JPH0733437A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH0733437A
JPH0733437A JP5155434A JP15543493A JPH0733437A JP H0733437 A JPH0733437 A JP H0733437A JP 5155434 A JP5155434 A JP 5155434A JP 15543493 A JP15543493 A JP 15543493A JP H0733437 A JPH0733437 A JP H0733437A
Authority
JP
Japan
Prior art keywords
superconductor
oxide superconductor
annealing
cuo
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5155434A
Other languages
Japanese (ja)
Inventor
Mutsumi Ito
睦 伊藤
Fumiko Yamamoto
文子 山本
Seiji Adachi
成司 安達
Hisao Yamauchi
尚雄 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Sumitomo Electric Industries Ltd
Panasonic Holdings Corp
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Sumitomo Electric Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTS, KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Sumitomo Electric Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTS
Priority to JP5155434A priority Critical patent/JPH0733437A/en
Publication of JPH0733437A publication Critical patent/JPH0733437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce an HgBa2CuO4+z superconductor having a superconductivity transition temp. Tc above 94 K with high reproducibility. CONSTITUTION:Powdery starting material is compacted and fired at 620-780 deg.C in a hermetically sealed vessel and the resulting oxide superconductor is annealed at 250-450 deg.C in a reducing atmosphere to produce the objective oxide superconductor represented by a chemical formula HgM2CuO4+z (where M is one or more kinds of elements among Ba, Sr and Ca and 3.5<=(4+z)<=4.5].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関するものであり、特に、液体窒素温度以上の高
い超電導転移温度(Tc≧77K)を持つ酸化物超電導
体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a method for producing an oxide superconductor having a high superconducting transition temperature (Tc ≧ 77K) above the liquid nitrogen temperature. Is.

【0002】[0002]

【従来の技術】超電導体は、電気抵抗がゼロである、完
全反磁性である、ジョセフソン効果がある、といった他
の物質にない特性を持っており、電力輸送、発電機、核
融合プラズマ閉じ込め、磁気浮上列車、磁気シールド、
高速コンピュータ等の幅広い応用が期待されている。
2. Description of the Related Art Superconductors have characteristics such as zero electric resistance, complete diamagnetism, and Josephson effect, which are not found in other materials, and they are used for power transport, generators, and fusion plasma confinement. , Magnetic levitation train, magnetic shield,
A wide range of applications such as high-speed computers are expected.

【0003】1986年に、ベドノルツ(Bednorz )と
ミュラー(Muller)により約30Kという高い超電導転
移温度Tcを持つ酸化物超電導体(La1-X BaX 2
CuO4 が見出され、それ以後、YBa2 Cu3
7 (Tc=90K)、Bi−Sr−Ca−Cu−O(T
c=110K)、Tl−Ba−Ca−Cu−O(Tc=
125K)など、相次いで高い超電導転移温度を持つ酸
化物超電導体が報告されている。現在は、これらの物質
の作製法、物性、応用等に関して多くの研究がなされて
いる。
In 1986, an oxide superconductor (La 1-X Ba X ) 2 having a high superconducting transition temperature Tc of about 30 K was obtained by Bednorz and Muller.
CuO 4 was found and thereafter YBa 2 Cu 3 O
7 (Tc = 90K), Bi-Sr-Ca-Cu-O (T
c = 110K), Tl-Ba-Ca-Cu-O (Tc =
125 K) and other oxide superconductors having successively higher superconducting transition temperatures have been reported. At present, much research has been conducted on the production method, physical properties, application and the like of these substances.

【0004】これらの研究の中で、最近、超電導転移温
度Tcが94Kの新超電導体HgBa2 CuO4+Z が発
見された(N.プチリンら、ネイチャー(N. Putilin e
t al., Nature )362(1993)226.)。この
新超電導体の製造方法としては、まず、Ba2 CuO
3+Z 、HgOおよびCuOを混合し、シリカチューブに
真空封入する。次に、これをさらにスチール製容器に入
れ、800℃までの温度で5時間焼成することにより製
造される。
In these studies, a new superconductor HgBa 2 CuO 4 + Z having a superconducting transition temperature Tc of 94 K was recently discovered (N. Putilin et al., Nature).
t al., Nature) 362 (1993) 226. ). As a method of manufacturing this new superconductor, first, Ba 2 CuO
3 + Z , HgO and CuO are mixed and vacuum sealed in a silica tube. Next, this is further placed in a steel container and baked at a temperature of up to 800 ° C. for 5 hours to manufacture.

