JPH02248872A - Output voltage detection circuit - Google Patents
Output voltage detection circuitInfo
- Publication number
- JPH02248872A JPH02248872A JP1070997A JP7099789A JPH02248872A JP H02248872 A JPH02248872 A JP H02248872A JP 1070997 A JP1070997 A JP 1070997A JP 7099789 A JP7099789 A JP 7099789A JP H02248872 A JPH02248872 A JP H02248872A
- Authority
- JP
- Japan
- Prior art keywords
- mosfet
- bus
- voltage
- inverter
- voltage detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Landscapes
- Inverter Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はインバータ装置の出力電圧のH()〜イ)か
L(ロー)かを検出する回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a circuit for detecting whether the output voltage of an inverter device is H (a) to a) or L (low).
第2図は、従来からあるモータ駆動用PYMインバータ
の構成図であり2図において、6個のスイッチング素子
Ta”、 Ta−、Tb”、 Tb−、Tc”、 Tc
−をオン・オフすることによって、直流電圧VdcをP
YM変調して、モータに任意の周波数、電圧の三相交流
電圧を与えこの時1例えば、 Ta”、 Ta−を同時
にオンすると、直流電圧Vdcを短絡して、 Ta”、
Ta−の破壊につながるので、Ta”とTa−は同時
にオンしない様に、交互にオンオフさせるのだが、一般
に、スイッチング素子はオンするよりもオフする方が、
若干長(かかるので、オン信号を一定時間Taだけ遅ら
せる方法が採られている。しかしながら、このTa期間
には、素子Ta”、Ta−共、オフなので、モータ端子
(U)はオーブン状態、すなわち、モータ端子電圧が制
御不能な状態になる為、モータは不安定現象を生じたり
、トルクリップルのFl大等の悪影響を引き起こす原因
となっている。Fig. 2 is a block diagram of a conventional motor drive PYM inverter. In Fig. 2, six switching elements Ta", Ta-, Tb", Tb-, Tc", Tc are shown.
- by turning on and off the DC voltage Vdc
YM modulation is applied to give the motor a three-phase AC voltage of arbitrary frequency and voltage. At this time, for example, if Ta" and Ta- are turned on at the same time, the DC voltage Vdc is short-circuited and Ta",
Ta'' and Ta- are turned on and off alternately so that they are not turned on at the same time, as this would lead to destruction of Ta-, but in general, it is better to turn off a switching element than to turn it on.
However, during this Ta period, both elements Ta" and Ta- are off, so the motor terminal (U) is in an oven state, i.e. Since the motor terminal voltage becomes uncontrollable, the motor becomes unstable and causes adverse effects such as a large torque ripple Fl.
そこで、従来からある手法として、 Ta期間中の端子
U、 V、 YのN母線に対する電位を検出して(電圧
検出回路(1)等で検出する)、この検出結果と1’1
M制御パターンI PYMパターン作成回路(4)で作
成) とを比較して、Ta補正回路(5)で、 Ta期
間で生じた誤差を補正したパターンを作成し、その結果
のパターンを、各素子のベースアンプ+(6)〜(11
)l に与える方法が知られている。このTa補正回路
によってTaによる悪影響は改善される。Therefore, as a conventional method, the potentials of the terminals U, V, and Y with respect to the N bus during the Ta period are detected (detected by a voltage detection circuit (1), etc.), and this detection result and 1'1 are
Compare the M control pattern I (created with the PYM pattern creation circuit (4)), create a pattern that corrects the error that occurred in the Ta period in the Ta correction circuit (5), and apply the resulting pattern to each element. Bass amp + (6) ~ (11
)l is known. This Ta correction circuit improves the adverse effects caused by Ta.
