JPH0224967A - Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material therefor - Google Patents

Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material therefor

Info

Publication number
JPH0224967A
JPH0224967A JP63173400A JP17340088A JPH0224967A JP H0224967 A JPH0224967 A JP H0224967A JP 63173400 A JP63173400 A JP 63173400A JP 17340088 A JP17340088 A JP 17340088A JP H0224967 A JPH0224967 A JP H0224967A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
active material
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63173400A
Other languages
Japanese (ja)
Other versions
JP2564175B2 (en
Inventor
Satoru Saito
哲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63173400A priority Critical patent/JP2564175B2/en
Publication of JPH0224967A publication Critical patent/JPH0224967A/en
Application granted granted Critical
Publication of JP2564175B2 publication Critical patent/JP2564175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a secondary battery with an extremely long cycle life by dispersing silver fine grains in electrolytic manganese dioxide as a positive electrode active material in the nonaqueous electrolyte secondary battery using lithium or lithium alloy for a negative electrode. CONSTITUTION:Silver fine grains are dispersed in electrolytic manganese dioxide as a positive electrode active material in a nonaqueous electrolyte secondary battery using lithium or lithium alloy for a negative electrode. When electrolytic manganese dioxide is used as the active material of this battery, a fixed quantity of carbonic acid is added to manganese dioxide to adsorb moisture in the crystals to some extent, silver fine grains are generated by heating and dispersed in the manganese dioxide. silver fine grains are dispersed in the manganese dioxide of the positive electrode material by the desorption of moisture from the manganese dioxide and the decomposition of carbonate. When silver enters the manganese dioxide crystals to expand or shrink the crystals by the charge or discharge, almost all the manganese dioxide is used for reaction due to the contained silver.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムあるいはリチウム合金、電解
液に有機電解液を使用した非水電解液電池に間するもの
であり、電解二酸化マンガンを改良した正極活物質を使
用することにより、放電電圧が高くエネルギー密度が大
きく、充放電サイクル寿命の長い二次電池を提供するも
のである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applied to non-aqueous electrolyte batteries using lithium or lithium alloy for the negative electrode and an organic electrolyte for the electrolyte. By using a positive electrode active material, a secondary battery with high discharge voltage, high energy density, and long charge/discharge cycle life is provided.

従来の技術 負極にリチウムあるいはリチウム合金、電解液に有機電
解液を使用した充放電可能な、いわゆる非水電解液二次
電池を得る試みは、さかんに行われており、正極活物質
としては、主に二硫化チタンや二硫化モリブデン等のカ
ルコゲン化合物が使用されてきた。[竹原 化学 37
 168 (1982)]しかし、正極にカルコゲン化
合物を使用した場合、放電電圧が低く、したがってエネ
ルギー密度は小さくなる。また、多くのカルコゲン化合
物は合成が困難で高価である。
Conventional Technology There have been many attempts to obtain so-called non-aqueous electrolyte secondary batteries that can be charged and discharged using lithium or a lithium alloy for the negative electrode and an organic electrolyte for the electrolyte. Chalcogen compounds such as titanium disulfide and molybdenum disulfide have mainly been used. [Takehara Chemistry 37
168 (1982)] However, when a chalcogen compound is used in the positive electrode, the discharge voltage is low, and therefore the energy density is low. Additionally, many chalcogen compounds are difficult and expensive to synthesize.

これらの欠点を克服するために、正極活物質として各種
酸化物を使用することが検討され、その中でも電解二酸
化マンガンが、リチウムと組み合わせた場合、平均放電
電圧が2.8vと高いことや、工業的生産が可能で安価
なことから、二次電池への応用が期待されている。
In order to overcome these drawbacks, the use of various oxides as positive electrode active materials has been considered.Among them, electrolytic manganese dioxide has a high average discharge voltage of 2.8V when combined with lithium, and has a high average discharge voltage of 2.8V. It is expected to be applied to secondary batteries because it can be produced efficiently and is inexpensive.

