of the hydrogen gas supply tube that protrudes inside the furnace core tube. The silicon wafer placed inside the furnace core tube is oxidized by burning it. Conventionally, the furnace core tube and gas supply tube are all made of quartz.

しかしながら、この構造及び酸化の方法では、水素ガス
供給管の先端の周囲が高温の水蒸気で満たされ、炉芯管
の内部に突出した水素供給管の部位は水素の還元性雰囲
気にさらされる。とくに先端部では水素/酸素の燃焼に
よる発熱のため特に高温となる。
However, with this structure and oxidation method, the area around the tip of the hydrogen gas supply pipe is filled with high-temperature steam, and the portion of the hydrogen supply pipe that protrudes into the interior of the furnace core tube is exposed to a reducing atmosphere of hydrogen. Particularly at the tip, the temperature becomes particularly high due to heat generated by combustion of hydrogen/oxygen.

このような環境下においては、石英製のガス供給管の先
端部は短期間の内に失透し、石英ガラスの失透及びこの
失透と同時にS;02が発生し、これにより生じた不純
物粒子が炉芯管内部でガスに混入してシリコンウェーハ
に付着し、シリコンウェーハを酸化するときのデバイス
の歩留を低下させるとともにガス供給管自身が除々に滅
失し使用不能となる。ガス供給管の先端部の内側はSi
O2が還元されSiOの蒸発と析出を生じ同様に不純物
粒子の発生及びガス供給管の滅失の原因となる。
Under such an environment, the tip of the quartz gas supply pipe will devitrify within a short period of time, and at the same time as the quartz glass devitrifies, S; The particles get mixed into the gas inside the furnace core tube and adhere to the silicon wafer, reducing the yield of devices when oxidizing the silicon wafer, and the gas supply tube itself gradually disappears, making it unusable. The inside of the tip of the gas supply pipe is made of Si.
O2 is reduced, causing evaporation and precipitation of SiO, which also causes generation of impurity particles and loss of gas supply pipes.

[発明が解決しようとする課題] 本発明の目的は上記の従来技術の欠点を改善し、不純物
粒子の発生及び水素ガス供給管の滅失がなく半導体デバ
イスの歩留を向上し得るとともに寿命の長い炉芯管を提
供、することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to improve the above-mentioned drawbacks of the prior art, to improve the yield of semiconductor devices without generating impurity particles or losing hydrogen gas supply pipes, and to have a long life. Our mission is to provide furnace core tubes.

[課題を達成するための手段] 本発明によれば本発明の前記目的は、パイロジェニック
酸化に使用する炉芯管を備えた半導体製造装置であ−)
て、前記炉芯管は、先端部が前記炉芯管の内部に突出す
るように前記炉芯管に取付けられた水素ガス供給管と、
前記炉芯管の内部と連通ずるように前記炉芯管に取付け
られた酸素ガス供給管とを備えており、前記水素ガス供
給管の前記先端部が高耐熱性・高純度のセラミックス製
である装置によって達成される。
[Means for achieving the object] According to the present invention, the object of the present invention is a semiconductor manufacturing apparatus equipped with a furnace core tube used for pyrogenic oxidation.
The furnace core tube includes a hydrogen gas supply pipe attached to the furnace core tube such that a tip thereof projects into the interior of the furnace core tube;
an oxygen gas supply pipe attached to the furnace core tube so as to communicate with the inside of the furnace core tube, and the tip of the hydrogen gas supply tube is made of highly heat-resistant and high-purity ceramics. achieved by the device.

[作用コ 水素ガス供給管の先端部が高耐熱性・高純度のセラミッ
クス製であるが故に、高温下における水素ガス供給管の
先端部の滅失による炉芯管のか命の低下を防止し得、か
つ不純物粒子の発生に起因するシリコンウェーハの不良
品を減らすことによって酸化すべき半導体デバイスの歩
留を向上し得る。
[Because the tip of the hydrogen gas supply tube is made of highly heat-resistant and high-purity ceramics, it can prevent the life of the furnace core tube from decreasing due to loss of the tip of the hydrogen gas supply tube under high temperatures. In addition, the yield of semiconductor devices to be oxidized can be improved by reducing the number of defective silicon wafers due to the generation of impurity particles.

