JPH02248319A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH02248319A
JPH02248319A JP1070833A JP7083389A JPH02248319A JP H02248319 A JPH02248319 A JP H02248319A JP 1070833 A JP1070833 A JP 1070833A JP 7083389 A JP7083389 A JP 7083389A JP H02248319 A JPH02248319 A JP H02248319A
Authority
JP
Japan
Prior art keywords
mixed
calcined
cuo
superconducting material
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1070833A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Osamu Inoue
修 井上
Shunichiro Kawashima
俊一郎 河島
Hirofumi Hirano
平野 洋文
Yukihiro Takahashi
幸宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1070833A priority Critical patent/JPH02248319A/en
Publication of JPH02248319A publication Critical patent/JPH02248319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain an oxide superconducting material having a high superconductivity transition temp. with high reproducibility by using Sr2CuO3, Ca2CuO3 and the oxides of Tl, Pb and Cu as starting materials. CONSTITUTION:SrCO3 is mixed with CuO and calcined in the air to obtain Sr2CuO3. CaCO3 is mixed with CuO and calcined in the air to obtain Ca2CuO3. The obtd. Sr2CuO3 and Ca2CuO3 are mixed with PbO and CuO into an org. solvent, dried, calcined in the air, pulverized and dried to obtain calcined powder. This calcined powder is dry-mixed with Tl2O3, molded and sintered in vacuum to obtain an oxide superconducting material having >=120K superconductivity transition temp. The oxide is represented by a formula Tl9.6Pb9.6Sr2Ca2Cu2 Oy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超伝導転移温度(T、)を持つ酸化物超
伝導材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing oxide superconducting materials with a high superconducting transition temperature (T).

従来の技術 超伝導材料は、1)電気抵抗がゼロである、2)完全反
磁性である、 3)ジaセフソン効果がある、といった
、他の材料にない特性を持っており、既に超伝導マグネ
ットや、5QUID等に利用されている。また今後も、
電力輸送、発電器、核融合プラズマ閉じ込め、磁気浮上
列車、磁気シールド、高速コンピユータ等の幅広い応用
が期待されている。その材料としては、従来、Nb5G
e  等の金属系の超伝導体が用いられていた。ところ
が、金属系超伝導体では、Toは最も高いものでも23
に程度であり、実使用時には高価な液体ヘリウムと大が
かりな断熱装置を使って冷却しなければならず、工業上
大きな問題であった。このため、より高温で超伝導体と
なる材料の探索が行われていた。
Conventional technology Superconducting materials have properties not found in other materials, such as 1) zero electrical resistance, 2) complete diamagnetism, and 3) the Dia-Sefson effect, and have already become superconducting. It is used in magnets, 5QUID, etc. Also in the future,
It is expected to have a wide range of applications, including power transportation, power generators, fusion plasma confinement, magnetic levitation trains, magnetic shielding, and high-speed computers. Conventionally, the material is Nb5G
Metal-based superconductors such as e were used. However, in metallic superconductors, the highest To is 23
In actual use, it had to be cooled using expensive liquid helium and a large-scale insulation device, which was a major industrial problem. For this reason, research has been underway to find materials that become superconductors at higher temperatures.

1986年に Badnorz(へ’ ト’ノルフ)と
Muller(ミスーラー)により約40にという高い
T。を有する、酸化物系超伝導材料(L a +−zs
 r z)窒Cu Ollが見いだされ、それ以後YB
a*Cu5Ox、B i−8r−Ca−Cu−0、T 
I −B a−Ca−Cu−0などで、相次いでより高
い温度での超伝導転移が報告されている。
In 1986, a high T of about 40 was developed by Badnorz and Muller. An oxide-based superconducting material (L a +−zs
r z) Nitrogen Cu Oll was discovered, and since then YB
a*Cu5Ox, B i-8r-Ca-Cu-0, T
Superconducting transitions at higher temperatures have been reported in I-B a-Ca-Cu-0 and the like.

Toが高いほど冷却が容易となり、また同じ温度で使用
した場合の臨界電流密度や臨界磁場も大きくなる事が予
想され、応用範囲も広がるものと期待される。
It is expected that the higher To is, the easier the cooling will be, and the critical current density and critical magnetic field will be larger when used at the same temperature, and the range of applications will be expanded.

本発明は、これら新しい酸化物超伝導体のうちで100
に以上のToを有するものの一つである、T 1Pb−
8r−Ca−Cu−0の製造方法に関するものである。
The present invention covers 100 of these new oxide superconductors.
T 1Pb-, which is one of those with To greater than or equal to
The present invention relates to a method for producing 8r-Ca-Cu-0.

