JPH02229718A - Oxide superconducting material and its production - Google Patents

Oxide superconducting material and its production

Info

Publication number
JPH02229718A
JPH02229718A JP1052285A JP5228589A JPH02229718A JP H02229718 A JPH02229718 A JP H02229718A JP 1052285 A JP1052285 A JP 1052285A JP 5228589 A JP5228589 A JP 5228589A JP H02229718 A JPH02229718 A JP H02229718A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting material
oxide
production
lattice constants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1052285A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Osamu Inoue
修 井上
Shunichiro Kawashima
俊一郎 河島
Hirofumi Hirano
平野 洋文
Yukihiro Takahashi
幸宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1052285A priority Critical patent/JPH02229718A/en
Publication of JPH02229718A publication Critical patent/JPH02229718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the oxide superconducting material having a high supercon ductivity transition temp. by incorporating at least Tl, Pb, etc., Sr and Cu into the material and imparting a tetragonal crystal structure having specified lattice constants to the material. CONSTITUTION:The oxide superconducting material contains at least Tl, Pb and Ln (>=1 kind among La, Pr and Nd), Sr and Cu, and has a tetragonal crys tal structure having the lattice constants, a=0.37nm and c=0.88nm. The material is produced by heattreating the material contg. the above-mentioned components other than Tl at >=720 deg.C in the presence of thallium oxide. The material has the superconductivity transition temp. of about 45K.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超伝導転移温度(T0)を持つ酸化物超
伝導材料およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide superconducting material having a high superconducting transition temperature (T0) and a method for producing the same.

従来の技術 超伝導材料は、1)電気抵抗がゼロである、2)完全反
磁性である、 3)ジョセフソン効果がある、といった
、他の材料にない特性を持っており、既に超伝導マグネ
ットや、SQUID等に利用されている。また今後も、
電力輸送、発電器、核融合プラズマ閉じ込め、磁気浮上
列車、磁気シールド、高速コンピュータ等の幅広い応用
が期待されている。その材料としては、従来、N b 
3 G e  等の金属系の超伝導体が用いられていた
Conventional technology Superconducting materials have properties not found in other materials, such as 1) zero electrical resistance, 2) complete diamagnetic properties, and 3) the Josephson effect, and have already been used in superconducting magnets. It is used for , SQUID, etc. Also in the future,
It is expected to have a wide range of applications, including power transportation, power generators, fusion plasma confinement, magnetic levitation trains, magnetic shielding, and high-speed computers. Conventionally, N b
Metal-based superconductors such as 3G e were used.

発明が解決しようとする課題 ところが、金属系超伝導体では、T0は最も高いもので
も23K程度であり、実使用時には高価な液体ヘリウム
と大がかりな断熱装置を使って冷却しなければならず、
工業上大きな問題であった。
The problem that the invention aims to solve is that the highest T0 of metallic superconductors is around 23K, and in actual use they must be cooled using expensive liquid helium and large-scale insulation equipment.
This was a major industrial problem.

このため、より高温で超伝導体となる材料の探索が行わ
れていた。
For this reason, research has been underway to find materials that become superconductors at higher temperatures.

1 9 8 6 年にヘ゜ト゜ノルフ(Bednorz
)とミューラー(Mutter)により約40Kという
高いT0を有する、酸化物系超伝導材料(L a I−
2S r 2)2C u Oxが見いだされ、それ以後
YBa2Cu30x、B i−S r−Ca−Cu−○
、T IB a−Ca−Cu−0などで、相次いでより
高い温度での超伝導転移が報告されている。
In 1986, Bednorz
) and Müller (1999), an oxide-based superconducting material (L a I-
2S r 2) 2C u Ox was discovered, and since then YBa2Cu30x, B i-S r-Ca-Cu-○
, T IB a-Ca-Cu-0, etc., superconducting transitions at higher temperatures have been reported one after another.

