JPH0414757A - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JPH0414757A
JPH0414757A JP2116555A JP11655590A JPH0414757A JP H0414757 A JPH0414757 A JP H0414757A JP 2116555 A JP2116555 A JP 2116555A JP 11655590 A JP11655590 A JP 11655590A JP H0414757 A JPH0414757 A JP H0414757A
Authority
JP
Japan
Prior art keywords
oxide
positive electrode
manganese
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2116555A
Other languages
Japanese (ja)
Other versions
JP2835138B2 (en
Inventor
Takumi Uchida
内田 卓美
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2116555A priority Critical patent/JP2835138B2/en
Publication of JPH0414757A publication Critical patent/JPH0414757A/en
Application granted granted Critical
Publication of JP2835138B2 publication Critical patent/JP2835138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve filling density of a positive electrode active material to provide a non-aqueous solvent secondary battery with a positive electrode capacitance improved by providing a positive electrode containing as an active material oxide having manganese property wherein titanium oxide is mixed into manganese oxide and sintered. CONSTITUTION:Oxide having manganese property wherein titanium oxide is mixed into manganese dioxide, spinel structure lithium manganese oxide or oxide with these mixed and sintered is used as an active material. By mixing titanium oxide into manganese oxide and sintering, particles of the manganese oxide can be well sintered with one another by a function of titanium oxide as a sintering assistant, a dense oxide having manganese property can be obtained with large tap density. As a result, by using such an oxide having manganese property in a positive electrode active material, filling density of the positive electrode material in a battery having a constant capacity can be improved so that a high capacitance non-aqueous solvent secondary battery with a positive electrode capacitance improved can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒二次電池に関し、特に正極活物質を改
良した非水溶媒二次電池に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and particularly to a non-aqueous solvent secondary battery with an improved positive electrode active material.

(従来の技術) 近年、電子機器の発達に伴い、小型で軽量、かつ、エネ
ルギー密度が高く、更に、繰返し充放電可能な二次電池
の開発が要望されている。
(Prior Art) In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged.

この種の二次電池としては、負極活物質としてリチウム
又はリチウム合金を用い、正極活物質としてモリブデン
、バナジウム、チタン、ニオブなどの酸化物、硫化物、
セレン化物などを用いたものが知られている。
This type of secondary battery uses lithium or lithium alloy as the negative electrode active material, and oxides, sulfides, etc. of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material.
Those using selenide etc. are known.

一方、二酸化マンガンは高エネルギー密度、高電圧を有
する正極活物質として非水溶媒−次電池に用いられ、実
用化されている。そこで、リチウム負極を有する非水溶
媒二次電池において、前記二酸化マンガンを正極活物質
として用いることが検討されている。ところが、かかる
非水溶媒二次電池は、充放電サイクル特性に問題があっ
た。即ち、前記二酸化マンガンはトンネル構造を有して
おり、電池が放電することによって負極のLi+イオン
が前記トンネル内に侵入し、これによって、M n 0
2結晶構造は膨張する。このトンネル内のアルカリ金属
イオンは、容易に移動できる状態であるため、この電池
を充電状態にすると、トンネル内のLi+が放出され、
それに伴ってMn O2結晶構造が収縮する。このため
、従来の非水溶媒−次電池で使用されるMnO2を、そ
のまま二次電池の正極活物質として用いると、初期放電
容量は大きいが、電池の充放電に伴って結晶構造の収縮
・膨張が繰り返されることによってM n O□のトン
ネル構造が崩れてしまい、充放電サイクルの進行につれ
て充放電容量の劣化が著しくなるという問題があった。
On the other hand, manganese dioxide is used as a positive electrode active material having high energy density and high voltage in non-aqueous solvent-based batteries, and has been put into practical use. Therefore, in a non-aqueous solvent secondary battery having a lithium negative electrode, the use of the manganese dioxide as a positive electrode active material is being considered. However, such non-aqueous solvent secondary batteries have problems in charge/discharge cycle characteristics. That is, the manganese dioxide has a tunnel structure, and as the battery discharges, Li+ ions from the negative electrode enter the tunnel, thereby causing M n 0
The two-crystalline structure expands. The alkali metal ions in this tunnel are in a state where they can easily move, so when this battery is brought into a charged state, Li+ in the tunnel is released,
Correspondingly, the MnO2 crystal structure contracts. For this reason, if MnO2, which is used in conventional non-aqueous solvent secondary batteries, is used as it is as a positive electrode active material in secondary batteries, the initial discharge capacity is large, but as the battery charges and discharges, the crystal structure contracts and expands. There is a problem in that the tunnel structure of M n O□ collapses due to repetition of this process, and as the charge/discharge cycle progresses, the charge/discharge capacity deteriorates significantly.