第3図に、従来からある電圧検出回路((1)〜(3)
)を示す。例えば、モータ端子UがH(ハイ)の時は、
抵抗R5を通して2フオトカブラの入力側に電流が流れ
、フォトカプラはオンする。Ta期間ではTa’、Ta
−共オフなので、その瞬間のモータ電流の同きによって
、Ta”の逆方向ダイオード又は、Ta−の逆方向ダイ
オードがオンする。もし、モータ電流が従来の出力電圧
検出回路は2以上の様に構成されているので、抵抗R1
の消費電力が大きくなり損失の増加2発熱による温度上
昇、さらに、大きなワット数の抵抗が必要になるという
問題点があつた。Figure 3 shows a conventional voltage detection circuit ((1) to (3)
) is shown. For example, when motor terminal U is H (high),
A current flows through the resistor R5 to the input side of the two photocoupler, turning on the photocoupler. In the Ta period, Ta', Ta
- Since both are off, depending on the same instantaneous motor current, the reverse diode Ta'' or the reverse diode Ta- turns on.If the motor current is too high, the conventional output voltage detection circuit Since the resistor R1
There were problems such as an increase in power consumption, an increase in loss, a rise in temperature due to heat generation, and a need for a resistor with a large wattage.
例えば、Ta’とTa−のデユーティが50%として、
Rの消費電力y、は。For example, if the duty of Ta' and Ta- is 50%,
The power consumption of R, y, is.
Vdc’ 1
y、−x−
R,2
となり、 AC20OY系のインバータの場合で、 V
dcは通常300V、フォトカプラー次側に流す電流を
20mAとすると。Vdc' 1 y, -x- R,2, and in the case of an AC20OY system inverter, V
DC is normally 300V, and the current flowing to the next side of the photocoupler is 20mA.
0mA
流が、第4図−(b)の向きであれば、Ta−の逆方向
ダイオードがオンし、U点はOvとなる。If the 0 mA current is in the direction shown in FIG. 4-(b), the Ta- reverse direction diode is turned on and the U point becomes Ov.
となり、非常に大きい。更に、モータ回生時にはVdc
は400V迄、上昇することがあるので15kQ
2
普通、抵抗の選定には、消費電力の4倍程度のW数を選
ぶのでR,のW数は1相当り5.3x 4= 21.2
Wとなり、非常に大きなものとなる。So it's very large. Furthermore, during motor regeneration, Vdc
may rise up to 400V, so 15kQ
2 Normally, when selecting a resistor, the number of watts is about four times the power consumption, so the number of watts for R is 5.3 x 4 = 21.2 per equivalent.
W, which is very large.
消費電力を減らす方法として、フォトカプラの入力電流
を下げる方法が考えられる。しかし、 Ta期間という
のは、非常に短(、その為、フォトカプラには高麗応答
のものが要求される。高麗で。One possible way to reduce power consumption is to lower the input current of the photocoupler. However, the Ta period is very short (because of this, the photocoupler is required to have a Goryeo response.
かつ安価なフォトカプラは一般にCTR(電流伝達比)
が近く、経年変化によるCTR劣化のことも考えると、
フォトカプラの入力電流をむやみに下げることはできな
い。And cheap photocouplers generally have CTR (current transfer ratio)
is near and considering the deterioration of CTR due to aging,
The input current of a photocoupler cannot be lowered unnecessarily.
また、入力電流を下げるとノイズに弱(なるという問題
もある。There is also the problem that lowering the input current makes it less susceptible to noise.
この発明は上記のような問題点を解消するために為され
たもので、RIの消費電力を下げることができる出力電
圧検出回路を得ることを目的とする〔課題を解決するた
めの手段〕
この発明に係る出力電圧検出回路は、マイナス端をイン
バータのN母線に接続した電圧源と、その電圧源のプラ
ス端から、抵抗、フォトカプラ入力、及びMOSFET
のドレイン端を直列に接続し、MOSFETのソース端
をN母線に接続し、更にインバータ出力端とN母線との
間に2本の抵抗を直列に接続して、その2本の抵抗の接
続点をMOSFETのゲート端に接続したものである。This invention was made to solve the above-mentioned problems, and its purpose is to obtain an output voltage detection circuit that can reduce the power consumption of RI. The output voltage detection circuit according to the invention includes a voltage source whose negative end is connected to the N bus of an inverter, and a resistor, a photocoupler input, and a MOSFET from the positive end of the voltage source.
Connect the drain ends of the MOSFET in series, connect the source end of the MOSFET to the N bus, connect two resistors in series between the inverter output end and the N bus, and connect the two resistors to the connection point. is connected to the gate end of the MOSFET.
この発明における出力電圧検出回路は、前記のように構
成したので2発熱量を減少する。Since the output voltage detection circuit according to the present invention is configured as described above, the amount of heat generated is reduced by 2.