T0が高いほど冷却が容易となり、また同じ温度で使用
した場合の臨界電流密度や臨界磁場も大きくなる事が予
想され、応用範囲も広がるものと期待される。本発明は
、これら新しい酸化物超伝導体組成の一つである。
The higher T0 is, the easier cooling becomes, and it is expected that the critical current density and critical magnetic field will be larger when used at the same temperature, and the range of applications is expected to expand. The present invention is one of these new oxide superconductor compositions.

Tlは人体に対し有害であり、取扱いが非常に難しい元
素である。また高温で蒸発する(約800゜C以上で顕
著)ため、高温での熱処理を必要とする材料の製造には
、組成の制御が困難である。
Tl is an element that is harmful to the human body and extremely difficult to handle. Furthermore, since it evaporates at high temperatures (significantly at temperatures above about 800° C.), it is difficult to control the composition when producing materials that require heat treatment at high temperatures.

課題を解決する為の手段 成分として、少なくともTl,Pb1 Ln (但しL
nはL a1P rs  N dのうち一つ以上の元素
)SrおよびCuを含み、格子定数がa=o.37nr
rh  c=o.88nmの正方晶系に属する結晶構造
を有する酸化物超伝導材料を構成する。
At least Tl, Pb1 Ln (however, L
n contains one or more elements of L a1P rs N d) Sr and Cu, and the lattice constant is a=o. 37nr
rhc=o. An oxide superconducting material having a crystal structure belonging to a tetragonal system of 88 nm is constituted.

また、上記成分のうちTl以外の成分から成る材料を、
酸化タリウムの存在下で720℃以上で熱処理すること
により上記の酸化物超伝導材料を製造する。
In addition, a material consisting of components other than Tl among the above components,
The above oxide superconducting material is produced by heat treatment at 720° C. or higher in the presence of thallium oxide.

作用 発明者等は、従来知られていない酸化物高温超伝導体の
組成比を探索●研究した結果、上記の組成からなる物質
において、比較的高い温度における超伝導転移を見いだ
した。その超伝導転移温度は約45Kであり、従来の金
属系材料はもちろん、(La+−zS rz)aCuO
xよりも高い。
The inventors explored and researched the composition ratio of oxide high-temperature superconductors, which was previously unknown. As a result, they discovered a superconducting transition at relatively high temperatures in a substance with the above composition. Its superconducting transition temperature is about 45K, and it is not only suitable for conventional metallic materials but also for (La+-zS rz)aCuO.
higher than x.

また上記の製造方法によれば、Tlを、酸化タリウム存
在下における熱処理で導入することにより、原料の秤量
、混合、成形などの工程でタリウムを取り扱うことなし
に、上記の酸化物超伝導体を製造することができる。
Furthermore, according to the above manufacturing method, by introducing Tl through heat treatment in the presence of thallium oxide, the above oxide superconductor can be produced without handling thallium in steps such as weighing, mixing, and molding raw materials. can be manufactured.

