JPH0323219A - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JPH0323219A
JPH0323219A JP1157794A JP15779489A JPH0323219A JP H0323219 A JPH0323219 A JP H0323219A JP 1157794 A JP1157794 A JP 1157794A JP 15779489 A JP15779489 A JP 15779489A JP H0323219 A JPH0323219 A JP H0323219A
Authority
JP
Japan
Prior art keywords
superconducting material
oxide superconducting
chemical formula
added
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1157794A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Osamu Inoue
修 井上
Shunichiro Kawashima
俊一郎 河島
Junichi Kato
純一 加藤
Hiroshi Kagata
博司 加賀田
Hirofumi Hirano
平野 洋文
Yukihiro Takahashi
幸宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1157794A priority Critical patent/JPH0323219A/en
Publication of JPH0323219A publication Critical patent/JPH0323219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a superconducting material having >=120K superconductivity transition temp. only by sintering in an oxygen atmosphere with high reproducibility by adding Ag to a Tl-Ba-Ca-Cu-O compd. represented by a specified chemical formula. CONSTITUTION:Ag is added to a compd. represented by chemical formula I (where x>=0.8, n>=2 and m>=3) by 0.1-30wt.% to obtain an oxide superconducting material or Ag is added to a compd. represented by chemical formula II (where 0.3<=X<=0.7, Z>=1, n>=2 and m>=3) by 0.1-30wt.% to obtain an oxide superconducting material. The resulting material consists essentially of two phases of a superconductor and metallic Ag and is a very favorable material from the viewpoint of stabilization required to put a superconducting material to practical use.