このようなことから、二酸化マンガンにリチウム化合物
(例えばLi2C03)を加え、800〜1000℃の
高温のもとで焙焼して結晶構造を強固にしたスピネル型
リチウムマンガン酸化物(LiMn204)を、正極活
物質に用いて充放電サイクル特性の向上を図った非水溶
媒二次電池が提案されている。
For this reason, spinel-type lithium manganese oxide (LiMn204), which is made by adding a lithium compound (for example, Li2C03) to manganese dioxide and roasting it at a high temperature of 800 to 1000°C to strengthen the crystal structure, has been used as a positive electrode. Non-aqueous solvent secondary batteries have been proposed that use active materials to improve charge-discharge cycle characteristics.

しかしながら、前記正極活物質としてのスピネル型Li
Mn2O4はタップ密度が小さく、シかも重量当りの理
論容量が148mAh/ g程度の一定値である。また
、前述した正極活物質としての二酸化マンガンもタップ
密度が小さく、重量当りの理論容量がほぼ一定値である
。従って、これらのタップ密度の小さい正極活物質をス
パイラル構造を有する円筒形成いはコイン形の電池内に
収めた場合、その充填密度に限界があるため、十分な電
池容量を確保できないという問題点があった。
However, spinel type Li as the positive electrode active material
Mn2O4 has a small tap density, and its theoretical capacity per weight is a constant value of about 148 mAh/g. Furthermore, the manganese dioxide as the positive electrode active material described above also has a small tap density and a theoretical capacity per weight that is approximately constant. Therefore, when these positive electrode active materials with low tap densities are housed in a cylindrical or coin-shaped battery with a spiral structure, there is a limit to the packing density, so there is a problem that sufficient battery capacity cannot be secured. there were.

なお、二酸化マンガンにアナターゼ型酸化チタンを副活
物質として混合し、この混合物を正極活物質に用いて充
放電サイクル特性の向上を図った非水溶媒二次電池も提
案されている(特開昭64−6384号)。
A non-aqueous solvent secondary battery has also been proposed in which manganese dioxide is mixed with anatase-type titanium oxide as a sub-active material, and this mixture is used as a positive electrode active material to improve charge-discharge cycle characteristics (Japanese Patent Laid-Open Publication No. 64-6384).

(発明が解決しようとする課題) 本発明は従来の問題点を解決するためになされたもので
、正極活物質の充填密度を高めて正極容量を向上させた
非水溶媒二次電池を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the conventional problems, and aims to provide a non-aqueous solvent secondary battery in which the packing density of the positive electrode active material is increased and the positive electrode capacity is improved. That is.

[発明の構成] (課題を解決するための手段) 本発明は、二酸化マンガン、スピネル型リチウムマンガ
ン酸化物、又はこれらの混合酸化物(以下、これらを単
にマンガン酸化物と称す)に、酸化チタンを配合して焼
結したマンガン質酸化物を活物質として含む正極を具備
することを特徴とする非水溶媒二次電池である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for adding titanium oxide to manganese dioxide, spinel-type lithium manganese oxide, or a mixed oxide thereof (hereinafter simply referred to as manganese oxide). This is a non-aqueous solvent secondary battery characterized by comprising a positive electrode containing as an active material a manganese oxide compounded and sintered.

前記二酸化マンガンとしては、例えば化学合成二酸化マ
ンガン、活性化化学処理二酸化マンガンなどが挙げられ
る。
Examples of the manganese dioxide include chemically synthesized manganese dioxide, activated chemically treated manganese dioxide, and the like.