発明が解決しようとする課題 122にのT、を宵するT la、sP bs、ss 
rac&mCu5Ovは、それぞれの元素の酸化物を出
発原料として、成形体を石英管などの密閉容器内に封入
し、900℃程度で焼成することにより製造される。 
 (1,ム、  S@1)pHanian(号ブラマニ
アン)、  C,IC,Torardl(トラシテ°イ
L  J、 Gopolakrlshnan(コ°ネ°
ラクリシヱtン)、  P、L、  0il(j”イ)
、  J、(j、  Ca1abrese(カラフ゛リ
ース°)。
Problem 122 to be solved by the invention T, la, sP bs, ss
rac&mCu5Ov is produced by using oxides of the respective elements as starting materials, enclosing a molded body in a closed container such as a quartz tube, and firing it at about 900°C.
(1, Mu, S@1) pHanian, C, IC, Torardl, Gopolakrlshnan.
Lachryceton), P, L, 0il (j”i)
, J, (j, Calabrese).

T、R,ム5kev(アスex−)、  R,B、  
Fllppen(フリフヘ゛ン)  andム、曹、 
 Sleight(スレイト)、  5cience(
tイIンス)  vol、24LL249 (1918
))。しかし、SrおよびCaの酸化物は炭酸ガスと容
易に反応し炭酸塩となり化合物生成時の反応を阻害する
だけでなく、焼成時に密閉容器内の内圧を高め石英程度
の簡単な容器では破裂を引き起こしかねない。そのため
、製造の際には炭酸ガスとの接触をできるだけ避けなけ
ればならなかった。
T, R, MU5kev (as ex-), R, B,
Fllppen and Tom, Cao,
Sleight, 5science (
(1918) vol, 24LL249 (1918
)). However, Sr and Ca oxides easily react with carbon dioxide gas to form carbonates, which not only inhibits the reaction during compound formation, but also increases the internal pressure inside the sealed container during firing, causing rupture in containers as simple as quartz. It's possible. Therefore, during production, contact with carbon dioxide gas had to be avoided as much as possible.

課題を解決するための手段 Sr*Cu0s1 Ca*Cu0ss  およびTi、
Pb1 cuの酸化物を原料として用いて、Ti、Pb
xsr% CaおよびCuから成る酸化物超伝導材料の
製造する。
Means for solving the problem Sr*Cu0s1 Ca*Cu0ss and Ti,
Using Pb1 cu oxide as a raw material, Ti, Pb
Producing an oxide superconducting material consisting of xsr% Ca and Cu.

作用 本発明によれば、混合・造粒・成形の工程を炭酸ガスの
存在する雰囲気中において行っても、再現性良<120
に以上のToを有する製造することができる。
According to the present invention, even if the mixing, granulation, and molding steps are performed in an atmosphere containing carbon dioxide gas, the reproducibility is <120%.
It is possible to manufacture a material having a To of more than .