発明が解決しようとする課題 ところが、有機電解液中の電解二酸化マンガンを充放電
する場合の反応は、二酸化マンガン結晶中へのリチウム
イオンの出入りであるため、充放電によって二酸化マン
ガンの体積は心服と収縮を繰り返し、次第に結晶tSa
が崩壊することや、二酸化マンガンの結晶と導電材との
接触が悪くなって、サイクル数の増大と共に放電容量が
減少するという問題点を有していた。  [G、Pis
toia J、 Electrochen、 Soc、
、1291861  (1982) ]よって電解二酸
化マンガンを使用した非水電解液電池に見られるこのよ
うなサイクル数の増大にともなう放電容量の減少という
欠点を取り除き、放電電圧が高く、放電容量が大きく、
エネルギー密度の大きい非水電解液二次電池を得ること
が課題とされていた。
Problem to be Solved by the Invention However, the reaction when charging and discharging electrolytic manganese dioxide in an organic electrolyte is the movement of lithium ions into and out of manganese dioxide crystals, so the volume of manganese dioxide decreases by charging and discharging. Repeated contraction, gradually crystal tSa
However, there have been problems in that the manganese dioxide crystals collapse and the contact between the manganese dioxide crystals and the conductive material deteriorates, resulting in a decrease in discharge capacity as the number of cycles increases. [G, Pis
toia J, Electrochen, Soc,
, 1291861 (1982)], thus eliminating the disadvantage of a decrease in discharge capacity due to an increase in the number of cycles seen in non-aqueous electrolyte batteries using electrolytic manganese dioxide, and achieving a high discharge voltage and a large discharge capacity.
The challenge was to obtain a non-aqueous electrolyte secondary battery with high energy density.

課題を解決するための手段 本発明は、負極にリチウムあるいはリチウム合金を用い
た非水電解液二次電池において、正極活物質として電解
二酸化マンガン中に銀の微粒子を分散させたものを用い
たことを特徴とする。また、前記正極活物質の製造方法
として電解二酸化マンガンに15wt%以下の炭酸銀を
加え220℃以上350℃以下の温度で加熱することを
特徴とする。
Means for Solving the Problems The present invention provides a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode, using silver fine particles dispersed in electrolytic manganese dioxide as the positive electrode active material. It is characterized by Further, the method for producing the positive electrode active material is characterized in that 15 wt% or less of silver carbonate is added to electrolytic manganese dioxide and heated at a temperature of 220° C. or higher and 350° C. or lower.

作用 電解二酸化マンガンを非水電解液電池の活物質に使用す
る場合、結晶中に含まれている水分をある程度除去する
ために、一定の温度で加熱脱水する方法がとられている
。本発明は電解二酸化マンガンを加熱脱水する際、あら
かじめ電解二酸化マンガンに一定量の炭酸銀(A(12
CO3)を添加しておき、加熱によって炭酸銀が分解し
て銀の微粒子が生成し、これが二酸化マンガン中に分散
することを利用するものである。
When electrolytic manganese dioxide is used as an active material in a non-aqueous electrolyte battery, a method of heating and dehydrating it at a constant temperature is used to remove some of the water contained in the crystals. In the present invention, when heating and dehydrating electrolytic manganese dioxide, a certain amount of silver carbonate (A(12
This method utilizes the fact that silver carbonate (CO3) is added in advance, and silver carbonate is decomposed by heating to produce fine silver particles, which are then dispersed in manganese dioxide.

ただし、炭酸銀の分解温度は218℃であるので、加熱
温度は220℃以上としなければならない。また、電解
二酸化マンガンは室温では含水のγ−型結晶楕構造あり
、加熱によって脱水するが、250℃以上ではγ−型と
β−型の結晶構造の混合物、350℃以上ではβ−型結
晶構造となる。電池の充放電を行なう場合はβ−型より
もγ−型結晶楕構造方が望ましいため、加熱温度は35
0℃以下とする必要がある。
However, since the decomposition temperature of silver carbonate is 218°C, the heating temperature must be 220°C or higher. In addition, electrolytic manganese dioxide has a water-containing γ-type crystal elliptical structure at room temperature, and dehydrates when heated, but at temperatures above 250°C it becomes a mixture of γ-type and β-type crystal structures, and at temperatures above 350°C it has a β-type crystal structure. becomes. When charging and discharging batteries, a γ-type crystal elliptical structure is preferable to a β-type crystal structure, so the heating temperature is 35°C.
It is necessary to keep the temperature below 0°C.