前記化学合成二酸化マンガンは、例えば以下に示す方法
により製造される。まず、硫酸マンガン(MnSO4)
溶液を加熱濃縮して硫酸マンガンの結晶とし、これを空
気雰囲気又は空気より酸素分圧の大きい酸素雰囲気中に
て800〜1100℃、10分間以上の条件で焙焼する
ことにより、硫酸マンガンを分解してMn3O4又はM
n20.を主成分とするマンガン酸化物を調製する。こ
こでMn3O4を主成分とするマンガン酸化物の場合は
、例えばロータリーキルンなどにより 700〜950
℃で焙焼してMn2O3を主成分とするマンガン酸化物
とする。つづいて、焙焼後のマンガン酸化物の粉末を加
熱した硫酸溶成に混入し、所望時間反応させる。次いで
、反応生成物を充分に水洗した後、アンモニア水で中和
し、更に水洗してγ型を主体とする化学合成二酸化マン
ガンを得る。
The chemically synthesized manganese dioxide is produced, for example, by the method shown below. First, manganese sulfate (MnSO4)
Manganese sulfate is decomposed by heating and concentrating the solution to crystallize manganese sulfate, and roasting it at 800 to 1100°C for 10 minutes or more in an air atmosphere or an oxygen atmosphere with a higher oxygen partial pressure than air. Mn3O4 or M
n20. Prepare manganese oxide whose main component is Here, in the case of manganese oxide whose main component is Mn3O4, the
It is roasted at ℃ to produce manganese oxide whose main component is Mn2O3. Subsequently, the roasted manganese oxide powder is mixed into heated sulfuric acid solution and reacted for a desired time. Next, the reaction product is thoroughly washed with water, neutralized with aqueous ammonia, and further washed with water to obtain chemically synthesized manganese dioxide containing mainly γ-type manganese dioxide.

前記活性化化学処理二酸化マンガンは、例えば以下に示
す方法により製造される。まず、天然二酸化マンガンを
粉砕、焙焼してMn2o3とする。
The activated chemically treated manganese dioxide is produced, for example, by the method shown below. First, natural manganese dioxide is crushed and roasted to produce Mn2o3.

これを更に微粉砕し、加熱した硫酸等の鉱酸中に混入し
て二酸化マンガンに変化させ、これを中和乾燥して活性
化化学処理二酸化マンガンを得る。
This is further finely pulverized and mixed into a heated mineral acid such as sulfuric acid to convert it into manganese dioxide, which is neutralized and dried to obtain activated chemically treated manganese dioxide.

前記スピネル型リチウムマンガン酸化物は、例えば以下
に示す方法により製造される。まず、硫酸マンガン(M
 n S O4)結晶より得た三酸化二マンガン(Mn
203 ) 、γ型主体の化学合成二酸化マンガン、又
は天然二酸化マンガンより得た活性化化学処理二酸化マ
ンガンに、炭酸リチウム、水酸化リチウムなどのリチウ
ム塩を所定量混合し、400〜500℃或いはeoo〜
950 ℃の温度範囲で加熱してスピネル型リチウムマ
ンガン酸化物を得る。
The spinel type lithium manganese oxide is manufactured, for example, by the method shown below. First, manganese sulfate (M
Dimanganese trioxide (Mn SO4) obtained from crystals
203) A predetermined amount of lithium salt such as lithium carbonate or lithium hydroxide is mixed with chemically synthesized manganese dioxide mainly composed of γ-type or activated chemically treated manganese dioxide obtained from natural manganese dioxide, and heated at 400 to 500°C or eoo~
Spinel type lithium manganese oxide is obtained by heating in a temperature range of 950°C.

前記加熱温度が400〜500 ”Cの場合は、リチウ
ム塩の混合比(Mn二Li)が4:1〜2:iであるこ
とが望ましく、得られる物質はスピネル型L i M 
n 204或いはスピネル型LiMn20゜とM n 
02との混合酸化物である。ここで前記加熱温度を40
0’C未満にすると二酸化マンガンの脱水が充分に行な
われず、一方前記加熱温度が500℃を越えると二酸化
マンガンの熱分解による三酸化二マンガン(Mn203
)が含有され、活物質容量の低下、サイクル特性の悪化
を示す。また、前記加熱温度が600〜950℃の場合
は、マンガン酸化物とリチウム塩との混合比(Mn:L
i)が2:1であることが望ましく、得られる物質はス
ピネル型LiMn2O4単一相である。
When the heating temperature is 400 to 500''C, it is desirable that the mixing ratio of lithium salts (Mn to Li) is 4:1 to 2:i, and the resulting material is a spinel type LiM.
n 204 or spinel type LiMn 20° and M n
It is a mixed oxide with 02. Here, the heating temperature is set to 40
If the heating temperature is lower than 0'C, manganese dioxide will not be sufficiently dehydrated, while if the heating temperature exceeds 500C, dimanganese trioxide (Mn203) will be produced due to thermal decomposition of manganese dioxide.
), indicating a decrease in active material capacity and deterioration in cycle characteristics. Further, when the heating temperature is 600 to 950°C, the mixing ratio of manganese oxide and lithium salt (Mn:L
i) is preferably 2:1, and the resulting material is a spinel-type LiMn2O4 single phase.