実施例 純度99%以上の5rCOsとCuOを原料として用い
、Sr: Cuが2= 1のモル比となるように秤量・
混合し、空気中で900℃20時間焼成し、S r *
Cu Osを合成した。また、純度99%以上のCaC
O5とCuOを用い、同様にして、950℃20時間焼
成し、Ca * Cu Osを合成した。それぞれ、単
一相の粉末が得られていることはX線回折により確認し
た。次に、得られたSr雪Cu0ss  Caucus
sと、純度99%以上のPbO1CuOの各粉末を、p
b: Sr: Ca: CUのモル比が0.5: 2:
 2: 3となるように秤量し、秤量粉末を振動ミルに
て直径2mmのZr09ポールを用い、エタノール20
m1を分散媒として1時間粉砕混合した。混合終了後、
分散媒ごと全量を乾燥機中で120℃で乾燥させた。得
られた粉末を750℃で5時間、空気中で仮焼した後、
振動ミルにて前述と同様の方法で30分間粉砕し120
℃で乾燥させ、次に、得られた仮焼粉に加える純度99
%以上のTl5Onを、TI:Pb: Sr: Ca:
 Cuのモル比が0. 7: 0゜5: 2: 2: 
3となるように秤量し、乾式で混合した。この粉末の0
.6gを18mmX4mmの金型中で500 k g/
c m”の圧力で一軸加圧成形した。この成形体を、金
箔で包み石英管中に真空封入した後、電気炉に890℃
で5時間焼成し、冷却した。昇降温速度はいずれも30
0℃/hとした。試料は銀電極を付け、通常の4端子法
により電気抵抗の温度変化を測定電流10mAで300
Kから77Kまで測定した。抵抗は金属的に低下し、1
24にで急激に落ち始め、121にでゼロになった。ま
た、超伝導量子干渉磁束計(SQUID)により、外部
磁場100eのもとで冷却した場合の磁化率の温度変化
を測定したところ、123Kから反磁性を示し、4Kに
おける磁化率は0.014emu/gであった。
Example Using 5rCOs and CuO with a purity of 99% or more as raw materials, they were weighed and weighed so that the molar ratio of Sr:Cu was 2=1.
Mixed and baked in air at 900°C for 20 hours, S r *
We synthesized CuOs. In addition, CaC with a purity of 99% or more
Ca*CuOs was synthesized in the same manner using O5 and CuO by firing at 950°C for 20 hours. It was confirmed by X-ray diffraction that single-phase powders were obtained in each case. Next, the obtained Sr snow Cu0ss Caucus
s and each powder of PbO1CuO with a purity of 99% or more, p
b: Sr: Ca: CU molar ratio is 0.5: 2:
Weigh the powder so that the ratio is 2:3, and add 20% ethanol to the powder using a vibration mill using a Zr09 pole with a diameter of 2mm.
The mixture was pulverized and mixed for 1 hour using m1 as a dispersion medium. After mixing,
The entire amount including the dispersion medium was dried in a dryer at 120°C. After calcining the obtained powder in air at 750°C for 5 hours,
Grind for 30 minutes using a vibrating mill in the same manner as described above.
℃ and then add purity 99 to the resulting calcined powder.
% or more of Tl5On, TI:Pb: Sr: Ca:
The molar ratio of Cu is 0. 7: 0゜5: 2: 2:
3 and dry mixed. 0 of this powder
.. 6g in a 18mm x 4mm mold to 500kg/
The molded body was uniaxially pressed at a pressure of 1.5 cm. This molded body was wrapped in gold foil and vacuum sealed in a quartz tube, and then heated to 890°C in an electric furnace.
The mixture was baked for 5 hours and cooled. The temperature increase/decrease rate is 30 in both cases.
The temperature was set at 0°C/h. A silver electrode was attached to the sample, and the temperature change in electrical resistance was measured using the usual 4-terminal method.
Measured from K to 77K. Resistance decreases metallically, 1
It started to drop sharply at 24 and reached zero at 121. In addition, when we measured the temperature change in magnetic susceptibility when cooled under an external magnetic field of 100 e using a superconducting quantum interference magnetometer (SQUID), it showed diamagnetic properties from 123 K, and the magnetic susceptibility at 4 K was 0.014 emu/ It was g.

比較例1 1g度99 % 以上+7) T l * Os、P 
b OlS r 0ssCabs、CuOの各粉末を、
Tl: pb: Sr:Ca:Cuの組成比(モル比)
が0. 7: o。
Comparative example 1 1g degree 99% or more +7) T l * Os, P
b OlS r 0ssCabs, CuO powder,
Tl: pb: Sr:Ca:Cu composition ratio (molar ratio)
is 0. 7: o.

5:  2: 2:  3となるように秤量し、乾式で
混合した。この粉末上記実施例と同様に加圧成形した。
They were weighed and dry mixed in a ratio of 5:2:2:3. This powder was press-molded in the same manner as in the above example.

なお、以上の工程はすべてアルゴンで滴たしたグローボ
ックス内で行った。この成形体を、同様の条件で焼成し
た。得られた試料の抵抗は金属的に低下し、123にで
急激に落ち始め、118にでゼロになった。また、磁化
率は122に以下で反磁性を示し、4Kにおける磁化率
は0.010emu/gであった。本発明により製造し
た試料よりも、臨界温度および磁化率ともに小さな値し
が得られなかったのは、混合・粉砕の工程による均質性
の向上を行っていないことが原因として挙げられる。
Note that all of the above steps were performed in a glow box dripping with argon. This molded body was fired under the same conditions. The resistance of the obtained sample decreased metallically, starting to drop sharply at 123 and reaching zero at 118. Further, the magnetic susceptibility was 122 or less, indicating diamagnetic properties, and the magnetic susceptibility at 4K was 0.010 emu/g. The reason why both the critical temperature and the magnetic susceptibility were not smaller than that of the sample produced according to the present invention is that the homogeneity was not improved through the mixing/pulverizing process.