実施例 純度99%以上の、PbO、PraO++、SrCO3
、CuOの各粉末を、Pb: Pr: Sr: CUの
組成比(モル比)となりかつ総重量が15gとなるよう
にそれぞれ秤量した。秤量粉末を振動ミルにて直径2m
mのZ r Oeボールを用い、エタノール20m】を
分散媒として1時間粉砕混合した。混合終了後、分散媒
ごと全量を乾燥機中で120゜Cで乾燥させた。得られ
た粉末を750゜Cで5時間、空気中で仮焼した後、振
動ミルにて前述と同様の方法で30分間粉砕し、120
℃で乾燥させた。この粉末の0.6g を18mmX4
mmの金型中で800Kg/cm2の圧力で一軸加圧成
形した。この成形体を、電気炉にて空気中で920゜C
で5時間焼成し、冷却した。昇降温速度はいずれも30
0゜C/hとした。得られた焼結体を酸化タリウムとと
もにアルミナ容器中に入れ、酸素気流中600〜100
0℃で8時間熱処理した。
Examples PbO, PraO++, SrCO3 with purity of 99% or more
, CuO powders were weighed so that the composition ratio (molar ratio) was Pb:Pr:Sr:CU and the total weight was 15g. Weigh the powder using a vibrating mill to a diameter of 2m.
The mixture was pulverized and mixed for 1 hour using a ZrOe ball (20ml) of ethanol as a dispersion medium. After the mixing was completed, the entire amount including the dispersion medium was dried in a dryer at 120°C. The obtained powder was calcined in air at 750°C for 5 hours, and then ground in a vibrating mill for 30 minutes in the same manner as described above.
Dry at ℃. 0.6g of this powder in 18mm x 4
Uniaxial pressure molding was carried out at a pressure of 800 kg/cm 2 in a mold of 1.0 mm in diameter. This molded body was heated to 920°C in air in an electric furnace.
The mixture was baked for 5 hours and cooled. The temperature increase/decrease rate is 30 in both cases.
The temperature was set at 0°C/h. The obtained sintered body was placed in an alumina container together with thallium oxide and heated to 600 to 100
Heat treatment was performed at 0°C for 8 hours.

昇降温速度は200゜C/hとした。The temperature raising/lowering rate was 200°C/h.

試料はは銀電極を付け、通常の4端子法により電気抵抗
の温度変化を測定電流10mAで300Kから15Kま
で測定した。また、超伝導量子干渉磁束計(SQUID
)により磁化率の温度変化を測定した。
A silver electrode was attached to the sample, and temperature changes in electrical resistance were measured from 300 K to 15 K at a measurement current of 10 mA using the usual 4-terminal method. In addition, superconducting quantum interference magnetometer (SQUID)
) was used to measure the temperature change in magnetic susceptibility.

720″C以上の熱処理を施した試料について抵抗ゼロ
を確認した。820゜Cで熱゜処理した試料の電気抵抗
は室温で約0.  1Ω/cmt300〜45゜Cにお
いて金属的伝導を示し、45゜C以下で急激に減少し、
39℃以下で抵抗ゼロを示した。磁化率は46゜C以下
において反磁性を示し4.2Kでは0.010emu/
gの反磁性を示した。
Zero resistance was confirmed for samples heat-treated at 720"C or higher.The electrical resistance of samples heat-treated at 820"C was approximately 0.1 Ω/cm at room temperature.It showed metallic conduction at 300-45°C, and 45 It decreases rapidly below °C,
It showed zero resistance at temperatures below 39°C. The magnetic susceptibility exhibits diamagnetic properties below 46°C and is 0.010 emu/at 4.2K.
It showed diamagnetism of g.

なお、熱処理前の試料は室温における抵抗が3桁高く、
半導体的伝導を示し、i’oo℃以下では絶縁体であっ
た。Prを他の希土類に変えたところL a1N dの
場合、同様の結果が得られた。
Note that the resistance of the sample before heat treatment is three orders of magnitude higher at room temperature.
It exhibited semiconducting conductivity and was an insulator at temperatures below i'oo°C. When Pr was changed to another rare earth element, similar results were obtained in the case of L a1N d.

熱処理前後の試料を粉砕し、粉末X線回折測定を行った
ところ、Tl導入の熱処理によりa=0.37nm1 
c=0.88nmの正方晶系に属する相が生成してるこ
とが分かった。
When the samples before and after heat treatment were crushed and powder X-ray diffraction measurements were performed, a=0.37 nm1 was found due to the heat treatment introducing Tl.
It was found that a phase belonging to the tetragonal system with c=0.88 nm was generated.

発明の効果 本発明によれば、従来にない酸化物超伝導材料を提供す
ることができる。
Effects of the Invention According to the present invention, an unprecedented oxide superconducting material can be provided.

また、本発明の製造方法によれば、原料の秤量、混合、
成形などの工程で人体に有害なタリウムを取り扱うこと
なしに、上記の酸化物超伝導体を製造することができる
Moreover, according to the manufacturing method of the present invention, weighing of raw materials, mixing,
The above oxide superconductor can be manufactured without handling thallium, which is harmful to the human body, during processes such as molding.