【0005】このようにして製造される新超電導体Hg
Ba2 CuO4+Z は、バリウム、銅および酸素からなる
ペロブスカイト構造の部分と、水銀の1原子層からなる
部分との互層構造を有している。そして、後者の水銀の
原子層には、Z個の酸素が存在していると報告されてい
る。
The new superconductor Hg manufactured in this way
Ba 2 CuO 4 + Z has an alternate layer structure of a part having a perovskite structure composed of barium, copper and oxygen and a part composed of one atomic layer of mercury. Then, it is reported that Z oxygen atoms are present in the latter atomic layer of mercury.

【0006】[0006]

【発明が解決しようとする課題】この新超電導体HgB
2 CuO4+Z に関する実験報告は、現在のところ前記
のプチリンらの報告しかない。彼らの示す磁化率−温度
依存性のデータによると、超電導転移温度Tcは94K
であった。
[Problems to be Solved by the Invention] This new superconductor HgB
At present, the only experimental report on a 2 CuO 4 + Z is that of Petitline et al. According to their susceptibility-temperature dependence data, the superconducting transition temperature Tc is 94K.
Met.

【0007】この発明の目的は、超電導転移温度Tcが
94Kよりも高いHgBa2 CuO 4+Z 超電導体を、再
現性よく製造できる方法を提供することにある。
An object of the present invention is that the superconducting transition temperature Tc is
HgBa higher than 94K2CuO 4 + ZThe superconductor
It is to provide a method that can be manufactured with good physical properties.

【0008】[0008]

【課題を解決するための手段】この発明による酸化物超
電導体の製造方法は、化学式HgM2 CuO4+Z (Mは
Ba、Sr、Caのうち少なくとも1つ以上の元素、
3.5≦4+Z≦4.5)で表わされる酸化物超電導体
の製造方法であって、原料粉末を成形するステップと、
成形された原料粉末を密閉容器中620〜780℃の温
度で焼成し酸化物超電導体を作製するステップと、焼成
により作製された酸化物超電導体を還元雰囲気中250
〜450℃の温度でアニール処理するステップとを備え
ている。
The method for producing an oxide superconductor according to the present invention is provided with a chemical formula HgM 2 CuO 4 + Z (M is at least one element of Ba, Sr and Ca,
3.5 ≦ 4 + Z ≦ 4.5), which is a method of manufacturing an oxide superconductor, the step of molding a raw material powder,
A step of firing the shaped raw material powder in a closed container at a temperature of 620 to 780 ° C. to produce an oxide superconductor, and the oxide superconductor produced by firing in a reducing atmosphere.
Annealing at a temperature of 450 ° C.

【0009】[0009]

【発明の作用効果】この発明によれば、従来の報告より
も高い超電導転移温度Tcを有するHgBa2 CuO
4+Z 超電導体を、再現性よく製造することができる。ま
た、得られる酸化物超電導体は、超電導転移が急峻であ
り、良好なマイスナー効果を示す。
According to the present invention, HgBa 2 CuO having a superconducting transition temperature Tc higher than that reported in the past has been reported.
4 + Z superconductor can be manufactured with good reproducibility. Further, the obtained oxide superconductor has a steep superconducting transition and exhibits a good Meissner effect.

【0010】[0010]

【実施例】純度99%以上のHgO、BaOおよびCu
Oの各粉末をHgBa2 CuO4の仕込組成で秤量し混
合した。800kg/cm2 の圧力でペレットを作製
し、金チューブ中に入れその両端を潰して閉じた。これ
を表1に示す種々の条件で1時間焼成し、生成した結晶
相を粉末X線回折(CuKα線使用)で調べた。その結
果を表1に示す。
EXAMPLES HgO, BaO and Cu having a purity of 99% or more
Each powder of O was weighed and mixed with a charge composition of HgBa 2 CuO 4 . Pellets were prepared at a pressure of 800 kg / cm 2 , put into a gold tube and crushed at both ends to be closed. This was fired under various conditions shown in Table 1 for 1 hour, and the produced crystal phase was examined by powder X-ray diffraction (using CuKα ray). The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】表1より明らかなように、石英管に封入
し、620〜780℃で焼成した場合に、HgBa2
uO4 が主相の試料が得られた。一般に、500℃以上
ではHgOの蒸発が始まることが知られているが、密閉
容器に封入すことでHgOの蒸発が抑制されたため、5
00℃以上の加熱にもかかわらずHgBa2 CuO4
生成できたと考えられる。
As is clear from Table 1, HgBa 2 C is contained in a quartz tube and calcined at 620 to 780 ° C.
A sample having uO 4 as the main phase was obtained. It is generally known that HgO starts to evaporate at 500 ° C. or higher, but since HgO was suppressed from being evaporated by enclosing it in a closed container, 5
It is considered that HgBa 2 CuO 4 could be produced despite the heating above 00 ° C.