Description

【発明の詳細な説明】 産業上の利用分野 本発明C上  高い超伝導転移温度(T.)を持つ酸化
物超伝導材料に関するものであも 従来の技術 超伝導材料ii1)電気抵抗がゼロであム 2)完全反
磁性であム 3)ジョセフソン効果があムといった 他
の材料にない特性を持っており、既に超伝導マグネッ1
1,SQUID等に利用されていも また今後仮 電力
輸送 発電沫 核融合プラズマ閉じ込数 磁気浮上列東
 磁気シールド、高速コンピュータ等の幅広い応用が期
待されていも その材料としては 従来 NbsGe 
 等の金属系の超伝導体が用いられてぃ1,  ところ
力丈 金属系超伝導体でGLT.は最も高いものでも2
3K程度であり、実使用時には高価な液体ヘリウムと犬
がかりな断熱装置を使って冷却しなければならず、工業
上大きな問題であっtラ  このたべ より高温で超伝
導体となる材料の探索が行われていtも1 9 8 6
年に Bednorz(へ゛ドノル7)とMuller
(ミューラー)により約40Kという高いT.を有す衣
 酸化物系超伝導材料(L a +−zS r 2)2
C u OXが見いださ札 それ以後YB a2c u
才0−、Bi−Sr−Ca−Cu−0,TI−Ba−C
a−Cu−0などで、相次いでより高い温度での超伝導
転移が報告されていもT・が高いほど冷却が容易となり
、また同じ温度で使用した場合の臨界電流密度や臨界磁
場も大きくなる事が予想され 応用範囲も広がるものと
期待されも 本発明は 酸化物超伝導体のうちで120K以上のT.
を有するTI系の材料に関するものであも実際に 超伝
導材料が線材や薄膜として実用化される場合、超伝導状
態の安定化に関する問題は重要であム 一般に 超伝導
の安定化は超伝導体の周囲を電気抵抗の低い材料で覆う
ことa 超伝導体中を磁束が移動しないようにピンニン
グセンターを導入することなどによっておこなわれも発
明が解決しようとする課題 120K以上のToを有する材料はTIを含む系で報告
されていも しかし そのような高いT.Jよ石英管な
どの密閉容器内に封入して焼戒するといった煩雑な方法
により製造された試料でしか得られなかっt4  また
 そのデータは製造条件に非常に敏感で再現性の悪いも
のでありt4 課題を解決するための手段 化学式TI−Ba*CaIICu.0− (ただし0.
8≦x、 2≦n,  3≦m)に対し Agを0.1
〜30重量%添加した酸化物超伝導材料とすもまた4友
 化学式T 1 (1−Xl・IP b++S rsC
 aIIcusov(0.  3≦x≦0.  7、 
l≦Z.2≦n,  3≦m)に対し Agを0.  
1〜30重量%添加した酸化物超伝導材料とすも 作用 本発明によれば 酸素雰囲気中で焼或するだけで、 1
20K以上のToを有する酸化物超伝導材料を再現性良
く製造することができも 実施例 実施例l 純度99%以上のBaCO*とCuO を原料として用
bX.Ba:  Cuが1=1のモル比となるように秤
量・混合し 空気中で900℃10時間焼戒LBaCu
O2を合威しtら また 純度99%以上のCaCOs
とCuOを用(\ 同様にして、 950℃10時間焼
戒L  CaaCuOsを合或したそれぞれ 単一相の
粉末が得られていることはX線回折により確認した 次に 得られたBaCuOa、Ca2CuOsと、純度
99%以上のTl*Os,PbO,CuO およびAg
a○の各粉末を、所定の比になるように秤量し 乾式で
混合しん この粉末の0.6g を18mm X 4 
mmの金型中で6 0 0 k g/cm”の圧力で一
軸加圧威形した この戒形体を、酸素気流中で焼戊した
 昇降温速度はいずれも400℃/hとした 試料は銀電極を付6ナ、通常の四端子法により電気抵抗
の温度変化を測定電流10mAで300Kから77Kま
で測定した また 超伝導量子干渉磁束計(SQUID
)により、外部磁場1 00eのもとで冷却した場合の
磁化率の温度変化を測定し九 表1+.:.Tl:  
Ba:  Ca:  Cuの比を1.2:  2:  
2:  3とした場合の結果を示も 表中の臨界温度は
Roll,  Rz●”s  L@Iはそれぞれ電気抵
抗のオンセット温嵐 ゼロ抵抗となる温度 反磁性を示
し始める温度であも (以下余白) 表1 表1に示すよう+−.Ag添加量0.  1〜30重量
%の場合に120K以上の臨界温度が得られtも添加量
1重量%で910℃30分焼或した試料を4. 2Kま
で冷却した時の磁化率は−〇.012e m u / 
gであっ九 X線回折により結晶構造を調べたところT
 l 2BarcaaCusO−および金属Agの2相
から戊っていた これCヨ  実用化の段階で問題とな
る超伝導材料の安定化の観点から考えて極めて好都合な
ことであも まf;Agを添加した試料は添加していな
い試料に比べより緻密になってい九 表2に Tl:  Ba:  Ca:  Cuの比をX
:2:2:3とL  Ag添加量を1重量%に固定した
場合の結果を示す。
[Detailed description of the invention] Industrial application field of the present invention 2) It is completely diamagnetic. 3) The Josephson effect has properties that other materials do not have, such as A, and it has already been used in superconducting magnets.
1. Even though it is used in SQUIDs, etc., and is expected to have a wide range of applications in the future, such as magnetic shielding, high-speed computers, etc., the conventional material is NbsGe.
Metal-based superconductors such as GLT. is the highest one
The temperature is about 3K, and in actual use, it must be cooled using expensive liquid helium and a complicated insulation device, which is a major industrial problem. 1 9 8 6
Bednorz (Hednorz 7) and Muller
(Mueller) has a high T. of about 40K. Oxide-based superconducting material (L a + -zS r 2) 2
C u OX is found, then YB a2c u
0-, Bi-Sr-Ca-Cu-0, TI-Ba-C
Even though superconducting transitions at higher temperatures have been reported in materials such as a-Cu-0, the higher T is, the easier cooling becomes, and the critical current density and critical magnetic field become larger when used at the same temperature. Although it is expected that the range of application will expand, the present invention is applicable to oxide superconductors with a T of 120K or more.
Regarding TI-based materials that have Covering the periphery of the superconductor with a material with low electrical resistance (a) Introducing a pinning center to prevent the movement of magnetic flux in the superconductor, etc. Problems to be Solved by the Invention Materials with To of 120 K or more are TI. However, such high T. J, this data can only be obtained from samples manufactured by complicated methods such as sealing them in sealed containers such as quartz tubes and burning them.In addition, the data is very sensitive to manufacturing conditions and has poor reproducibility. Means for solving the problem Chemical formula TI-Ba*CaIICu. 0- (but 0.
8≦x, 2≦n, 3≦m), Ag is 0.1
~30% by weight added oxide superconducting material and Susumata 4 friends Chemical formula T 1 (1-Xl・IP b++S rsC
aIIcusov(0.3≦x≦0.7,
l≦Z. 2≦n, 3≦m), Ag is 0.
According to the present invention, the oxide superconducting material added in an amount of 1 to 30% by weight can produce 1
An oxide superconducting material having To of 20K or higher can be produced with good reproducibility.Example 1 Using bX. Weigh and mix Ba:Cu so that the molar ratio is 1=1, and burn it in air at 900°C for 10 hours LBaCu
Combine O2 and CaCOs with a purity of 99% or more
In the same manner, CaaCuOs was combined with CaaCuOs for 10 hours at 950℃.It was confirmed by X-ray diffraction that a single-phase powder was obtained.Then, the obtained BaCuOa, Ca2CuOs and , Tl*Os, PbO, CuO and Ag with a purity of 99% or more
Weigh each of the powders in a○ so that they are in the prescribed ratio and mix them in a dry method.
This molded body was uniaxially pressurized at a pressure of 600 kg/cm'' in a mold of 600 kg/cm. Temperature changes in electrical resistance were measured from 300K to 77K at a measurement current of 10mA using the usual four-probe method with six electrodes attached.
), we measured the temperature change in magnetic susceptibility when cooling under an external magnetic field of 100 e. :. Tl:
The ratio of Ba: Ca: Cu was 1.2: 2:
The critical temperatures in the table are Roll, Rz●"s, L@I are the onset temperature storms of electrical resistance, respectively. Table 1 As shown in Table 1, +-.A critical temperature of 120K or more was obtained when the Ag addition amount was 0.1 to 30% by weight, and the sample was annealed at 910°C for 30 minutes when the addition amount was 1% by weight. When cooled to 4.2K, the magnetic susceptibility is -0.012e mu /
When the crystal structure was investigated by X-ray diffraction, T
It was removed from the two phases of 2BarcaaCusO- and metal Ag.Although it is extremely convenient from the viewpoint of stabilizing superconducting materials, which is a problem at the stage of practical application, we added Ag. The sample is more dense than the sample without the addition.Table 2 shows the ratio of Tl:Ba:Ca:Cu.
:2:2:3 and L The results are shown when the amount of Ag added was fixed at 1% by weight.