本発明になる正極活物質は、電解二酸化マンガンからの
水分の離脱と、炭酸銀の分解が同時に起こる条件で合成
される。したがって、生成物は二酸化マンガン中に微細
な銀粉が分散した状態となっている。そのため、二酸化
マンガン結晶が充放電によって膨張収縮する場合におい
ても、結晶間に存在する銀のために、結晶間や導電剤と
の接触が良好な状態で保たれ、はとんどの二酸化マンガ
ンが反応に使われる。また、銀が二酸化マンガン結晶中
に入って、二酸化マンガンの結晶を充放電しない状態に
おいても、あらかじめ心服させておくので、充放電にお
けるリチウムの出入りに痒う体積変化を、電解二酸化マ
ンガン単独の場合よりも小さくするという効果がある。
The positive electrode active material of the present invention is synthesized under conditions in which water is removed from electrolytic manganese dioxide and silver carbonate is decomposed simultaneously. Therefore, the product is a state in which fine silver powder is dispersed in manganese dioxide. Therefore, even when manganese dioxide crystals expand and contract due to charging and discharging, the silver present between the crystals maintains good contact between the crystals and the conductive agent, and most of the manganese dioxide reacts. used for. In addition, even when silver is in the manganese dioxide crystal and the manganese dioxide crystal is not charged or discharged, the volume change caused by lithium entering and exiting during charging and discharging can be avoided when using electrolytic manganese dioxide alone. This has the effect of making it smaller.

実施例 以下に本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

[1,正極活物質の合成方法] 電解二酸化マンガン(γ−型結晶構造)粉末と、炭酸銀
粉末とを一定の割合で均等に混合し、ルツボに入れ電気
炉中で5時間加熱しな、混合比および加熱温度は第1表
に示す通りである。
[1. Method for synthesizing positive electrode active material] Electrolytic manganese dioxide (γ-type crystal structure) powder and silver carbonate powder were mixed evenly at a certain ratio, placed in a crucible, and heated in an electric furnace for 5 hours. The mixing ratio and heating temperature are as shown in Table 1.

第1表 なお、生成物中の二酸化マンガンの含有量nt%)は加
熱前の混合物に比べて、炭酸銀中のCOlが熱分解によ
って失われるため、第1表の値よりやや大きくなる。
Note that the content of manganese dioxide (nt%) in the product in Table 1 is slightly larger than the value in Table 1 because CO1 in silver carbonate is lost through thermal decomposition compared to the mixture before heating.

[2,正極板の製法] 上記の正極活物質とアセチレンブラック(導電剤)とデ
ィスバージョンテフロンとを重量比で908.2となる
ように混合し、ペースト状とし、ニッケルリード線を取
り付けた 10■x 10nnのエキスバンドニッケル
グリッド上に塗布した。正極混合物の塗布量は極板1枚
当り約501′1gとした。これを加圧して均一な表面
とした後、200℃で20時間真空乾燥して余分の水を
脱水した。
[2. Manufacturing method of positive electrode plate] The above positive electrode active material, acetylene black (conductive agent), and dispersion Teflon were mixed at a weight ratio of 908.2, formed into a paste, and a nickel lead wire was attached. 10 ■Applyed on x 10 nn expanded band nickel grid. The amount of the positive electrode mixture applied was approximately 501'1 g per electrode plate. This was pressurized to make a uniform surface, and then vacuum dried at 200° C. for 20 hours to remove excess water.

[3,電池の試作と試験条PI−] 電池は正極板1枚と負極板1枚とで構成されている。負
極板は10nix 1011nのリチウム板にニッケル
リード線を圧着で取り付けたものである。セパレータと
しては微細孔を備えたポリプロピレンシートを使用し、
電解液としては2−メチルテトラヒドロフランに六フッ
化砒酸リチウム(LiAsF6)を1.5101/A’
溶解させた非水電解液を使用した。
[3. Prototype production of battery and test strip PI-] The battery consists of one positive electrode plate and one negative electrode plate. The negative electrode plate was a 10nix 1011n lithium plate with a nickel lead wire attached by pressure bonding. A polypropylene sheet with micropores is used as the separator.
As an electrolyte, lithium hexafluoroarsenate (LiAsF6) was added to 2-methyltetrahydrofuran at 1.5101/A'.
A dissolved non-aqueous electrolyte was used.

この極板群をテフロンゲースに入れ、全体をセパラブル
フラスコ中、アルゴン雰囲気に密閉して、充放電試験を
行なった。充放電試験条件は以下の通りである。
This electrode plate group was placed in a Teflon gasket, the whole was sealed in an argon atmosphere in a separable flask, and a charge/discharge test was conducted. The charge/discharge test conditions are as follows.