Claims (2)

【特許請求の範囲】[Claims] (1)成分として、少なくともTl、Pb、Ln(但し
LnはLa、Pr、Ndのうち一つ以上の元素)、Sr
およびCuを含み、格子定数がa=0.37nm、c=
0.88nmの正方晶系に属する結晶構造を有すること
を特徴とする酸化物超伝導材料。
(1) As components, at least Tl, Pb, Ln (however, Ln is one or more elements among La, Pr, and Nd), Sr
and Cu, lattice constants a=0.37nm, c=
An oxide superconducting material characterized by having a crystal structure belonging to a 0.88 nm tetragonal system.
(2)請求項1記載の成分のうちTl以外の成分から成
る材料を、酸化タリウムの存在下で720℃以上で熱処
理することを特徴とする請求項1記載の酸化物超伝導材
料の製造方法。
(2) A method for producing an oxide superconducting material according to claim 1, characterized in that a material consisting of a component other than Tl among the components described in claim 1 is heat-treated at 720° C. or higher in the presence of thallium oxide. .
JP1052285A 1989-03-03 1989-03-03 Oxide superconducting material and its production Pending JPH02229718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052285A JPH02229718A (en) 1989-03-03 1989-03-03 Oxide superconducting material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052285A JPH02229718A (en) 1989-03-03 1989-03-03 Oxide superconducting material and its production

Publications (1)

Publication Number Publication Date
JPH02229718A true JPH02229718A (en) 1990-09-12

Family

ID=12910528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052285A Pending JPH02229718A (en) 1989-03-03 1989-03-03 Oxide superconducting material and its production

Country Status (1)

Country Link
JP (1) JPH02229718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475753A2 (en) * 1990-09-12 1992-03-18 University Of Arkansas M-R-Tl-Sr-Cu-O based superconductors above liquid nitrogen temperature and processes for making them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475753A2 (en) * 1990-09-12 1992-03-18 University Of Arkansas M-R-Tl-Sr-Cu-O based superconductors above liquid nitrogen temperature and processes for making them
EP0475753A3 (en) * 1990-09-12 1992-10-14 University Of Arkansas M-r-tl-sr-cu-o based superconductors above liquid nitrogen temperature and processes for making them

Similar Documents

Publication Publication Date Title
JP2571789B2 (en) Superconducting material and its manufacturing method
JPS63222068A (en) Device and system based on novel superconductive material
JP3327548B2 (en) Manufacturing method of high temperature superconductor compact with high critical current
JPH02229718A (en) Oxide superconducting material and its production
JPH013015A (en) Superconducting materials and their manufacturing methods
König et al. Influence of the Tl-content on the properties of Bi-doped Tl-1223 superconductors
Khan et al. Synthesis, electrical and magnetic properties of nanocrystalline AgxHgBa2CuO4+ δ (x= 0, 0.02) superconductors
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
Whang et al. Flux pinning effect in Y-123 superconductor containing
JP2523928B2 (en) Oxide superconductor and method for producing the same
JPH02275720A (en) Oxide superconducting material
US5482917A (en) T1-M-Cu-O-F superconductors
JPH02221125A (en) Oxide superconductor and its production
JPH02252622A (en) Oxide superconducting material
JPH02107518A (en) Oxide superconducting material
JPH03295807A (en) Oxide superconducting material and production thereof
JPH03112852A (en) Oxide superconductive material
JPH02225318A (en) Oxide superconductor material
Mishra et al. Effect of CuO addition in Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O ceramics
JPH0323219A (en) Oxide superconducting material
JPH01201060A (en) Production of superconductor
JPH02111628A (en) Hydrogen-containing oxide including superconductive phase and its production
JPH02133317A (en) Oxide superconducting material
JPH02248319A (en) Production of oxide superconducting material
JPH01212222A (en) Oxide superconducting material