(以下余白) 表2 表2に示すように 量XがO. 8以上の場 合に120K以上の臨界温度が得られf:,x=4.0
で920℃120分焼威した試料をX線回折により結晶
構造を調べたとこ7fx  TItBatCa*Cu 
s O vおよび金属Agの2相から戊っていfQ, 
 過剰のTIは焼戒温度をより高温にあるいはまた焼或
時間を長くすることによって蒸発させることで容易に制
御できも 表3i;t..Agを添加した場合および無添加の場合
のデータのバラつきを調べた結果であも 添加した場合
の方力交 特性的に優れているだけでなく、データの再
現性においても優れていることが明かであも 表3 (以下余白〉 (以下余白) 実施例2 純度99%以上のTlaOs,PbO、Sr’s、C 
a 02、CuO およびAgzOの各粉末を、所定の
比で秤量し乾式で混合し1,  この粉末上記実施例l
と同様の工程で焼戊まで行っ九 表4にT I ++−+++tp b++S r2c 
anc u曽0vにおいてx=0.5、 z=1.2、
n  =2、m=3の場合の結果を示す。
(Margin below) Table 2 As shown in Table 2, the amount X is O. 8 or more, a critical temperature of 120K or more is obtained, f:, x = 4.0
The crystal structure of a sample burned at 920°C for 120 minutes was investigated by X-ray diffraction.7fx TItBatCa*Cu
fQ, which is separated from the two phases of s O v and metal Ag,
Excess TI can be easily controlled by evaporation by increasing the firing temperature or by increasing the firing time; Table 3i; t. .. The results of investigating the variation in data when Ag was added and when no Ag was added revealed that the addition of Ag was superior not only in terms of the square force characteristics but also in the reproducibility of the data. Deamo Table 3 (Hereafter blank) (Hereafter blank) Example 2 TlaOs, PbO, Sr's, C with a purity of 99% or more
a 02, CuO and AgzO powders were weighed in a predetermined ratio and mixed in a dry method.
Follow the same process until burning, and in Table 4, T I ++-+++tp b++S r2c
At anc u so 0v, x=0.5, z=1.2,
The results are shown when n = 2 and m = 3.

(以下余白) 表4 表4に示すように Ag添加量0. 1〜30重 量%の場合に120K以上の臨界温度が得られt4Ag
添加量1重量%で900℃30分焼威した試料をX線回
折により結晶構造を調べたところ(T l s.sP 
bi.s)S raCa2Cusovおよび金属Agの
2相から戒っていた 過剰のTIは焼或温度をより高温にあるいはまた焼或時
間を長くすることによって蒸発させることで容易に制御
できる。
(The following is a blank space) Table 4 As shown in Table 4, the amount of Ag added is 0. A critical temperature of 120K or higher is obtained when the concentration is 1 to 30% by weight.
The crystal structure of a sample burned at 900°C for 30 minutes with an additive amount of 1% by weight was investigated by X-ray diffraction (T l s.sP
bi. s) S Excess TI from the two phases of raCa2Cusov and metallic Ag can be easily controlled by evaporation by increasing the sintering temperature or also by increasing the sintering time.