以下、この発明の一実施例を図について説明する。第1
図は本発明の回路図である。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a circuit diagram of the present invention.
図において、UがL(ロー)の時、即ち、素子Ta〜が
オンかTa−の逆方向ダイオードがオンの時は、MOS
FET(17)はオフとなり、フォトカプラ(18)は
オフでフォトカプラ出力はL (1ニア−)となる。U
がH(ハイ)の時、即ち、素子Ta”がオンか、Ta”
の逆方向ダイオードがオンの時、抵抗R,(15)とR
5(16)の接続点の電圧が、MOS F E T (
17)のVGSスレッシゴルド電圧以上となる様にR,
(15)とRs(16)の抵抗値を選んでおけば、MO
SFET(17)はオンし電圧+1i!(19)から抵
抗R,(20)を通してフォトカプラ(18)入力側に
電流が流れてフォトカプラ(18)はオンし、フォトカ
プラ出力はH(ハイ)となる。In the figure, when U is L (low), that is, when element Ta~ is on or the reverse diode of Ta- is on, the MOS
The FET (17) is turned off, the photocoupler (18) is turned off, and the photocoupler output becomes L (1 near). U
When is H (high), that is, whether element Ta" is on or Ta"
When the reverse diode of is on, the resistances R, (15) and R
The voltage at the connection point of 5 (16) is MOS FET (
17) so that the voltage is higher than the VGS threshold voltage.
By selecting the resistance values of (15) and Rs (16), MO
SFET (17) turns on and voltage +1i! A current flows from (19) through the resistor R and (20) to the input side of the photocoupler (18), the photocoupler (18) is turned on, and the photocoupler output becomes H (high).
MOSFETは゛磁圧ドライブ形素子なので9M03F
ETをオンさせるのに主回路から殆ど電流をとらない。Since the MOSFET is a magnetic drive type element, it is 9M03F.
It takes almost no current from the main circuit to turn on the ET.
さこで、いまMOSFET(17)のVGSスレッショ
ルド電圧のmarを5Y、その時、 V dcmin=
100Yで回路動作する様に考えると。Now, if the VGS threshold voltage mar of MOSFET (17) is 5Y, then V dcmin=
Think of it as if the circuit operates with 100Y.
Vdc X =5 V
R4+Rs
AC200V系のインバータでは、 Vdcは通常30
0V、 Ta”Ta−のオンオフデコーティ50%とし
て更にモータ回生時、 Vdc= 400Y時には10
0K 2
となる。Vdc
0V, Ta"Ta-'s on/off decorty is 50%, and when motor regenerates, Vdc = 400Y, 10
It becomes 0K 2 .
また、抵抗RLl(20)のロスは、電源(19)の電
圧を+5Vとして、フォトカプラー次側に流す電流を2
0mAフォトフォトカプラ端の順電圧降下とMOSFE
TのV++q(On)は無視するとしてW Re =
l 5 X 20mA=OJYよって2回路1相分のト
ータルロスは、 Vdc=400V時で
0.8+0.3 Y=1.l W
この値は、従来回路のW 、 = 5.31に比べて2
0%と非常に小さ(なる。Also, the loss of the resistor RLl (20) is calculated by setting the voltage of the power supply (19) to +5V and reducing the current flowing to the next side of the photocoupler by 2.
Forward voltage drop at 0mA photo-photocoupler end and MOSFE
Assuming that V++q(On) of T is ignored, W Re =
l 5 x 20mA = OJY Therefore, the total loss for 2 circuits and 1 phase is 0.8 + 0.3 when Vdc = 400V Y = 1. l W This value is 2 compared to W, = 5.31 in the conventional circuit.
It is very small (0%).
また、前記回路では、各出力電圧検出回路の電源は主回
路のTa−、Tb−、Tc−′のベース電源を利用する
ことができ2回路構成を簡単にすることができる。Further, in the above circuit, the base power supplies of Ta-, Tb-, and Tc-' of the main circuit can be used as the power supply for each output voltage detection circuit, and the two-circuit configuration can be simplified.