【0013】図1は、アニール処理前およびアニール処
理後の試料の粉末X線回折パターンを示す図である。図
1において、横軸は任意単位でのX線強度を示し、縦軸
は回折角2θ(度)を示す。
FIG. 1 is a diagram showing powder X-ray diffraction patterns of samples before and after annealing. In FIG. 1, the horizontal axis represents the X-ray intensity in arbitrary units, and the vertical axis represents the diffraction angle 2θ (degrees).

【0014】図1中、(a)はアニール処理前の試料に
関するものであり、上述の種々の条件のうち、石英管中
700℃で1時間焼成して得られた試料の粉末X線回折
パターンである。なお、(b)は、後述するアニール後
の試料に関するものである。
In FIG. 1, (a) relates to the sample before the annealing treatment, and among the above various conditions, the powder X-ray diffraction pattern of the sample obtained by firing in a quartz tube at 700 ° C. for 1 hour. Is. Note that (b) relates to the sample after annealing described later.

【0015】図1(a)を参照して、アニール処理前の
試料粉末はほぼ単一相ではあるが、不純物相も多少含ん
でいることがわかる。
Referring to FIG. 1 (a), it can be seen that the sample powder before the annealing treatment has a substantially single phase, but it also contains some impurity phase.

【0016】図2は、アニール処理前およびアニール処
理後の試料の磁化率−温度依存性を示す図である。測定
にはSQUIDを用い、外部磁場10エルステッドの磁
場中を冷却する条件で測定した。図2において、横軸は
温度(K)を示し、縦軸は磁化率(10-3emu/g.
Oe)を示す。
FIG. 2 is a diagram showing the magnetic susceptibility-temperature dependence of the sample before and after annealing. SQUID was used for the measurement, and the measurement was performed under the condition of cooling the magnetic field of the external magnetic field of 10 oersted. In FIG. 2, the horizontal axis represents temperature (K) and the vertical axis represents magnetic susceptibility (10 −3 emu / g.
Oe) is shown.

【0017】図2中、(a)はアニール処理前の試料に
関するものであり、上述と同様石英管中700℃で1時
間焼成して得られた試料の磁化率−温度依存性を示す図
である。なお、(b)は、後述するアニール処理後の試
料に関するものである。
In FIG. 2, (a) relates to the sample before the annealing treatment, and is a diagram showing the magnetic susceptibility-temperature dependence of the sample obtained by firing in a quartz tube at 700 ° C. for 1 hour as described above. is there. Note that (b) relates to the sample after the annealing treatment described later.

【0018】また、図3は、図2に示す磁化率−温度依
存性を示す図のうち、超電導転移温度近傍の部分拡大図
である。図3において、横軸は温度(K)を示し、縦軸
は磁化率(10-4emu/g.Oe)を示す。
FIG. 3 is a partially enlarged view in the vicinity of the superconducting transition temperature in the graph showing the magnetic susceptibility-temperature dependence shown in FIG. 3, the horizontal axis represents temperature (K) and the vertical axis represents magnetic susceptibility (10 −4 emu / g.Oe).

【0019】図2(a)および図3(a)を参照して、
アニール処理前の試料は、90K以下で反磁性を示し、
5Kにおける超電導体積分率は5%程度と見積ることが
できる。
Referring to FIGS. 2 (a) and 3 (a),
The sample before annealing shows diamagnetism below 90K,
The superconductor integration rate at 5K can be estimated to be about 5%.

【0020】次に、石英管中700℃で1時間焼成して
得られた試料の高品質化を目的に、高圧酸素雰囲気中
(270気圧酸素中)および還元雰囲気中(アルゴン気
流中)におけるアニール処理を試みた。
Next, for the purpose of improving the quality of the sample obtained by firing in a quartz tube at 700 ° C. for 1 hour, annealing in a high pressure oxygen atmosphere (270 atmospheric pressure oxygen) and a reducing atmosphere (argon stream) is performed. Tried to process.