[具体例コ 本発明を具体例に基づいて説明する。第1図において、
1は水素ガス供給管、2はその先端部、3は先端部2に
取付られな先端部材、4は炉芯管、5は酸素ガス供給管
、6は酸化すべきシリコンウェーハ及び7はシリコンウ
ェーハ6を支持する支持台を示す、炉芯管4には水素ガ
ス供給管1及び酸素ガス供給管5が夫々炉芯管4の閉鎖
端を貫通しかつ先端部2が炉芯管4の中に突出するよう
に炉芯管4に取付けられている。
[Specific Examples] The present invention will be explained based on specific examples. In Figure 1,
1 is a hydrogen gas supply pipe, 2 is its tip, 3 is a tip member attached to the tip 2, 4 is a furnace core tube, 5 is an oxygen gas supply pipe, 6 is a silicon wafer to be oxidized, and 7 is a silicon wafer In the furnace core tube 4, a hydrogen gas supply tube 1 and an oxygen gas supply tube 5 respectively pass through the closed end of the furnace core tube 4, and the tip end 2 is inserted into the furnace core tube 4. It is attached to the furnace core tube 4 so as to protrude.

高温で水蒸気及び水素ガスにさらされる水素ガス供給管
1の先端部2に取付られな先端部材3を高耐熱性・高純
度セラミックス、例えばSi 3N 4焼結体、SiC
焼結体、At 203焼結体などで作製する。先端部材
3は先端部2に脱着可能に取付られている。
The tip member 3 that is not attached to the tip 2 of the hydrogen gas supply pipe 1, which is exposed to water vapor and hydrogen gas at high temperatures, is made of highly heat-resistant, high-purity ceramics, such as Si 3N 4 sintered body, SiC.
It is made of a sintered body, At 203 sintered body, etc. The tip member 3 is detachably attached to the tip portion 2.

先端部材3は先端部2を前述の高耐熱性・高純度セラミ
ックスでコーティングしてもよく、あるいは前述の高耐
熱性・高純度セラミックスを使用して水素ガス供給管と
一体的に作製してもよい。
The tip member 3 may have the tip portion 2 coated with the above-mentioned highly heat-resistant, high-purity ceramics, or may be made integrally with the hydrogen gas supply pipe using the above-mentioned highly heat-resistant, high-purity ceramics. good.

コスト及び加工性からみれば先端部材3は別個に作製し
先端部2に取付けることが実用的である。
From the viewpoint of cost and workability, it is practical to manufacture the tip member 3 separately and attach it to the tip portion 2.

先端部材3は高11it熱性・高純度セラミックス製で
あり、例えば材料としては、Si 3N 4焼結体、S
iC焼結体(Si含浸品も含む)、^1 。03焼結体
又は単結晶AI 203.サイアロン等がある。T:2
03、 Too  (a )、BN(cubic)、2
r02等も使用し得るが、価格、加工性等から前王者に
比べるとやや実用性に劣る0本具体例のセラミックの高
耐熱性の程度としては耐熱温度が1.5GO”C5同高
純度の程度としては純度が99%以上であることが好ま
しい、これらのセラミックス以外の部材例えばガス供給
管全体あるいは炉芯管全体を高純度・高耐熱性かつ高温
・還元性雰囲気で失透しないか又は多量に蒸発すること
のない材質であってシリコンウェーハの特性に悪影響を
及ぼさない材質のものであってもよい。
The tip member 3 is made of high-11-it thermal and high-purity ceramics, and the materials include, for example, Si 3N 4 sintered body, S
iC sintered bodies (including Si-impregnated products), ^1. 03 Sintered body or single crystal AI 203. There is Sialon etc. T:2
03, Too (a), BN (cubic), 2
R02 etc. can also be used, but it is a little less practical than the previous champion due to price, workability, etc. Regarding the degree of high heat resistance of the ceramic of this specific example, the heat resistance temperature is 1.5 GO" C5 of the same high purity. In terms of purity, it is preferable that the purity is 99% or more.The materials other than these ceramics, such as the entire gas supply pipe or the entire furnace core tube, must be of high purity, high heat resistance, and do not devitrify at high temperatures and reducing atmospheres, or have a large amount of devitrification. The silicon wafer may be made of a material that does not evaporate and does not adversely affect the characteristics of the silicon wafer.

ムライト等いわゆる耐火煉瓦系統の材料は耐熱・耐浸触
性はあるがシリコンウェーハ特性に悪影響を与えるアル
カリ金属不純物の供給源となる傾向が強く適当ではない
Although mullite and other so-called refractory brick materials are heat resistant and corrosion resistant, they have a strong tendency to become a source of alkali metal impurities that adversely affect the properties of silicon wafers, and are therefore not suitable.