以上のように、この発明によれば、第1図のように構成
したので、抵抗の発熱が少ない出力電圧検出回路が得ら
れる効果がある。As described above, according to the present invention, since it is configured as shown in FIG. 1, it is possible to obtain an output voltage detection circuit in which the resistance generates less heat.
第1図は、この発明の一実施例を示す図、第2図は従来
からあるインバータ装置を示す図、第3図は従来の出力
電圧検出回路を示す図、第4図(a)(b)は、 Ta
期間中のインバータ出力電圧を説明した図である。
図において、 (1)(2)(3)は電圧検出回路、(
4)はパターン作成回路、(5)はTa補正回路である
。
なお、各図中、同一符号は同−又は相当部分を示す。FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional inverter device, FIG. 3 is a diagram showing a conventional output voltage detection circuit, and FIGS. ) is Ta
It is a figure explaining the inverter output voltage during a period. In the figure, (1), (2), and (3) are voltage detection circuits, (
4) is a pattern creation circuit, and (5) is a Ta correction circuit. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
してP母線の電位にあるのか、N母線の電位にあるのか
を検出する回路において、マイナス端を上記N母線に接
続した第一の電圧源と、上記第一の電位源のプラス端か
ら、抵抗、フォトカプラの入力側及びMOSFETのド
レイン端を直列に接続し、MOSFETのソース端を上
記第一の電圧源のマイナス端に接続し、さらに、インバ
ータ出力端とN母線との間に、分圧回路を接続して、そ
の分圧回路の分圧点を、MOSFETのゲート端に接続
したことを特徴とする出力電圧検出回路。In a circuit that detects whether the output voltage of each phase of the inverter is at the potential of the P bus or the potential of the N bus with respect to the N bus voltage of the main circuit, the first Connect the resistor, the input side of the photocoupler, and the drain end of the MOSFET in series from the voltage source and the positive end of the first potential source, and connect the source end of the MOSFET to the negative end of the first voltage source. An output voltage detection circuit further comprising: a voltage dividing circuit connected between the inverter output terminal and the N bus, and a voltage dividing point of the voltage dividing circuit connected to the gate terminal of the MOSFET.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1070997A JPH02248872A (en) | 1989-03-23 | 1989-03-23 | Output voltage detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1070997A JPH02248872A (en) | 1989-03-23 | 1989-03-23 | Output voltage detection circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02248872A true JPH02248872A (en) | 1990-10-04 |
Family
ID=13447708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1070997A Pending JPH02248872A (en) | 1989-03-23 | 1989-03-23 | Output voltage detection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02248872A (en) |
-
1989
- 1989-03-23 JP JP1070997A patent/JPH02248872A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11936288B2 (en) | Discharge of an AC capacitor using totem-pole power factor correction (PFC) circuitry | |
TW201125250A (en) | Power supply and the control method for controlling the same and power supply system incorporating such power supplies | |
JPH07222493A (en) | Control equipment for dc actuator in electronic equipment for electric power | |
TW201110520A (en) | Method for providing over current protection and circuit | |
JP2000299631A (en) | Device and method for controlling power supply | |
US6956359B2 (en) | Synchronous rectification for low voltage motor drive | |
JPH0622541A (en) | Control power supply | |
US6208541B1 (en) | PWM inverter apparatus | |
JPH02248872A (en) | Output voltage detection circuit | |
JPH07170724A (en) | Drive circuit for switching element | |
JP2533774Y2 (en) | DC-DC converter | |
US11664741B2 (en) | System and method for AC power control | |
JPH02129562A (en) | Detecting circuit for output voltage | |
JP4153408B2 (en) | Inverter device | |
JPH0246176A (en) | Output voltage detecting circuit for inverter device | |
JP3227989B2 (en) | Output circuit for PWM inverter | |
WO2024047991A1 (en) | Switch drive device and inverter circuit | |
JPH049016B2 (en) | ||
JP3235337B2 (en) | Output circuit for PWM inverter | |
JP2600103Y2 (en) | Power circuit | |
JP2629585B2 (en) | Inrush current suppression circuit | |
JPH10323044A (en) | Power circuit | |
JP2024049218A (en) | Semiconductor driving circuit and power conversion device | |
JP3235336B2 (en) | Output circuit for PWM inverter | |
JP2940825B2 (en) | PWM circuit |