前記酸化チタンは、前記マンガン酸化物中に均一分散さ
せて該マンガン酸化物の粒子同士を焼結する観点から、
粒径が1〜50μ層の微粒子のものが望ましく、通常、
該酸化チタンを溶媒中に分散させてゾルにしたものを用
いる。かかる酸化チタンの配合量は、マンガン酸化物に
対して0.5〜20重量%、より好ましくは1.0〜5
.0重量%であることが望ましい。この理由は、その量
を0.5重量%未満にするとマンガン酸化物粒子同士の
焼結性が高められず、単位体積当りの正極活物質量つま
り密度を十分に高めることが困難となり、一方その量が
20重量%を越えると正極活物質中のマンガン酸化物量
が少なくなり、正極活物質自体の容量が低下する恐れが
ある。
From the viewpoint of uniformly dispersing the titanium oxide in the manganese oxide and sintering the particles of the manganese oxide,
Fine particles with a particle size of 1 to 50 μm are preferable, and usually,
A sol obtained by dispersing the titanium oxide in a solvent is used. The amount of titanium oxide blended is 0.5 to 20% by weight, more preferably 1.0 to 5% by weight based on the manganese oxide.
.. Preferably, it is 0% by weight. The reason for this is that if the amount is less than 0.5% by weight, the sinterability between manganese oxide particles cannot be improved, and it becomes difficult to sufficiently increase the amount of positive electrode active material per unit volume, that is, the density. When the amount exceeds 20% by weight, the amount of manganese oxide in the positive electrode active material decreases, and the capacity of the positive electrode active material itself may decrease.

前記焼結は、各マンガン酸化物の熱分解温度以下で行な
うことが望ましい。具体的には、二酸化マンガンを用い
る場合には300〜500℃が望ましく、スピネル型L
iMn2O4を用いる場合には300〜900℃で行う
ことが望ましい。
The sintering is preferably performed at a temperature below the thermal decomposition temperature of each manganese oxide. Specifically, when using manganese dioxide, the temperature is preferably 300 to 500°C, and spinel type L
When iMn2O4 is used, it is desirable to carry out the heating at 300 to 900°C.

なお、前記正極は通常、正極活物質、アセチレンブラッ
ク等の導電材及び結む剤などを分散溶媒中で混練してス
ラリー状の合剤を調製した後、アルミニウムなどの導電
性芯体に塗布・乾燥することにより製造される。ここに
用いられる結着剤としては、例えばエチレン−プロピレ
ン−環状ジエンの三元共重合体、ポリテトラフルオロエ
チレン、ポリアクリル酸、ポリアクリル酸塩類などが挙
げられる。前記分散溶媒としては、例えば有機溶媒、水
が挙げられる。
The positive electrode is usually prepared by preparing a slurry mixture by kneading the positive electrode active material, a conductive material such as acetylene black, a binding agent, etc. in a dispersion solvent, and then coating it on a conductive core such as aluminum. Manufactured by drying. Examples of the binder used here include a terpolymer of ethylene-propylene-cyclic diene, polytetrafluoroethylene, polyacrylic acid, and polyacrylates. Examples of the dispersion solvent include organic solvents and water.

本発明に係る非水溶媒二次電池に用いられる負極の活物
質としては、リチウム等の軽金属、リチウムアルミニウ
ム合金等の合金、炭素材などが挙げられる。
Examples of the active material of the negative electrode used in the nonaqueous solvent secondary battery of the present invention include light metals such as lithium, alloys such as lithium aluminum alloy, carbon materials, and the like.

本発明に係る非水溶媒二次電池に用いられる非水電解液
の電解質としては、LiPF6LiC,pO4、LiB
F4、LiCF3SO3等のリチウム塩などが挙げられ
る。同電解液の溶媒としては、プロピレンカーボネート
(PC)、エチレンカーボネート(EP)、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、γ−ブチロ
ラクトン、1.2−ジメトキシエタン(DME)が挙げ
られる。これらの溶媒は1種又は2種以上の混合物で用
いることができ、特に充放電サイクル寿命を長くする観
点から、プロピレンカーボネートと1.2−ジメトキシ
エタンとの混合溶媒、エチレンカーボネートと2−メチ
ルテトラヒドロフランとの混合溶媒、エチレンカーボネ
ートと1.2−ジメトキシエタンとの混合溶媒、プロピ
レンカーボネートとテトラヒドロフランとの混合溶媒が
望ましい。
The electrolytes of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery according to the present invention include LiPF6LiC, pO4, LiB
Examples include lithium salts such as F4 and LiCF3SO3. Examples of the solvent for the electrolytic solution include propylene carbonate (PC), ethylene carbonate (EP), tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and 1,2-dimethoxyethane (DME). These solvents can be used alone or in a mixture of two or more, and from the viewpoint of prolonging the charge/discharge cycle life, a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran, etc. A mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, a mixed solvent of propylene carbonate and tetrahydrofuran are desirable.