比較例2 純度99%以上のTlll0a、PbO1Sr’s、C
a Oa、Cu Oを原料に用い、実施例と同様にして
試料の作製を行った。焼成後、石英管には割れが生じて
いた。得られた試料の抵抗は金属的に低下し、118に
で急激に落ち始め、105にでゼロになった。また、磁
化率は120に以下で反磁性を示し、4Kにおける磁化
率は0.00Elemu/gであった。本発明の実施例
および比較例1の試料よりも、臨界温度および磁化率と
もに小さな値しか得られなかったのは、空気中での処理
のためSrO*およびCafeが空気中の炭酸ガスと反
応し、化合物生成時の反応が阻害されたためと考えられ
る。
Comparative Example 2 Tlll0a, PbO1Sr's, C with purity of 99% or more
A sample was prepared in the same manner as in the example using aOa and CuO as raw materials. After firing, cracks had appeared in the quartz tube. The resistance of the obtained sample decreased metallically, starting to drop sharply at 118 and reaching zero at 105. Further, the magnetic susceptibility was 120 or less, indicating diamagnetic properties, and the magnetic susceptibility at 4K was 0.00 Elemu/g. The reason why only smaller values of critical temperature and magnetic susceptibility were obtained than the samples of Examples of the present invention and Comparative Example 1 is that SrO* and Cafe react with carbon dioxide gas in the air due to the treatment in air. This is thought to be due to inhibition of the reaction during compound production.

発明の効果 本発明によれば、S r2c u 0s1Carc u
 Oa、およびT Is  P bs  Cuの酸化物
を原料として用いることにより、混合・造粒・成形の工
程を炭酸ガスの存在する雰囲気中において行っても、再
現性良く、120に以上のToを有するTi、Pb。
Effects of the Invention According to the present invention, S r2c u 0s1Carc u
By using oxides of Oa and T Is P bs Cu as raw materials, even if the mixing, granulation, and molding steps are performed in an atmosphere where carbon dioxide gas exists, the product has a To of 120 or more with good reproducibility. Ti, Pb.

5rzCaおよびCuから成る酸化物超伝導材料を製造
することができる。
Oxide superconducting materials consisting of 5rzCa and Cu can be produced.

Claims (1)

【特許請求の範囲】[Claims] Sr_2CuO_3、Ca_2CuO_3、およびTi
、Pb、Cuの酸化物を原料として用いることを特徴と
する、Ti、Pb、Sr、CaおよびCuから成る酸化
物超伝導材料の製造方法。
Sr_2CuO_3, Ca_2CuO_3, and Ti
, Pb, and Cu oxides as raw materials.
JP1070833A 1989-03-23 1989-03-23 Production of oxide superconducting material Pending JPH02248319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070833A JPH02248319A (en) 1989-03-23 1989-03-23 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070833A JPH02248319A (en) 1989-03-23 1989-03-23 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH02248319A true JPH02248319A (en) 1990-10-04

Family

ID=13442969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070833A Pending JPH02248319A (en) 1989-03-23 1989-03-23 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH02248319A (en)

Similar Documents

Publication Publication Date Title
JPH02248319A (en) Production of oxide superconducting material
JPH02221125A (en) Oxide superconductor and its production
JPH02107518A (en) Oxide superconducting material
JPH02229718A (en) Oxide superconducting material and its production
JPH02129022A (en) Oxide superconducting material
JPH0465319A (en) Production of oxide superconducting material
JPH02225318A (en) Oxide superconductor material
JPH02252622A (en) Oxide superconducting material
JPS63260852A (en) Production of porcelain of superconductor
JPH01278420A (en) Superconductor and production thereof
JPS63288947A (en) Superconductor and its production
JPH01278457A (en) Superconductor and production thereof
JPH01313325A (en) Production of oxide superconducting material
JPH02275720A (en) Oxide superconducting material
JPS63291853A (en) Production of superconductor
JPH0226858A (en) Ceramic composition
JPH01278451A (en) Superconductor and production thereof
JPS63288955A (en) Production of superconductor
JPH01286921A (en) Superconducting material and production thereof
JPS63288953A (en) Production of superconductor
JPS63288954A (en) Production of superconductor
JPH03112852A (en) Oxide superconductive material
JPH0234554A (en) Production of oxide superconducting material
JPH03131521A (en) Oxide superconductor and production thereof
JPS63288951A (en) Production of superconductor