以上述べた材料により作製された炉芯管を備えた装置に
おいて、炉芯管4の内部に酸化するシリコンウェーハを
予めセットする。ついでガス供給管1,5から酸素及び
水素を炉芯管内部に供給し、水素ガス供給管1の先端部
2を高温下(i、ooo℃〜1 、300℃)の下で燃
焼させることによってシリコンウェーハを酸化させ、品
質の良いシリコンウェーハを製造することができる。
In an apparatus equipped with a furnace core tube made of the materials described above, a silicon wafer to be oxidized is set in advance inside the furnace core tube 4. Next, oxygen and hydrogen are supplied to the inside of the furnace core tube from the gas supply pipes 1 and 5, and the tip 2 of the hydrogen gas supply pipe 1 is combusted at high temperature (i, ooo °C to 1,300 °C). Silicon wafers can be oxidized to produce high quality silicon wafers.

従来の炉芯管構造及び本発明による炉芯管において夫々
1,100℃・3時間の粂件下でパイロジェニック酸化
を夫々3回行い、これにより酸化したシリコンウェーハ
についてウェーハ表面異物検査装置を用いてシリコンウ
ェーハ表面の不純物粒子数を計数した結果が第2図から
第7図に示されている。
Pyrogenic oxidation was performed three times in the conventional furnace core tube structure and the furnace core tube according to the present invention under conditions of 1,100°C for 3 hours, and the oxidized silicon wafers were tested using a wafer surface foreign matter inspection device. The results of counting the number of impurity particles on the surface of a silicon wafer are shown in FIGS. 2 to 7.

従来の炉芯管の装置では石英製のものを使用し、本発明
による炉芯管を備えた装置は水素ガス供給管1に取付け
な先端部材3を高純度StC焼結体にて作製しなものを
使用した。
In the conventional furnace core tube device, one made of quartz is used, and in the device equipped with the furnace core tube according to the present invention, the tip member 3 that is attached to the hydrogen gas supply tube 1 is made of a high-purity StC sintered body. I used something.

従来のf芯管装置の場合には、第2図では、小不純物粒
子(大きさが0.3〜0.5μm)の数(以下Sという
)が14.中不純物粒子(大きさが0.5〜2μl)の
数(以下Mという)が4.大不純物粒子(大きさが2μ
m以上)の数(以下りという)が5.計23、第3図で
はSが6.Mが3゜Lが8.計17、第4図ではSが1
29Mが1゜Lが5.計18であるのに対し、本発明に
係る炉芯管の場合には、第5図ではSが3.Mが1.L
が0.計4、第6図ではSが6.Mが0.Lが0゜計6
、第7図ではSが6.Mが1.Lが1.計8であった。
In the case of the conventional f-core tube device, in FIG. 2, the number of small impurity particles (size: 0.3 to 0.5 μm) (hereinafter referred to as S) is 14. The number of medium impurity particles (size: 0.5 to 2 μl) (hereinafter referred to as M) is 4. Large impurity particles (size 2μ
m or more) (hereinafter referred to as less) is 5. 23 in total, S is 6 in Figure 3. M is 3°L is 8. 17 in total, S is 1 in Figure 4
29M is 1°L is 5. In contrast, in the case of the furnace core tube according to the present invention, S is 3. M is 1. L
is 0. Total 4, S is 6 in Figure 6. M is 0. L is 0° total 6
, in Figure 7, S is 6. M is 1. L is 1. There were 8 in total.

このように、本発明に係る炉芯管を使用した場合には、
シリコンウェーハに付着するパーティクルの数が減少し
ていることが明らかである。なお、先端部材3と先端部
2との熱膨張率の差が小さいので高温下において先端部
材3又は先端部2が破壊するという問題点は発生しない
In this way, when using the furnace core tube according to the present invention,
It is clear that the number of particles adhering to the silicon wafer is reduced. Note that since the difference in thermal expansion coefficient between the tip member 3 and the tip portion 2 is small, the problem that the tip member 3 or the tip portion 2 breaks under high temperature does not occur.