(作用) 本発明によれば、マンガン酸化物に酸化チタンを配合し
て焼結することによって、該酸化チタンによる焼結助剤
としての作用により該マンガン酸化物の粒子同士が良好
に焼結され、緻密でタップ密度が大きいマンガン質酸化
物が得られる。その結果、かかるマンガン質酸化物を正
極活物質に用いることにより、一定容積の電池内におけ
る正極活物質の充填密度を高めることができため、正極
容量が向上された高容量の非水溶媒二次電池を得ること
ができる。
(Function) According to the present invention, by blending titanium oxide with manganese oxide and sintering the mixture, particles of the manganese oxide can be sintered well due to the action of the titanium oxide as a sintering aid. , a dense manganese oxide with a large tap density is obtained. As a result, by using such a manganese oxide as a positive electrode active material, it is possible to increase the packing density of the positive electrode active material in a battery of a certain volume. You can get batteries.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 まず、硫酸マンガン(MnSO<)溶液を加熱濃縮して
硫酸マンガン結晶とし、これを自戒雰囲気にて1050
℃、60分間の条件で焙焼することにより、Mn3O4
を主成分とするマンガン酸化物を得た。焙焼後のマンガ
ン酸化物を90”Cの3モル硫酸溶液に混入し、2時間
反応させ、その反応生成物(M n 203 )を充分
に水洗した後、アンモニア水で中和し、更に水洗してγ
型を主体とするりツブ密度が1.91g/ccの化学合
成二酸化マンガンを合成した。
Example 1 First, a manganese sulfate (MnSO<) solution was heated and concentrated to form manganese sulfate crystals, and this was heated to 1050
By roasting at ℃ for 60 minutes, Mn3O4
A manganese oxide containing as the main component was obtained. The roasted manganese oxide was mixed into a 3M sulfuric acid solution at 90"C and reacted for 2 hours. The reaction product (M n 203 ) was thoroughly washed with water, neutralized with aqueous ammonia, and further washed with water. Then γ
Chemically synthesized manganese dioxide with a lump density of 1.91 g/cc was synthesized mainly from molds.

前記化学合成二酸化マンガン60gに酸化チタンゾル[
TiO210重量%] 20gを配合(二酸化マンガン
量に対する酸化チタン量3.3重量%)し、空気中で4
20℃、12時間の条件で焼結してタップ密度が2.2
0g/ceのマンガン質酸化物を得た。このマンガン質
酸化物の結晶構造をX線回折法により調べたところ、前
記化学合成二酸化マンガンの結晶構造(γ−βM n 
02 )には変化がないことを確認した。
Titanium oxide sol [
TiO2 10% by weight] 20g was blended (3.3% by weight of titanium oxide with respect to the amount of manganese dioxide) and 4% by weight in air.
Sintered at 20℃ for 12 hours to achieve tap density of 2.2
0 g/ce of manganese oxide was obtained. When the crystal structure of this manganese oxide was investigated by X-ray diffraction, it was found that the crystal structure of the chemically synthesized manganese dioxide (γ-βM n
It was confirmed that there was no change in 02).

正極活物質として前記焼結粉末90重量%、導電材とし
てアセチレンブラック 7重量%、及び粘着剤としてエ
チレン−プロピレン−環状ジエンの三元共重合体3重量
%を有機溶媒中で混練してスラリー状の正極合剤を調製
し、この正極合剤を厚さ100μmのアルミニウム基板
上に塗布風乾した後、加圧して一定厚にし、つづいて、
200℃、10時間の条件で加熱乾燥して0.26+a
m厚の正極合剤層を有する板状の正極を製造した。
90% by weight of the sintered powder as a positive electrode active material, 7% by weight of acetylene black as a conductive material, and 3% by weight of an ethylene-propylene-cyclic diene terpolymer as an adhesive are kneaded in an organic solvent to form a slurry. A positive electrode mixture was prepared, and this positive electrode mixture was coated on an aluminum substrate with a thickness of 100 μm, air-dried, and then pressurized to a constant thickness.
0.26+a after heating and drying at 200℃ for 10 hours
A plate-shaped positive electrode having a positive electrode mixture layer with a thickness of m was manufactured.

得られた正極を用いて単玉(AA)サイズの第1図に示
すような非水電解液二次電池を組立てた。
Using the obtained positive electrode, a non-aqueous electrolyte secondary battery of single cell (AA) size as shown in FIG. 1 was assembled.