温度=25℃±2℃ 電流: 充放電とも1.01^/ce l I  定電
流終始電圧:  (充電) 3.50V 、  (放電
) 2.OOV[4,充放電試験結果コ 活物質No、 1〜N016を用いた電池について、正
極活物質合成時の炭酸銀の添加量と、正極活物質1ki
l当つの放電容量との関係を第1図に示す。ただし、放
電容量はサイクル数で変化するので、以下全て10サイ
クル目の値を比較する。放電容量は炭酸銀添加量が5w
t%のとき最大となり、添加量を増すと減少する。炭酸
銀の添加量が15■t%以下であれば、無添加の場合に
比べて放電容量は大きくなる。
Temperature = 25°C ± 2°C Current: 1.01^/cel I constant current for both charging and discharging Voltage from beginning to end: (Charging) 3.50V, (Discharging) 2. OOV [4, Charge/discharge test results For batteries using active materials No. 1 to N016, the amount of silver carbonate added during synthesis of positive electrode active material and 1 ki of positive electrode active material
The relationship with discharge capacity per liter is shown in FIG. However, since the discharge capacity changes with the number of cycles, the values at the 10th cycle will be compared in all cases below. The discharge capacity is 5W with silver carbonate addition.
It reaches a maximum when the amount is t%, and decreases as the amount added increases. If the amount of silver carbonate added is 15 t% or less, the discharge capacity will be larger than in the case where no silver carbonate is added.

活物質No、2とNo、 7〜No、 10を用いた電
池について、炭酸銀をSwt%添加した場合の加熱温度
と放電容量との関係を第2図に示す。放電容量は300
℃加熱の場合に最大となり、加熱温度がこれより低くな
っても、高くなっても、小さくなる。この理由は、炭酸
銀の分解温度数218℃であるため、これ以下では二酸
化マンガン中への銀の侵入は無く、また、二酸化マンガ
ンは室温ではγ−型結晶槽遣であるが、加熱によって脱
水されて、250〜350℃の範囲ではγ/β−型結晶
楕遣に構造50〜450℃の範囲ではβ−型結晶構造と
なって350℃以上での加熱では、充放電に適さない結
晶構造となってしまう。したがって、正極活物質の加熱
温度は、220℃以上350’C以下の範囲が適してい
る。
FIG. 2 shows the relationship between heating temperature and discharge capacity when silver carbonate is added in Swt% for batteries using active materials No. 2, No. 7 to No. 10. Discharge capacity is 300
It is maximum when heating at °C, and becomes smaller even if the heating temperature is lower or higher than this. The reason for this is that since the decomposition temperature of silver carbonate is 218°C, silver does not enter manganese dioxide below this temperature, and although manganese dioxide is a γ-type crystal tank at room temperature, it is dehydrated by heating. In the range of 250 to 350°C, the structure changes to γ/β-type crystal ellipse; in the range of 50 to 450°C, it changes to β-type crystal structure; and when heated above 350°C, the crystal structure becomes unsuitable for charging and discharging. It becomes. Therefore, the heating temperature of the positive electrode active material is preferably in the range of 220° C. or higher and 350° C. or lower.

活物質No、1(無添加)を用いた電池と、No、2(
炭酸銀Swt%添加)を用いた電池の、充放電サイクル
数による放電容量の変化を第3図に示す。炭酸銀を添加
しないと、放電容量のサイクル数によ、る減少は激しい
が、炭酸銀を添加した場合の放電容量変化は非常に小さ
い。
A battery using active material No. 1 (no additives) and a battery using active material No. 2 (
FIG. 3 shows the change in discharge capacity depending on the number of charge/discharge cycles of a battery using silver carbonate (addition of Swt% silver carbonate). If silver carbonate is not added, the discharge capacity decreases drastically depending on the number of cycles, but when silver carbonate is added, the change in discharge capacity is very small.

発明の効果 本発明による正極活物質を使用すれば、充放電反応にお
いて極板中に含まれる大部分の二酸化マンガンが反応に
関与するため、同じ重量の電解二酸化マンガンを単独で
使用した場合よりも放電容量は大きくなる。しかも放電
電圧は二酸化マンガン単独の場合同様、平均2.8vで
あるなめ、電池の放電エネルギー密度は極めて大きい。
Effects of the Invention When the positive electrode active material according to the present invention is used, most of the manganese dioxide contained in the electrode plate participates in the charge/discharge reaction, so the reaction rate is greater than when the same weight of electrolytic manganese dioxide is used alone. The discharge capacity increases. Moreover, the average discharge voltage is 2.8 V, as in the case of manganese dioxide alone, so the discharge energy density of the battery is extremely high.