【0021】このようにして得られた試料の粉末X線回
折ならびに超電導転移温度Tcおよび超電導体積分率M
/M(f)の測定を行なった。その結果を表2に示す。
表2中、粉末X線回折結果の◎、○、×の印は、それぞ
れ単一相、ほぼ単一相、分解を表わす。また、超電導転
移温度Tcは磁化率測定から求めた値であり、M/M
(f)は5Kにおける超電導体積分率を表わす。なお、
Mは実測の磁化率(emu/g)、M(f)は(−1/
4π)/ρ(emu/g)とした。(ただし、ρはHg
Ba2 CuO4+Z の理論密度とし、約7g/cm3 とし
て計算した。)
The powder X-ray diffraction, the superconducting transition temperature Tc, and the superconductor integration rate M of the sample thus obtained were obtained.
/ M (f) was measured. The results are shown in Table 2.
In Table 2, ⊚, ∘, and × marks in the powder X-ray diffraction results indicate single phase, almost single phase, and decomposition, respectively. Further, the superconducting transition temperature Tc is a value obtained by measuring the magnetic susceptibility, and M / M
(F) represents the superconductor integration rate at 5K. In addition,
M is the actually measured magnetic susceptibility (emu / g), and M (f) is (-1 /
4π) / ρ (emu / g). (However, ρ is Hg
The theoretical density of Ba 2 CuO 4 + Z was set to about 7 g / cm 3 for calculation. )

【0022】[0022]

【表2】 [Table 2]

【0023】表2より明らかなように、高圧酸素中での
アニール処理では、アニール後、試料の劣化が認められ
た。一方、Ar気流中でのアニール処理では、250〜
450℃の処理条件の場合に、特性の向上が認められ
た。
As is clear from Table 2, deterioration of the sample was observed after annealing in the annealing treatment in high-pressure oxygen. On the other hand, in the annealing treatment in Ar flow, 250 to
The improvement in properties was observed under the processing conditions of 450 ° C.

【0024】図1(b)に、Ar気流中300℃で6時
間のアニール処理により得られた試料の粉末X線回折パ
ターンを示す。アニール処理前の試料のパターン(a)
と比較して、不純物相のピークが消え、完全な単一相試
料になっていることがわかる。
FIG. 1 (b) shows a powder X-ray diffraction pattern of a sample obtained by annealing at 300 ° C. for 6 hours in an Ar stream. Pattern of sample before annealing (a)
It can be seen that the peak of the impurity phase disappeared and the sample became a complete single-phase sample.

【0025】また、図2(b)および図3(b)に、同
試料の磁化率−温度依存性を示す。超電導転移温度Tc
は96Kに上昇し、5Kにおける超電導体積分率は10
%以上に増加したことがわかる。また、超電導転移温度
Tc近傍の超電導転移も非常に急峻で、94Kで3%、
90Kで10%の体積分率が観測された。
2 (b) and 3 (b) show the magnetic susceptibility-temperature dependence of the sample. Superconducting transition temperature Tc
Increased to 96K, and the superconductor integration rate at 5K was 10
It can be seen that it has increased to over%. In addition, the superconducting transition near the superconducting transition temperature Tc is also very steep, 3% at 94K,
A volume fraction of 10% was observed at 90K.

【0026】なお、HgBa2 CuO4+Z のBaがSr
やCaで部分置換できるであろうことは、従来の酸化物
超電導体の研究報告から容易に類推できる。現に、Hg
Ba 2 CuO4+Z のBaをSrやCaで一部(それぞれ
約50%まで)置換しても、同様の結晶を有する超電導
体が得られた。また、部分置換の有無にかかわらず、還
元雰囲気中でのアニール処理により、超電導転移温度T
cおよび結晶性が向上する効果が認められた。再現性は
極めて良好で、すべての試料について効果が認められ
た。
HgBa2CuO4 + ZBa is Sr
It could be partially replaced with Ca or Ca,
It can be easily inferred from research reports on superconductors. Actually, Hg
Ba 2CuO4 + ZPart of Ba with Sr or Ca (each
Superconductivity with similar crystals even after substitution (up to about 50%)
I got a body. In addition, with or without partial replacement
The superconducting transition temperature T due to the annealing treatment in the original atmosphere
The effect of improving c and crystallinity was recognized. Reproducibility
Very good and effective on all samples
It was

【図面の簡単な説明】[Brief description of drawings]

【図1】アニール処理前後の試料の粉末X線回折パター
ンを示す図である。
FIG. 1 is a diagram showing powder X-ray diffraction patterns of a sample before and after annealing.

【図2】アニール処理前後の試料の磁化率−温度依存性
を示す図である。
FIG. 2 is a diagram showing the magnetic susceptibility-temperature dependence of a sample before and after annealing.