即ち、非水電解液二次電池1は、底部に絶縁体2が配置
され、負極端子を兼ねる有底円筒状のステンレス容器3
を有する。この容器3内には、電極群4が収納されてい
る。この電極群4は、負極5、セパレータ6及び正極7
をこの順序で積層した帯状物を該負極6が外側に位置す
るように渦巻き状に捲回した構造になっている。前記負
極5は、帯状リチウム箔から形成されている。前記セパ
レータ6は、電解液を含浸したポリプロピレン性多孔質
フィルムから形成されている。前記電解液は、プロピレ
ンカーボネートと1.2−ジメトキシエタンとの混合溶
媒(体積比率50:50)に、電解質として六フッ化リ
ン酸リチウム(L i P F b )を0,5モル濃
度含有する。前記電極群4上方の容器3内には、中心を
開口した絶縁板8が配置されている。
That is, the non-aqueous electrolyte secondary battery 1 includes a bottomed cylindrical stainless steel container 3 with an insulator 2 arranged at the bottom and which also serves as a negative electrode terminal.
has. In this container 3, an electrode group 4 is housed. This electrode group 4 includes a negative electrode 5, a separator 6, and a positive electrode 7.
It has a structure in which a strip-like material in which the following layers are laminated in this order is spirally wound so that the negative electrode 6 is located on the outside. The negative electrode 5 is formed from a strip-shaped lithium foil. The separator 6 is formed from a polypropylene porous film impregnated with an electrolytic solution. The electrolytic solution contains lithium hexafluorophosphate (L i P F b ) as an electrolyte in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (volume ratio 50:50) at a concentration of 0.5 molar. . In the container 3 above the electrode group 4, an insulating plate 8 with an open center is arranged.

前記容器3の上部開口部には、絶縁封口体9が該容器3
に気密にかしめ固定されている。この絶縁封口板8の中
央開口部には、正極端子lOが嵌合されている。この正
極端子lOは、前記電極群4の正極7に正極リード11
を介して接続されている。なお、前記電極群4の負極5
は図示しない負極り−、ドを介して負極端子である前記
容器3に接続されている。
An insulating sealing body 9 is provided at the upper opening of the container 3.
It is crimped and fixed airtight. A positive electrode terminal IO is fitted into the central opening of the insulating sealing plate 8. This positive electrode terminal lO is connected to the positive electrode lead 11 of the positive electrode 7 of the electrode group 4.
connected via. Note that the negative electrode 5 of the electrode group 4
is connected to the container 3, which is a negative terminal, via negative terminals (not shown).

実施例2 実施例1におけるγ型主体の化学合成二酸化マンガン合
成の中間生成物と同様の三酸化二マンガン(Mn2on
 )Bogに炭酸リチウム14gを混合(Mn : L
 i −2:1 ) して空気中で850℃、2時間の
条件で加熱し、冷却した後再び混合し、空気中で850
℃、2時間の条件で再加熱してタップ密度が1.14g
/ccの合成粉末を得た。この合成粉末をX線回折法に
より調べたところ、LiMn20=単一相であることを
確認した。この合成粉末80gに酸化チタンゾル[T 
i 0210重量%]30gを配合(二酸化マンガン量
に対する酸化チタン!5重量%)し、空気中で600℃
、12時間の条件で焼結してタップ密度が1.80g/
ecのマンガン質酸化物を得た。このマンガン質酸化物
の結晶構造をXlt!jI回析法により調べたところ、
前記LiMn2O4単−相の結晶構造には変化がないこ
とを確認した。
Example 2 Chemical synthesis of mainly γ type in Example 1 Dimanganese trioxide (Mn2on
) Mix 14g of lithium carbonate with Bog (Mn: L
i -2:1), heated in air at 850°C for 2 hours, cooled, mixed again, and heated at 850°C in air.
After reheating at ℃ for 2 hours, the tap density is 1.14g.
/cc of synthetic powder was obtained. When this synthesized powder was examined by X-ray diffraction, it was confirmed that LiMn20 was a single phase. Titanium oxide sol [T
i0210% by weight] was blended (titanium oxide! 5% by weight with respect to the amount of manganese dioxide) and heated at 600°C in air.
, after sintering for 12 hours, the tap density was 1.80g/
A manganese oxide of ec was obtained. Xlt! The crystal structure of this manganese oxide! When investigated by jI diffraction method,
It was confirmed that there was no change in the crystal structure of the LiMn2O4 single phase.