表5にTIとPbの割合Xを変化させた場合の結果を示
1; ただL ’I’l++−x+−+wM++Sr2
Ca*Cu−0−においてz=1.2、 n  =2、
m=3、Ag添加量は1重量%とすも (以下余白) 表5 表5に示すように Xが0.  3〜0,で12OK以
上の臨界温度が得られ丸 7の範囲 発明の効果 本発明によれは 酸素雰囲気中で焼戒するだけで、 1
20K以上のT0を有する酸化物超伝導材料を再現性良
く製造することができも また 本発明の材料は 主と
して超伝導体と金属Agの2相から或り、実用化の段階
で問題となる超伝導材料の安定化の観点から考えて極め
て好都合な材料であも
Table 5 shows the results when changing the ratio X of TI and Pb1; just L'I'l++-x+-+wM++Sr2
In Ca*Cu-0-, z=1.2, n=2,
m=3, and the amount of Ag added is 1% by weight.Table 5 As shown in Table 5, X is 0. 3 to 0, a critical temperature of 12OK or more is obtained, and the effect of the invention is in the range of circle 7.According to the present invention, by simply performing the burning command in an oxygen atmosphere, 1
It is possible to produce oxide superconducting materials with T0 of 20K or more with good reproducibility.Also, the material of the present invention is mainly composed of two phases of superconductor and metal Ag, and superconducting materials are a problem at the stage of practical application. Although it is an extremely convenient material from the viewpoint of stabilizing conductive materials,

Claims (2)

【特許請求の範囲】[Claims] (1)化学式Tl_xBa_2Ca_nCu_mO_y
(ただし0.8≦x、2≦n、3≦m)に対しAgを0
.1〜30重量%添加して成る酸化物超伝導材料。
(1) Chemical formula Tl_xBa_2Ca_nCu_mO_y
(However, Ag is 0 for 0.8≦x, 2≦n, 3≦m)
.. An oxide superconducting material containing 1 to 30% by weight.
(2)化学式Tl_(_1_−_x_)_・_zPb_
xSr_zCa_nCu_mO_y(0.3≦x≦0.
7、1≦z、2≦n、3≦m)に対し、Agを0.1〜
30重量%添加して成る酸化物超伝導材料。
(2) Chemical formula Tl_(_1_-_x_)_・_zPb_
xSr_zCa_nCu_mO_y (0.3≦x≦0.
7, 1≦z, 2≦n, 3≦m), Ag from 0.1 to
An oxide superconducting material containing 30% by weight.
JP1157794A 1989-06-20 1989-06-20 Oxide superconducting material Pending JPH0323219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157794A JPH0323219A (en) 1989-06-20 1989-06-20 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157794A JPH0323219A (en) 1989-06-20 1989-06-20 Oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH0323219A true JPH0323219A (en) 1991-01-31

Family

ID=15657433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157794A Pending JPH0323219A (en) 1989-06-20 1989-06-20 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0323219A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248458A (en) * 1988-08-08 1990-02-19 Sharp Corp Ceramic superconductor and production thereof
JPH02275799A (en) * 1989-04-05 1990-11-09 Hitachi Ltd Oxide superconductor and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248458A (en) * 1988-08-08 1990-02-19 Sharp Corp Ceramic superconductor and production thereof
JPH02275799A (en) * 1989-04-05 1990-11-09 Hitachi Ltd Oxide superconductor and its production

Similar Documents

Publication Publication Date Title
Singh et al. HgSr2CuO4+ δ: A new 78 K superconductor by Mo substitution
JPH0259465A (en) Production of oxide high temperature superconductor
JPH07172834A (en) Oxide superconductive material and its production
JPH0323219A (en) Oxide superconducting material
US5599775A (en) (Hg Cu)Bg2 Ca2 Cu3 Oy oxide superconductor and method of preparing the same
JP3219563B2 (en) Metal oxide and method for producing the same
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
JPH08259230A (en) Oxide superconductor and production thereof
JPH02221125A (en) Oxide superconductor and its production
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
JPS63176353A (en) Superconductive raw material
JP2523928B2 (en) Oxide superconductor and method for producing the same
Iqbal et al. Structure and bulk superconductivity of BaPb0. 5Bi0. 25Tl0. 25O3− δ
JPH02229718A (en) Oxide superconducting material and its production
KR900005973B1 (en) Superconduction composition
JPH0733437A (en) Production of oxide superconductor
JPH0230618A (en) Oxide high-temperature superconductor
JPH03112852A (en) Oxide superconductive material
JPH02229715A (en) Oxide high-temperature superconductor and its production
JPS63230524A (en) Superconductive material
WO1989007086A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE
JPH01176218A (en) Superconducting material of compound oxide and production thereof
JPS63239148A (en) Superconductive material
JPH02275720A (en) Oxide superconducting material
JPH02107518A (en) Oxide superconducting material