【図3】アニール処理前後の試料の磁化率−温度依存性
を示す図である。
FIG. 3 is a diagram showing the magnetic susceptibility-temperature dependence of a sample before and after annealing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA 7244−5G (72)発明者 伊藤 睦 東京都江東区東雲一丁目10番13号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 山本 文子 東京都江東区東雲一丁目10番13号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 安達 成司 東京都江東区東雲一丁目10番13号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 山内 尚雄 東京都江東区東雲一丁目10番13号 財団法 人国際超電導産業技術研究センター 超電 導工学研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // H01B 12/00 ZAA 7244-5G (72) Inventor Mu Ito 1-10 Shinonome, Koto-ku, Tokyo No. 13 Foundation Superhuman Industrial Technology Research Center Superconductivity Engineering Laboratory (72) Inventor Fumiko Yamamoto 1-10-13 Shinonome, Koto-ku, Tokyo Foundation Supernatural Engineering Research Center Superconductivity Engineering Research In-house (72) Inventor Seiji Adachi 1-10-13 Shinonome, Koto-ku, Tokyo Foundation Hojin International Superconducting Industrial Technology Research Center Superconducting Engineering Research Laboratory (72) Inventor Nao Yamauchi 1-10 Shinonome, Koto-ku, Tokyo No. 13 Foundation Hojin International Superconductivity Industrial Technology Research Center Superconductivity Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学式HgM2 CuO4+Z (MはBa、
Sr、Caのうち少なくとも1つ以上の元素、3.5≦
4+Z≦4.5)で表わされる酸化物超電導体の製造方
法であって、 原料粉末を成形するステップと、 前記成形された原料粉末を、密閉容器中620〜780
℃の温度で焼成し、酸化物超電導体を作製するステップ
と、 前記焼成により作製された酸化物超電導体を、還元雰囲
気中、250〜450℃の温度でアニール処理するステ
ップとを備える、酸化物超電導体の製造方法。
1. The chemical formula HgM 2 CuO 4 + Z (M is Ba,
At least one element of Sr and Ca, 3.5 ≦
4 + Z ≦ 4.5), which is a method for producing an oxide superconductor, the method comprising: forming a raw material powder; and forming the raw material powder in a closed container at 620 to 780.
An oxide comprising: a step of firing at a temperature of ℃ to produce an oxide superconductor; and a step of annealing the oxide superconductor produced by the firing at a temperature of 250 to 450 ° C. in a reducing atmosphere. Superconductor manufacturing method.
JP5155434A 1993-06-25 1993-06-25 Production of oxide superconductor Withdrawn JPH0733437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5155434A JPH0733437A (en) 1993-06-25 1993-06-25 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5155434A JPH0733437A (en) 1993-06-25 1993-06-25 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0733437A true JPH0733437A (en) 1995-02-03

Family

ID=15605946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5155434A Withdrawn JPH0733437A (en) 1993-06-25 1993-06-25 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0733437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Similar Documents

Publication Publication Date Title
JP2590275B2 (en) Manufacturing method of oxide superconducting material
KR970002894B1 (en) Superconducting metal oxide compositions
EP0760354A2 (en) Metal oxide material
KR0125876B1 (en) Method for preparing superconducting thin film
JPH0733437A (en) Production of oxide superconductor
JP3165770B2 (en) Manufacturing method of oxide superconductor
JP2859516B2 (en) Oxide superconductor and manufacturing method thereof
JP2850310B2 (en) Superconductive metal oxide composition and method for producing the same
JPH08259230A (en) Oxide superconductor and production thereof
CA1341621C (en) Superconductivity in an oxide compound system without rare earth
Isawa et al. Synthesis of Superconducting Cuprates,(Pb (1+ x)/2 Cu (1− x)/2))(Sr 1− y Ca y) 2 (Y 1− x Ca x) Cu 2 O z by Means of Encapsulation and Post-Annealing (ECPA) Technique
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
JP3219563B2 (en) Metal oxide and method for producing the same
JP2555505B2 (en) Metal oxide material
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JP2656531B2 (en) Oxide superconductor
JPH04357161A (en) Oxide superconductor material and its production
JP2801806B2 (en) Metal oxide material
JP2817170B2 (en) Manufacturing method of superconducting material
JP2556712B2 (en) Method for manufacturing oxide superconductor
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2840475B2 (en) Method for producing oxide superconducting thin film
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH04300202A (en) Superconductor using oxide and production thereof
JPH06321537A (en) Production of superconductive oxide material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905