また、銀が二酸化マンガンの結晶中に入るために、充放
電に伴う二酸化マンガン結晶の体積変化が体積変化が小
さく、結晶間の接触も良好な状態に保たれることによっ
て、サイクル数による放電容量の減少は小さく、サイク
ル寿命の極めて長い二次電池が得られる。
In addition, since silver enters the manganese dioxide crystal, the volume change of the manganese dioxide crystal during charging and discharging is small, and the contact between the crystals is also maintained in a good state, which increases the discharge capacity depending on the number of cycles. The decrease is small, and a secondary battery with an extremely long cycle life can be obtained.

なお、実施例においては負極にリチウム、電解液に2−
メチルテトラヒドロフン−六フッ化砒酸リチウムを使用
したが、負極はリチウムを含む合金、例えばリチウム−
アルミニウム合金等も使用でき、また、電解液もリチウ
ムと直接反応しない各種有機電解液の使用も可能であり
、いずれの場合においても本発明の効果を得ることがで
きる。
In addition, in the example, lithium was used in the negative electrode, and 2-
Methyltetrahydrofurne-lithium hexafluoroarsenate was used, but the negative electrode could be an alloy containing lithium, such as lithium-
Aluminum alloys and the like can also be used, and various organic electrolytes that do not react directly with lithium can also be used, and in either case, the effects of the present invention can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、正極活物質合成時の炭酸銀含有量と、その活
物質を使った電池の放電容量との関係を示す図。第2図
は、正極活物質合成時の加熱温度と、電池の放電容量と
の関係を示す図。第3図(よ、本発明による電池および
従来の電池の充放電サイクル数と放電容量の関係を示し
た図。 岸!、温厘(C)
FIG. 1 is a diagram showing the relationship between the silver carbonate content during synthesis of a positive electrode active material and the discharge capacity of a battery using that active material. FIG. 2 is a diagram showing the relationship between the heating temperature during synthesis of the positive electrode active material and the discharge capacity of the battery. Figure 3 (A diagram showing the relationship between the number of charge/discharge cycles and the discharge capacity of the battery according to the present invention and the conventional battery. Kishi!, Atsushi (C)

Claims (1)

【特許請求の範囲】 1、負極にリチウムあるいはリチウム合金を用いた非水
電解液二次電池において、正極活物質として電解二酸化
マンガン中に銀の微粒子を分散させたものを用いたこと
を特徴とする非水電解液二次電池。 2、請求項1記載の非水電解液二次電池に用いる正極活
物質の製造方法であって、電解二酸化マンガンに15w
t%以下の炭酸銀を加え220℃以上350℃以下の温
度で加熱することを特徴とする非水電解液二次電池用正
極活物質の製造方法。
[Claims] 1. A non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode, characterized in that a material in which fine particles of silver are dispersed in electrolytic manganese dioxide is used as the positive electrode active material. A non-aqueous electrolyte secondary battery. 2. A method for producing a positive electrode active material used in a non-aqueous electrolyte secondary battery according to claim 1, wherein 15w is added to electrolytic manganese dioxide.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises adding t% or less of silver carbonate and heating at a temperature of 220° C. or higher and 350° C. or lower.
JP63173400A 1988-07-12 1988-07-12 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP2564175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173400A JP2564175B2 (en) 1988-07-12 1988-07-12 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173400A JP2564175B2 (en) 1988-07-12 1988-07-12 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0224967A true JPH0224967A (en) 1990-01-26
JP2564175B2 JP2564175B2 (en) 1996-12-18

Family

ID=15959713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173400A Expired - Lifetime JP2564175B2 (en) 1988-07-12 1988-07-12 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2564175B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435328A (en) * 1977-08-24 1979-03-15 Hitachi Ltd Positiveeelectrode material for nonaqueous electrolyte battery and method of manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435328A (en) * 1977-08-24 1979-03-15 Hitachi Ltd Positiveeelectrode material for nonaqueous electrolyte battery and method of manufacture thereof

Also Published As

Publication number Publication date
JP2564175B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US6334993B1 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
CN108767203B (en) Titanium dioxide nanotube-graphene-sulfur composite material and preparation method and application thereof
US20020012841A1 (en) Non-aqueous electrolyte secondary battery including positive and negative electrodes
JP2003151549A (en) Layered oxide electrode material and its manufacturing method and battery using the same
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JPH10188977A (en) Lithium secondary battery
JP4007439B2 (en) Non-aqueous secondary battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPH0224967A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material therefor
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JPH06267539A (en) Lithium secondary battery
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP3436292B2 (en) Positive electrode material for lithium battery, method for producing the same, and lithium battery using the same
JPH0414757A (en) Non-aqueous solvent secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JPH10172570A (en) Lithium secondary battery and its positive electrode active material
JPH0240860A (en) Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material used thereto