このマンガン質酸化物を正極活物質として用いた以外、
実施例1と同様な非水電解液二次電池を組立てた。
In addition to using this manganese oxide as the positive electrode active material,
A non-aqueous electrolyte secondary battery similar to that in Example 1 was assembled.

実施例3 実施例1で合成したのと同様のγ型主体の化学合成二酸
化マンガンGOgに炭酸リチウム8.5gを混合(Mn
 : L i −3:l ) して空気中で450℃、
3時間の条件で加熱し、冷却した後再び混合し、空気中
で450℃、3時間の条件で再加熱してタップ密度が1
.43g/ccの合成粉末を得た。この合成粉末をX線
回折法により調べたところ、スピネル型LiMn2O4
とγ−βM n O2との混合酸化物であることを確認
した。この合成粉末60gに酸化チタンゾル[Ti02
10重量%]15gを配合(二酸化マンガン量に対する
酸化チタン量2.5重量%)し、空気中で450℃、1
2時間の条件で焼結してタップ密度が1.57g/cc
のマンガン質酸化物を得た。
Example 3 8.5 g of lithium carbonate was mixed with γ-type chemically synthesized manganese dioxide GOg similar to that synthesized in Example 1 (Mn
: Li-3:l) in air at 450℃,
Heated for 3 hours, cooled, mixed again, and heated again in air at 450°C for 3 hours until the tap density was 1.
.. A synthetic powder of 43 g/cc was obtained. When this synthetic powder was examined by X-ray diffraction, it was found that spinel-type LiMn2O4
It was confirmed that it was a mixed oxide of γ-βM n O2. Titanium oxide sol [Ti02
10 wt.
After sintering for 2 hours, the tap density is 1.57g/cc.
of manganese oxide was obtained.

このマンガン質酸化物の結晶構造をX線回折法により調
べたところ、前記混合酸化物の結晶構造には変化がない
ことを確認した。
When the crystal structure of this manganese oxide was examined by X-ray diffraction, it was confirmed that there was no change in the crystal structure of the mixed oxide.

このマンガン質酸化物を正極活物質とし用いた以外、実
施例1と同様な非水電解液二次電池を組立てた。
A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that this manganese oxide was used as the positive electrode active material.

比較例1 実施例1で合成したのと同様のγ型主体の化学合成二酸
化マンガンを空気中で450℃、12時間の条件で加熱
脱水処理したものを正極活物質として用いた以外、実施
例1と同様な非水電解液二次電池を組立てた。
Comparative Example 1 Example 1 except that the same chemically synthesized γ-type manganese dioxide synthesized in Example 1, which had been heated and dehydrated in air at 450°C for 12 hours, was used as the positive electrode active material. A non-aqueous electrolyte secondary battery similar to that was assembled.

比較例2 実施例2で合成したのと同様のスピネル型LiMn2O
4を正極活物質として用いた以外、実施例1と同様な非
水電解液二次電池を組立てた。
Comparative Example 2 Spinel type LiMn2O similar to that synthesized in Example 2
A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1, except that No. 4 was used as the positive electrode active material.

実施例1〜3及び比較例1,2の非水電解液二次電池に
ついて、電流100mAで電池電圧を2.OVから3.
3vにする充電と電流300a+Aで電池電圧を3.3
vから2.Ovにする放電とを繰り返し、所定充放電サ
イクル数における放電容量を測定した。
Regarding the nonaqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2, the battery voltage was set to 2.0 mA at a current of 100 mA. 3 from OV.
Charge to 3V and battery voltage to 3.3 with current 300a+A
2 from v. The discharge to Ov was repeated, and the discharge capacity at a predetermined number of charge/discharge cycles was measured.

その結果を第2図に示す。The results are shown in FIG.

第2図より明らかなように、実施例1の電池は比較例1
の電池に比べて放電容量が大きく、実施例2の電池は比
較例2の電池に比べて放電容量が大きく、実施例3の電
池も放電容量が大きいのがわかる。この原因は、実施例
1〜3の電池の正極活物質である各マンガン酸化物の粒
子同士が、酸化チタンを焼結助剤として焼結され、その
結果、正極活物質の単位体積当りの充填密度が高まった
ことによる。
As is clear from FIG. 2, the battery of Example 1 is the same as that of Comparative Example 1.
It can be seen that the battery of Example 2 has a larger discharge capacity than the battery of Comparative Example 2, and the battery of Example 3 also has a larger discharge capacity. The reason for this is that particles of each manganese oxide, which is the positive electrode active material of the batteries of Examples 1 to 3, are sintered together using titanium oxide as a sintering aid, and as a result, the filling per unit volume of the positive electrode active material is This is due to increased density.