[発明の効果コ 本発明に係る装置では、水素ガス供給管の先端部が高耐
熱性・高純度のセラミックス製であるが故に、高温下に
おける水素ガス供給管の先端部の不純物粒子の発生に起
因するシリコンウェーハの不良品を減らすことによって
酸化すべき半導体デバイスの歩留を向上し得る。
[Effects of the Invention] In the device according to the present invention, since the tip of the hydrogen gas supply tube is made of highly heat-resistant and high-purity ceramics, impurity particles are not likely to be generated at the tip of the hydrogen gas supply tube under high temperatures. The yield of semiconductor devices to be oxidized can be improved by reducing the number of defective silicon wafers caused by the oxidation process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る炉芯管の具体例の説明図、第2図
から第4図は従来例の炉芯管による酸化後のシリコンウ
ェーハ表面の不純物粒子数を示す図、及び第5図から第
7図は本発明に係る炉芯管の具体例による酸化後のシリ
コンウェーハ表面の不純物粒子数を示す図である。 1・・・・・・水素ガス供給管、2・・・・・・先端部
、3・・・・・・先端部材、4・・・・・・炉芯管、5
・・・・・・酸素ガス供給管、6・・・・・・シリコン
ウェーハ。 忠脚入 東芝セラミックス株式会社
FIG. 1 is an explanatory diagram of a specific example of a furnace core tube according to the present invention, FIGS. 2 to 4 are diagrams showing the number of impurity particles on the surface of a silicon wafer after oxidation by a conventional furnace core tube, and 7 to 7 are diagrams showing the number of impurity particles on the surface of a silicon wafer after oxidation using a specific example of the furnace core tube according to the present invention. DESCRIPTION OF SYMBOLS 1...Hydrogen gas supply pipe, 2...Tip part, 3...Tip member, 4...Furnace core tube, 5
...Oxygen gas supply pipe, 6...Silicon wafer. Toshiba Ceramics Corporation

Claims (1)

【特許請求の範囲】[Claims] パイロジェニック酸化に使用する炉芯管を備えた半導体
製造装置であって、前記炉芯管は、先端部が前記炉芯管
の内部に突出するように前記炉芯管に取付けられた水素
ガス供給管と、前記炉芯管の内部と連通するように前記
炉芯管に取付けられた酸素ガス供給管とを備えており、
前記水素ガス供給管の前記先端部が高耐熱性・高純度の
セラミックス製である装置。
A semiconductor manufacturing apparatus equipped with a furnace core tube used for pyrogenic oxidation, the furnace core tube having a hydrogen gas supply attached to the furnace core tube such that a tip portion thereof protrudes into the interior of the furnace core tube. and an oxygen gas supply pipe attached to the furnace core tube so as to communicate with the inside of the furnace core tube,
The device in which the tip of the hydrogen gas supply pipe is made of highly heat-resistant and high-purity ceramics.
JP7143889A 1989-03-23 1989-03-23 Semiconductor manufacturing apparatus Pending JPH02250326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7143889A JPH02250326A (en) 1989-03-23 1989-03-23 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7143889A JPH02250326A (en) 1989-03-23 1989-03-23 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPH02250326A true JPH02250326A (en) 1990-10-08

Family

ID=13460545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7143889A Pending JPH02250326A (en) 1989-03-23 1989-03-23 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH02250326A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860543A (en) * 1981-10-07 1983-04-11 Toshiba Ceramics Co Ltd Processing device for semiconductor wafer
JPS5856435B2 (en) * 1978-03-14 1983-12-14 富士電機株式会社 AC machine rotation direction and rotation speed detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856435B2 (en) * 1978-03-14 1983-12-14 富士電機株式会社 AC machine rotation direction and rotation speed detection device
JPS5860543A (en) * 1981-10-07 1983-04-11 Toshiba Ceramics Co Ltd Processing device for semiconductor wafer

Similar Documents

Publication Publication Date Title
TW311153B (en)
TWI430966B (en) Fused silica and process for producing same
JPH11317282A (en) Molybdenum disilicide composite ceramic heating element and its manufacture
US5676863A (en) Induction plasma torch
JPH02283015A (en) Quarts glass body for semiconductor manufacturing equipment or jig
JPH1174336A (en) Wafer support member
JPH02250326A (en) Semiconductor manufacturing apparatus
JP2008115056A (en) Crucible for melting silicon and mold-releasing material used in the crucible
JP2001503007A (en) Apparatus and method for reducing the source of break in drawn fiber
JPS58161939A (en) Drawing furnace for optical fiber
Barnes et al. Silicon nitride thin film dielectric
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JP3545866B2 (en) Wafer holding device
JPH10158097A (en) Oxidation preventing coating film
JPH08319186A (en) Cvd-siliconcarbide-coated member
JPS59189622A (en) Diffusion furnace process tube for semiconductor
JP2001305368A (en) Method for producing optical waveguide substrate
JP2001521871A (en) Apparatus and method for drawing waveguide fiber
JPH054828A (en) Furnace for production of high-purity quartz glass
JPH10338538A (en) Heating furnace
JP2002323635A (en) Method for manufacturing optical waveguide substrate, and optical waveguide substrate
JPH0484722A (en) Temperature measuring device for nonmetallic inorganic member, manufacture thereof and heating device utilizing temperature measuring device
JP2002012438A (en) Manufacturing method of preform of optical fiber
JPS61101429A (en) Production of glass tube
JP3110639B2 (en) Quartz glass for silicon semiconductor element heat treatment jig