なお、実施例1〜3の電池は、いずれも円筒形であるが
、コイン形の電池でも同様な効果を得ることができる。
Note that, although the batteries of Examples 1 to 3 are all cylindrical, similar effects can be obtained with coin-shaped batteries.

[発明の効果] 以上詳述した如く、本発明によれば正極活物質の充填密
度を高めることができ、正極容量を向上させて高容量化
した非水溶媒二次電池を提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, the packing density of the positive electrode active material can be increased, and the positive electrode capacity can be improved to provide a high-capacity non-aqueous solvent secondary battery. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の非水溶媒二次電池を示す一部断面図
、第2図は実施例1〜3及び比較例1.2の非水溶媒二
次電池における充放電サイクル数に対する放電容量の変
化を示す特性図である。 1・・・非水電解液二次電池、2・・・絶縁体、3・・
・ステンレス容器、4・・・電極群、5・・・負極、6
・・・セパレータ、7・・・正極、8・・・絶縁板、9
・・・絶縁封口体、10・・・正極端子、11・・・正
極リード。 出願人代理人 弁理士 鈴江武彦 第1図
Figure 1 is a partial cross-sectional view showing the non-aqueous solvent secondary battery of Example 1, and Figure 2 is the discharge versus number of charge/discharge cycles in the non-aqueous solvent secondary batteries of Examples 1 to 3 and Comparative Example 1.2. FIG. 3 is a characteristic diagram showing changes in capacitance. 1... Non-aqueous electrolyte secondary battery, 2... Insulator, 3...
・Stainless steel container, 4... Electrode group, 5... Negative electrode, 6
... Separator, 7... Positive electrode, 8... Insulating plate, 9
... Insulating sealing body, 10 ... Positive electrode terminal, 11 ... Positive electrode lead. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims]  二酸化マンガン、スピネル型リチウムマンガン酸化物
、又はこれらの混合酸化物に、酸化チタンを配合して焼
結したマンガン質酸化物を活物質として含む正極を具備
することを特徴とする非水溶媒二次電池。
A non-aqueous solvent secondary comprising a positive electrode containing as an active material a manganese oxide obtained by blending titanium oxide with manganese dioxide, spinel-type lithium manganese oxide, or a mixed oxide thereof and sintering the same. battery.
JP2116555A 1990-05-02 1990-05-02 Non-aqueous solvent secondary battery Expired - Fee Related JP2835138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116555A JP2835138B2 (en) 1990-05-02 1990-05-02 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116555A JP2835138B2 (en) 1990-05-02 1990-05-02 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH0414757A true JPH0414757A (en) 1992-01-20
JP2835138B2 JP2835138B2 (en) 1998-12-14

Family

ID=14690017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116555A Expired - Fee Related JP2835138B2 (en) 1990-05-02 1990-05-02 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP2835138B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233161A (en) * 1990-08-09 1992-08-21 Varta Batterie Ag Electrochemical secondary cell
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
EP0863561A1 (en) * 1997-03-06 1998-09-09 Matsushita Electric Industrial Co., Ltd. Manganese-oxide alkaline batteries
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
CN116936778A (en) * 2023-09-15 2023-10-24 山东海化集团有限公司 Sodium ion battery positive electrode material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233161A (en) * 1990-08-09 1992-08-21 Varta Batterie Ag Electrochemical secondary cell
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
EP0863561A1 (en) * 1997-03-06 1998-09-09 Matsushita Electric Industrial Co., Ltd. Manganese-oxide alkaline batteries
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN116936778A (en) * 2023-09-15 2023-10-24 山东海化集团有限公司 Sodium ion battery positive electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2835138B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
WO2014156153A1 (en) Active material for nonaqueous electrolyte electricity storage elements
EP2104163A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6542421B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
EP2471133A2 (en) Metal oxide coated positive electrode materials for lithium-based batteries
CA2240844A1 (en) Electrode material for lithium intercalation electrochemical cells
JP2006202702A (en) Nonaqueous electrolyte secondary battery
JP2003123755A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
EP3929158A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
US20020098416A1 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2000077097A (en) Nonaqueous electrolyte secondary battery
TWI713246B (en) Anode material for lithium ion battery and preparation method thereof
JPH04345759A (en) Non-aqueous solvent secondary battery
JPH06267539A (en) Lithium secondary battery
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP2000311675A (en) Nonaqueous electrolyte secondary battery
EP4411889A1 (en) Positive electrode for secondary battery, and secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees