JPH02248301A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02248301A
JPH02248301A JP1065892A JP6589289A JPH02248301A JP H02248301 A JPH02248301 A JP H02248301A JP 1065892 A JP1065892 A JP 1065892A JP 6589289 A JP6589289 A JP 6589289A JP H02248301 A JPH02248301 A JP H02248301A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxygen
solid electrolyte
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1065892A
Other languages
Japanese (ja)
Inventor
Mareo Ishigame
石亀 希男
Hiroo Yugami
浩雄 湯上
Tsuyoshi Watanabe
強 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1065892A priority Critical patent/JPH02248301A/en
Publication of JPH02248301A publication Critical patent/JPH02248301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To accurately control the oxygen concn. in an oxide superconductor by allowing a current to flow through the laminate of an oxide superconductor and a solid electrolyte having oxygen ionic conductivity in the laminating direction in the temp. range where the latter exhibits oxygen ionic conductivity. CONSTITUTION:A superconductor thin film 2 of Y1Ba2Cu3O7-delta is formed at the center of the surface of a solid electrolyte substrate 1 consisting of a Y2O3-ZrO2 single crystal by sputtering, for example, heat-treated in an O2 atmosphere and crystallized. In this case, a porous plate-shaped platinum electrode 3 is previously formed on the surface opposite to the film 2-forming surface of the substrate 1. An MgO thin film 4a is then formed in contact with the film 2 on the substrate 1 to mask the film 2 by excimer laser sputtering as an insulating barrier layer 4. An equally spaced four-terminal nonporous plate-shaped platinum electrode 5 is formed in the same way across the film 2 so that its one end is placed on the film 4a, and further an MgO thin film 4b, from which on end of the electrode 5 is exposed, is formed to completely cover the film 2. The negative and positive poles of a DC regulated power source 10 are then connected to the electrode 3 and 5 or 5 and 3, and the entire laminate is heated in the atmosphere to a temp. at which is substrate 1 exhibits oxygen ionic conductivity.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は酸化物超伝導体の1!造方法に関し、更に詳し
くは酸化物超伝導体の酸素濃度を正確に制御でき、又そ
のまま固定できる酸化物超伝導体の製造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Fields> The present invention is directed to one of the oxide superconductors! More specifically, the present invention relates to a manufacturing method of an oxide superconductor, in which the oxygen concentration of the oxide superconductor can be accurately controlled and fixed as it is.

(従来の技術) 酸化物超伝導体は、現在実用化されている合金系の超伝
導材料にはみられない、高い臨界温度(Tc )を持つ
ことから、導線、磁気シールド材料、ジョセフソン接合
素子など、多方面への応用が期待されている。
(Prior art) Oxide superconductors have a high critical temperature (Tc) that is not found in alloy-based superconducting materials currently in practical use, so they are used in conducting wires, magnetic shielding materials, and Josephson junctions. It is expected to be applied in many fields such as devices.

一方、酸化物超伝導体の物性は、その酸素濃度に大きく
依存しており、酸化物超伝導体の実用化を考えた場合、
酸素濃度を精密かつ安定に制御することが必要と云われ
ている。
On the other hand, the physical properties of oxide superconductors largely depend on their oxygen concentration, and when considering the practical use of oxide superconductors,
It is said that it is necessary to precisely and stably control the oxygen concentration.

これまでに知られている酸化物超伝導体の酸素濃度の制
御方法としては、大気または酸素雰囲気中における熱酸
化法、スパッタリングやCVDを用いた酸素プラズマに
よる酸化法などが一般的である。前溝はバルクや厚膜の
酸化物超伝導体の酸素濃度制御に、後者は薄膜の酸化物
超伝導体の酸素濃度制御に主として用いられている。
Conventional methods for controlling the oxygen concentration of oxide superconductors that have been known so far include a thermal oxidation method in the air or an oxygen atmosphere, and an oxidation method using oxygen plasma using sputtering or CVD. The front groove is mainly used to control the oxygen concentration in bulk and thick-film oxide superconductors, and the latter is mainly used to control the oxygen concentration in thin-film oxide superconductors.

〈発明が解決しようとしている問題点)しかしながら、
熱酸化法を用いた場合、酸化物超伝導体の種類によって
は高温に加熱しなければならないので、その酸化物超伝
導体をエレクトロニクスデバイスなどに応用するのが困
難な場合がある。また、酸素プラズマによる酸化法を用
いた場合、プラズマの状態により酸化物超伝導体の酸素
濃度は大きく変化するので、応用を目的に、所定の酸素
濃度を持った酸化物超伝導体を再現性良く得ようとする
ならば、プラズマの状態を常に厳密にυIII]する必
要があり、実際上困難な場合が多い。
(The problem that the invention is trying to solve) However,
When thermal oxidation is used, depending on the type of oxide superconductor, it may be difficult to apply the oxide superconductor to electronic devices because it must be heated to a high temperature. In addition, when using the oxidation method using oxygen plasma, the oxygen concentration of the oxide superconductor changes greatly depending on the plasma state, so for the purpose of application, we can reproducibly produce an oxide superconductor with a predetermined oxygen concentration. In order to obtain a good result, it is necessary to maintain the plasma state strictly at all times, which is often difficult in practice.

またこれらの酸素濃度制御方法では、酸化物超伝導体中
に取込まれた酸素の量を、定量的に評価することが難し
い。
Furthermore, with these oxygen concentration control methods, it is difficult to quantitatively evaluate the amount of oxygen taken into the oxide superconductor.

以上の通り酸化物超伝導体の酸素濃度を正確に制御でき
る簡便な手段はいまだなく、又その酸素m度を安定に保
持できる手段もないのが現状である。
As mentioned above, there is currently no simple means for accurately controlling the oxygen concentration in an oxide superconductor, and no means for stably maintaining the oxygen concentration.

本発明はかかる現状に鑑みなされたもので、酸化物超伝
導体の酸素濃度が正確に制御できる所定酸素m度の酸化
物超伝導体を安定に生産できる酸化物超伝導体の製造方
法を第1の目的とし、制御された酸素濃度がそのまま固
定保持できる特性の安定した酸化物超伝導体を製造でき
る酸化物超伝導体の製造方法を第2の目的とするもので
ある。
The present invention was made in view of the current situation, and provides a method for producing an oxide superconductor that can stably produce an oxide superconductor with a predetermined oxygen concentration in which the oxygen concentration of the oxide superconductor can be accurately controlled. The first object of the present invention is to provide a method for producing an oxide superconductor that can produce an oxide superconductor with stable characteristics in which a controlled oxygen concentration can be fixed and maintained as it is.

(発明の構成及び作用) 上述の目的は以下の本発明により達成される。(Structure and operation of the invention) The above objects are achieved by the invention as follows.

すなわち、酸化物超伝導体の製造方法において、酸化物
超伝導体と酸素イオン伝導性を有する固体電解質とを積
層する工程と、固体電解質の酸化物超伝導体と対向する
位置に酸素を通しイオン化又は消イオン化する電極を積
層する工程と、酸化物超伝導体の固体電解質と対向する
位置に酸素を通さない酸素バリヤ性の電極を積層する工
程と、得られた積層体を固体電解質がIII素イオン伝
導を示す温度範囲に維持しつつその電極間に電流を流す
ことにより酸化物超伝導体の酸素濃度を制御する工程と
からなることを特徴とする酸化物超伝導体製造方法であ
る。
In other words, the method for producing an oxide superconductor includes a step of laminating an oxide superconductor and a solid electrolyte having oxygen ion conductivity, and a step of ionizing oxygen by passing oxygen through a position of the solid electrolyte facing the oxide superconductor. Alternatively, a step of stacking deionizing electrodes, a step of stacking an oxygen barrier electrode that does not allow oxygen to pass through at a position facing the solid electrolyte of the oxide superconductor, and a step of stacking the obtained laminate so that the solid electrolyte is This is a method for producing an oxide superconductor, comprising the step of controlling the oxygen concentration of the oxide superconductor by passing a current between the electrodes while maintaining the temperature within a temperature range that exhibits ionic conduction.

上述の本発明は、酸素イオン伝導性を有する固体電解質
と酸化物超伝導体を積層し、固体電解質がM素イオン伝
導性を示す温度範囲でその積層方向に電流を流すと酸化
物超伝導体の酸素濃度が調整でき、且つその通電電気量
(クーロン1)により酸素濃度を正確に制御できること
を見出しなされたものである。
In the present invention described above, when a solid electrolyte having oxygen ion conductivity and an oxide superconductor are laminated, and a current is passed in the stacking direction in a temperature range in which the solid electrolyte exhibits M ion conductivity, the oxide superconductor The inventors have discovered that the oxygen concentration can be adjusted, and that the oxygen concentration can be accurately controlled by the amount of electricity (coulomb 1).

上述の本発明において、固体電解質と酸化物超伝導体と
を積層すると共に酸化物超伝導体を露出部がないように
酸素バリヤ層で被覆すると、固体電解質が酸素イオン伝
導を示さなくなる温度まで積層体が冷却されると固体電
解質が酸素バリヤ層となるので、酸化物超伝導体の酸素
濃度はυ制御された値にそのまま固定される。従って雰
囲気の影響を、受け、酸素S度が変化し易いY−Ba 
−Cu−O系に代表される酸化物超伝導体であっても正
確な酸素濃度に制御できると共に長期に亘って安定な値
に保持できる効果がある。又必要な場合は定期的に酸素
濃度制御して特性回復を計ることもできる。
In the present invention described above, when a solid electrolyte and an oxide superconductor are laminated and the oxide superconductor is covered with an oxygen barrier layer so that no exposed portion is exposed, the lamination reaches a temperature at which the solid electrolyte no longer exhibits oxygen ion conduction. When the body is cooled, the solid electrolyte becomes an oxygen barrier layer, so the oxygen concentration in the oxide superconductor remains fixed at a υ-controlled value. Therefore, Y-Ba is affected by the atmosphere and the oxygen S degree easily changes.
Even oxide superconductors such as -Cu-O system have the effect of being able to accurately control the oxygen concentration and maintain it at a stable value over a long period of time. Further, if necessary, the oxygen concentration can be periodically controlled to recover the characteristics.

又後述の実施例からも明らかなように、本発明では、酸
化物超伝導体の抵抗率の測定が容易であり、上述の通電
電気量に替えて、抵抗率を測定し、酸素濃度を制御する
ようにすることにより酸素濃度の制御精度を一層向上さ
せることができる。
In addition, as is clear from the examples described later, in the present invention, it is easy to measure the resistivity of the oxide superconductor, and instead of measuring the amount of electricity described above, the resistivity is measured and the oxygen concentration is controlled. By doing so, the accuracy of controlling the oxygen concentration can be further improved.

なお、本発明において酸化物超伝導体と固体電解質の積
層工程と各電極の積層工程の実施順序は任意で特に限定
されない。
In the present invention, the order of carrying out the step of laminating the oxide superconductor and the solid electrolyte and the step of laminating each electrode is arbitrary and not particularly limited.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明が適用される酸化物超伝導体は、電子・イオン混
合伝導性を示す酸化物超伝導体ならば、その種類、材質
、全導電率に占める電子導電率とイオン導電率の割合に
特に制限はない。かかる酸化物超伝導体としては、たと
えば、−形式;%式% れるLa −8r −CLI−0系超伝導体、−形式;
Ln  3a 2  CLI  3 0y −δ (L
n=Y、La。
If the oxide superconductor to which the present invention is applied is an oxide superconductor that exhibits mixed electronic and ionic conductivity, the type, material, and ratio of electronic conductivity and ionic conductivity to the total conductivity are particularly important. There are no restrictions. Such oxide superconductors include, for example, La-8r-CLI-0-based superconductors having the -format;
Ln 3a 2 CLI 3 0y −δ (L
n=Y, La.

Nd 、  5IIl、  Eu 、  Gd 、  
Dy 、  Ho 、  Er 。
Nd, 5IIIl, Eu, Gd,
Dy, Ho, Er.

■m、Yb、lu、δ−〇〜1)で表わされルY−Ba
 −Cu−0系超伝導体、−形式: B I 2Srz
 Can−+ CLInOV(V≦2n+4;n=1.
2.3)で表わされるBi −3r −CaCu−0系
超伝導体、−形式:Tu2Ba2Can−ICLln 
OV(V≦2n+4;n=1゜2.3)で表わされるT
U−Ba −Ca −Cu −O系超伝導体等が挙げら
れる。ところで、本発明は前述した通り低温で正確な酸
素濃度制御ができ、更には経時的にも安定した構成がで
きるものであり、かかる構成が要求されている各種応用
特に電子デバイスの応用に際し好ましく適用できるもの
である。
■ m, Yb, lu, δ-〇~1)
-Cu-0 based superconductor, -Format: B I 2Srz
Can-+ CLInOV (V≦2n+4; n=1.
2.3) Bi-3r-CaCu-0 superconductor, -format: Tu2Ba2Can-ICLln
T expressed as OV (V≦2n+4; n=1°2.3)
Examples include U-Ba-Ca-Cu-O superconductors. By the way, as mentioned above, the present invention enables accurate oxygen concentration control at low temperatures and also has a structure that is stable over time, and is preferably applied to various applications that require such a structure, especially electronic device applications. It is possible.

また、本発明に用いる酸素イオン伝導性を有する固体電
解質は酸素イオン伝導性を有するものであれば、その種
類と材質に特に制限はない。かかる固体電解質としては
Y203  Zr 02  (YSZ)、Ca OZr
 02  (C8Z)、B! 203 。
Further, the type and material of the solid electrolyte having oxygen ion conductivity used in the present invention are not particularly limited as long as it has oxygen ion conductivity. Such solid electrolytes include Y203 Zr 02 (YSZ), CaOZr
02 (C8Z), B! 203.

Bi  20a  −Y20a 、  B!  203
−Nb 2 0s 。
Bi20a-Y20a, B! 203
-Nb20s.

Bi 203−WOa等が知られているが、本発明には
酸素イオン導電率が大きく、電子導電率が小さいもので
、緻密な構造で、酸素イオン伝導を示す条件外では酸素
バリア性が高いものが好ましい。
Bi203-WOa and the like are known, but the present invention uses a material that has high oxygen ion conductivity, low electronic conductivity, has a dense structure, and has high oxygen barrier properties outside of conditions that exhibit oxygen ion conduction. is preferred.

かかる点からY203−Zr 02  (YSZ)。From this point, Y203-Zr 02 (YSZ).

Ca OZr 02  (C8Z)をはじめとする蛍石
(Ca F2 )型結晶構造を持つ酸化物固溶体系の固
体電解質が望ましい。
An oxide solid solution solid electrolyte having a fluorite (Ca F2 ) type crystal structure, such as CaOZr 02 (C8Z), is desirable.

なお、以上の酸化物超伝導体及び酸素イオン伝導性を有
する固体電解質の厚み、大きさ、形状に特に制限はない
。また、酸化物超伝導体は酸化物単体であっち、テバイ
スとして形成されたものであっても更には電子デバイス
の等の一部として形成されたものであってもよい。
Note that there are no particular limitations on the thickness, size, and shape of the oxide superconductor and the solid electrolyte having oxygen ion conductivity. Furthermore, the oxide superconductor may be a single oxide, formed as a device, or even formed as a part of an electronic device or the like.

次に本発明の製造方法の手順を説明する。まず、上述の
酸化物超伝導体と酸素イオン伝導性を有する固体電解質
を積層する。この積層方法は酸化物超伝導体と固体電解
質が酸素イオンの授受を行なえる程度に接続されておれ
ば良く、特に制限はない。しかしこれらの条件は、目的
とする酸化物超伝導体に、酸素イオン伝導性を有する固
体電解質を実際に積層した場合に、積層体が力学的に安
定であるように選択されなければならない。たとえば好
ましい例として、力学的に安定な平板状の酸化物超伝導
体の片面に、酸素イオン伝導性を有する固体電解質の薄
膜をスパッタリング等の物理蒸着方法で積層した場合、
力学的に安定な平板状の酸素イオン伝導性を有する固体
電解質の片面に、酸化物超伝導体の薄膜をスパッタリン
グ等の物理蒸着法で積層した場合、あるいは、力学的に
安定な平板状の酸化物超伝導体と、同じく力学的に安定
な平板状の酸素イオン伝導性を有する固体電解質を、力
学的な方法ですぎ間がないように圧着接合した場合、な
どが挙げられる。
Next, the procedure of the manufacturing method of the present invention will be explained. First, the above-described oxide superconductor and a solid electrolyte having oxygen ion conductivity are laminated. This stacking method is not particularly limited as long as the oxide superconductor and the solid electrolyte are connected to the extent that they can exchange oxygen ions. However, these conditions must be selected so that when a solid electrolyte having oxygen ion conductivity is actually stacked on the target oxide superconductor, the stack is mechanically stable. For example, as a preferable example, if a thin film of a solid electrolyte having oxygen ion conductivity is laminated on one side of a mechanically stable plate-shaped oxide superconductor by a physical vapor deposition method such as sputtering,
When a thin film of an oxide superconductor is laminated on one side of a mechanically stable plate-shaped solid electrolyte with oxygen ion conductivity by physical vapor deposition such as sputtering, or when a mechanically stable plate-shaped oxide An example of this is when a physical superconductor and a mechanically stable plate-shaped solid electrolyte having oxygen ion conductivity are bonded by mechanical pressure in a timely manner.

上述の所定の条件を満足する、酸化物超伝導体と酸素イ
オン伝導性を有する固体電解質の積層体を形成したなら
ば、積層された酸化物超伝導体と固体電解質の表面にそ
れぞれ電極を配置する。酸化物超伝導体側には、その表
面の一部に固体電解質に接触しないように、Fa素を通
さない無孔質の電極を形成する。この電極は、電子伝導
性のみを小を導電率の大きい導電性物質で、化学的に安
定なものであるならば、その種類に特にυ1限はないが
、好ましい例としては白金あるいは金が挙げられる。ま
た固体電解質側には、固体電解質の表面の一部に、酸化
物超伝導体に接触しないように、固体電解質が雰囲気と
の間で酸素を授受できるように酸素を通しイオン化又は
消イオン化する多孔質の電極を形成する。この電極は、
電子伝導性を示す導電率の大きい導電性物質で、化学的
に安定なもので多孔質構造のものであれば、その種類に
特に制限はないが、好ましい例としては白金が挙げられ
る。
Once a laminated body of an oxide superconductor and a solid electrolyte having oxygen ion conductivity that satisfies the above-mentioned predetermined conditions is formed, electrodes are placed on the surfaces of the laminated oxide superconductor and solid electrolyte, respectively. do. On the oxide superconductor side, a non-porous electrode that does not pass through Fa element is formed on a part of its surface so as not to contact the solid electrolyte. This electrode is made of a conductive material that has only low electronic conductivity and high electrical conductivity, and there is no particular limit to its type as long as it is chemically stable, but platinum or gold are preferred examples. It will be done. In addition, on the solid electrolyte side, there are porous holes on a part of the surface of the solid electrolyte that allow oxygen to pass through for ionization or deionization so that the solid electrolyte can exchange oxygen with the atmosphere without contacting the oxide superconductor. form a quality electrode. This electrode is
There are no particular restrictions on the type of conductive material as long as it is a highly conductive material that exhibits electronic conductivity, is chemically stable, and has a porous structure, but platinum is a preferred example.

それぞれの電極の厚みと面積に特に制限はないが、電極
の面積は少なくとも、酸化物超伝導体と固体電解質の接
触面積の数分の一以上であることが望ましい。
Although there are no particular restrictions on the thickness and area of each electrode, it is desirable that the area of the electrode be at least a fraction of the contact area between the oxide superconductor and the solid electrolyte.

積層体に電極を形成したならば、形成した無孔質電極と
多孔質電極の間に直流電源をつなぎ、大気または酸素を
含む雰囲気中で′積層体を室温から加熱し一定の温度に
保つ。この温度は、積層体に用いられている酸化物超伝
導体と固体電解質において、酸化物超伝導体では酸素の
注入または排出が可能で、かつ固体電解質では酸素イオ
ン伝導が可能な温度範囲にあれば特に制限はない。この
温度は用いる固体電解質、対象となる酸化物超伝導体の
特性等により異なるが通常300〜900℃程度の温度
範囲にある。
After electrodes are formed on the laminate, a DC power source is connected between the formed nonporous electrode and the porous electrode, and the laminate is heated from room temperature in the air or an atmosphere containing oxygen and kept at a constant temperature. This temperature must be within the temperature range in which the oxide superconductor and solid electrolyte used in the stack allow oxygen to be injected or discharged in the oxide superconductor, and in which oxygen ion conduction can occur in the solid electrolyte. There are no particular restrictions. This temperature varies depending on the solid electrolyte used, the characteristics of the target oxide superconductor, etc., but is usually in the temperature range of about 300 to 900°C.

酸化物超伝導体の酸is度を増加させるには直流電源の
陰極を固体電解質側の電極に、陽極を超伝導体側の電極
にそれぞれ接続し、積層体を上記のように一定の温度に
維持した状態で、適当な大きさの電流を流す。すると固
体電解質の多孔質電極において、酸素分子と電子が反応
し酸素イオンが発生する。この酸素イオンは固体電解質
中をイオン伝導し、酸化物超伝導体に注入される。注入
された酸素イオンは、酸化物超伝導体中の酸素欠陥位置
に取り込まれて周りのイオンと結合する。
To increase the acidity of the oxide superconductor, connect the cathode of a DC power supply to the electrode on the solid electrolyte side and the anode to the electrode on the superconductor side, and maintain the stack at a constant temperature as described above. In this state, an appropriate amount of current is applied. Then, oxygen molecules and electrons react with each other at the solid electrolyte porous electrode, generating oxygen ions. These oxygen ions are ionically conducted through the solid electrolyte and injected into the oxide superconductor. The implanted oxygen ions are taken into oxygen vacancies in the oxide superconductor and combine with surrounding ions.

酸化物超伝導体の内部では、電荷の中性を保っために電
子を放出する。放出された電子は、酸化物超伝導体の無
孔質電極を通って電源の陽極に戻る。
Inside an oxide superconductor, electrons are emitted to maintain charge neutrality. The emitted electrons pass through the non-porous electrode of the oxide superconductor and return to the anode of the power source.

尚、無孔質電極には電子伝導性のみを示す導電性物質が
用いられているので、酸素イオンはブロックされ電子の
みが通過する。
Note that since the nonporous electrode uses a conductive material that exhibits only electron conductivity, oxygen ions are blocked and only electrons pass through.

逆に酸化物超伝導体の酸素濃度を減少させるには、直流
電源の極性を反転し、上記と同様の温度に維持した状態
で適当な大きさの電流を流す。すると積層体の酸化物超
伝導体の内部では、上記で述べた反応の逆反応が進行し
、酸化物超伝導体から固体電解質へ酸素イオンが排出さ
れる。排出された酸素イオンは固体電解質を通り、固体
電解質の多孔質電極において電子を吸収されすなわち消
イオン化され、酸素分子となって放出される。
Conversely, to reduce the oxygen concentration in the oxide superconductor, the polarity of the DC power source is reversed and an appropriate amount of current is passed while maintaining the same temperature as above. Then, inside the oxide superconductor of the stack, a reverse reaction to the above-mentioned reaction proceeds, and oxygen ions are discharged from the oxide superconductor to the solid electrolyte. The discharged oxygen ions pass through the solid electrolyte, absorb electrons at the porous electrode of the solid electrolyte, that is, are deionized, and are released as oxygen molecules.

積層体に流す電流の大きさには特に制限はないが、当然
のことではあるが、積層体が破壊されない程痕の大きさ
の範囲内になければならない。
There is no particular limit to the magnitude of the current applied to the laminate, but it goes without saying that it must be within the range of the size of the scar so that the laminate is not destroyed.

酸化物超伝導体の酸素濃度は、上記のように積層体の積
層方向に電流を流し、電流の方向、大きさ2通電時間を
調整することによって、III Illすることができ
る。そして、所定の酸素濃度が得られたならば電流を止
め、固体電解質の酸素イオン伝導が停止する温度まで積
層体を冷却することによって、酸化物超伝導体の酸素S
度を固定することができる。
The oxygen concentration in the oxide superconductor can be adjusted by flowing a current in the stacked direction of the stack as described above and adjusting the direction, magnitude, and duration of the current. Then, when a predetermined oxygen concentration is obtained, the current is stopped and the stack is cooled to a temperature at which oxygen ion conduction in the solid electrolyte stops.
The degree can be fixed.

ただし上記のように酸化物超伝導体の酸素濃度を制御し
た後において、酸化物超伝導体と固体電解質の界面にお
ける酸素分圧と雰囲気中の酸素分圧が異なる場合には、
電流を停止した後も若干量の酸素イオンが酸化物超伝導
体と固体電解質の間を移動し、酸素分圧の差に応じて電
気分極が固体電解質に発生し、酸素濃度に若干の変動が
生ずることが考えられる。これに対しては、通電終了後
得られた酸素濃度を維持するために必要十分な大きさの
電圧を積層体の積層方向に印加しながら、固体電解質の
811素イオン伝導が停止する温度まで積層体を冷却す
れば、制御した酸素濃度を変化させずにそのまま固定す
ることができる。従って酸化物超伝導体の酸素濃度をよ
り厳密に制御する必要がある場合には、この制御方法が
好ましく適用される。
However, after controlling the oxygen concentration in the oxide superconductor as described above, if the oxygen partial pressure at the interface between the oxide superconductor and the solid electrolyte differs from the oxygen partial pressure in the atmosphere,
Even after the current is stopped, a small amount of oxygen ions move between the oxide superconductor and the solid electrolyte, and electric polarization occurs in the solid electrolyte depending on the difference in oxygen partial pressure, causing slight fluctuations in the oxygen concentration. It is conceivable that this may occur. To deal with this, while applying a voltage of sufficient magnitude in the stacking direction of the stack to maintain the oxygen concentration obtained after the energization ends, stack the stack until the temperature at which the 811 element ion conduction of the solid electrolyte stops. By cooling the body, the controlled oxygen concentration can be kept unchanged. Therefore, this control method is preferably applied when it is necessary to more strictly control the oxygen concentration in the oxide superconductor.

ところで、酸化物超伝導体の種類によっては、その露出
部分において、用いられている雰囲気との間で酸素のや
りとりを行なうものがあり、上記で述べた方法のみでは
、@素濃度を制御あるいは固定することが困難な場合が
ある。このような酸化物超伝導体の場合には、前述した
ように積層体に電極を形成した後に、酸化物超伝導体の
表面で雰囲気に露出している部分を、酸素を阻止して通
さない酸素バリヤ性が高くかつ電気的に絶縁性の八い材
料で被覆した後、前述のように酸素濃度の調整をすれば
良い。この被覆材料は前述の酸素バリヤ性を有するもの
であれば、特に制限はなく、たとえば公知の電子デバイ
スの封止剤等が適用できるが耐熱性面等からAlI30
3 、 MgO。
By the way, depending on the type of oxide superconductor, there are some that exchange oxygen with the atmosphere in their exposed parts, and the method described above alone cannot control or fix the @ element concentration. It may be difficult to do so. In the case of such an oxide superconductor, after forming electrodes on the laminate as described above, the surface of the oxide superconductor exposed to the atmosphere is blocked to prevent oxygen from passing through. After coating with a material that has a high oxygen barrier property and is electrically insulating, the oxygen concentration may be adjusted as described above. This coating material is not particularly limited as long as it has the above-mentioned oxygen barrier properties, and for example, known sealants for electronic devices can be used, but from the viewpoint of heat resistance etc., AlI3
3. MgO.

A隻203  MQO,SiO2,Si3Ngなどのセ
ラミック誘電体が好ましい。
Ship A 203 Ceramic dielectrics such as MQO, SiO2, and Si3Ng are preferred.

このように、積層体の形成段階において、酸化物超伝導
体の露出部分を必要に応じて酸素バリヤ層で被覆してお
けば、酸化物超伝導体は積層されている固体電解質も通
常は酸素バリヤ性を有するので、酸素濃度調整時を除い
てはその全表面が酸素バリヤ層で被覆されたことなり、
酸素濃度が不安定な酸化物超伝導体についても、酸素濃
度の制御、固定が可能になる。
In this way, if the exposed parts of the oxide superconductor are coated with an oxygen barrier layer as necessary during the formation stage of the laminate, the oxide superconductor and the solid electrolyte on which it is stacked can also normally absorb oxygen. Since it has barrier properties, the entire surface is covered with an oxygen barrier layer except when adjusting the oxygen concentration.
Even in oxide superconductors where the oxygen concentration is unstable, it becomes possible to control and fix the oxygen concentration.

以上のような手順に従うことによって、目的とする酸化
物超伝導体の製造及び酸素ar11の制御カー行なわれ
る。
By following the above procedure, the desired oxide superconductor can be manufactured and oxygen ar11 can be controlled.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

(実施例) 第1図に示すように、20M×20jlIlの大きさで
、厚さIMの平板状YSZ単結晶からなる固体電解質基
板(以下“YSZ基板″という)1の上の中心部に、Y
SZ基板1を200℃に加熱しながら、スパッタ装置を
用いて、酸化物超伝導薄wA2として厚さ1μmのY−
Ba −Cu−0薄膜(具体的にはY+ Ba 2 C
IJ a Oy−δ薄膜)を10#llX10Mの大き
さに形成した後、酸素雰囲気中900℃で1時間熱処理
を行ない、Y−Ba −Cu −0薄膜2を結晶化した
。ただし、この熱処理はY−Ba−CI −0111!
i!2を結晶化させるために行なったものであり、その
酸素濃度を制御することを目的として行なったものでは
ない。YSZは酸素イオン伝導性を有する固体電解質と
して知られている。
(Example) As shown in FIG. 1, in the center of a solid electrolyte substrate (hereinafter referred to as "YSZ substrate") 1 made of a flat YSZ single crystal with a size of 20M x 20JIl and a thickness of IM, Y
While heating the SZ substrate 1 to 200°C, a 1 μm thick Y-
Ba-Cu-0 thin film (specifically Y+ Ba 2 C
After forming a Y-Ba-Cu-O thin film 2 to a size of 10 #ll x 10M, heat treatment was performed at 900° C. for 1 hour in an oxygen atmosphere to crystallize the Y-Ba-Cu-0 thin film 2. However, this heat treatment is performed using Y-Ba-CI-0111!
i! This was carried out to crystallize 2, and was not carried out for the purpose of controlling its oxygen concentration. YSZ is known as a solid electrolyte having oxygen ion conductivity.

また、Y−Ba−Cu−0は酸素欠損を持つ酸化物超伝
導体として知られている。
Further, Y-Ba-Cu-0 is known as an oxide superconductor having oxygen vacancies.

ところで、同図に示すように、YSZ基板1の酸化物超
伝導薄1112を形成する面の反対側の表面に、多孔質
平板状白金電極3を前もって以下のように形成しておい
た。すなわち、白金ペーストをYSZ基板1の該表面に
塗布した後、大気中で1000℃程度に加熱することに
よって形成した。なお多孔質平板状白金電極3は図示の
通り酸化物超伝導薄ll12より大きい15jw+X1
5m+の大きさの板状とし、図示のようにこれに対向す
る配置となるように形成した。
By the way, as shown in the figure, a porous flat platinum electrode 3 was previously formed on the surface of the YSZ substrate 1 opposite to the surface on which the oxide superconducting thin film 1112 was formed, as follows. That is, the platinum paste was applied to the surface of the YSZ substrate 1 and then heated to about 1000° C. in the atmosphere. As shown in the figure, the porous flat platinum electrode 3 has a diameter of 15jw+X1 which is larger than the oxide superconducting thin ll12.
It was made into a plate shape with a size of 5 m+, and was formed so as to face it as shown in the figure.

次にY−Ba −Cu −011m2の側面に接するよ
うに、絶縁性の酸素バリヤ層4として厚さ1μmのMo
 011114aを、上記の膜付YSZ基板1上にこれ
を400℃に加熱しながら、エキシマレーザ−スパッタ
装置を用いてY−Ba −Cu −0簿llA2をマス
クして形成した。また同様にして、エキシマレーザ−ス
パッタ装置を用いて、第2図に示すように、電気抵抗測
定端子を兼ねた、中1#。
Next, as an insulating oxygen barrier layer 4, a 1 μm thick Mo
011114a was formed on the film-coated YSZ substrate 1 by using an excimer laser sputtering device while heating the film to 400° C. and masking Y-Ba-Cu-0-11A2. Similarly, using an excimer laser sputtering device, as shown in FIG.

長さ15asで厚さ1μmの4本の電極を所定間隔で配
置した四端子の無孔質平板状白金電極5をY−Ba −
Cu−OiHIIJ2上を横断し、その一端方(M(1
0薄1114aに渡るように前述のM(l OII’J
付YSZ基板1を300℃に加熱しながら形成した。さ
らに、形成した無孔質平板状白金電極5の一端部が露出
し、y−Ba −Cu −0’fiJ膜2は露出してい
る表面がないように、前述の電極缶YSZ基板1を40
0℃に加熱しながら、同様にエキシマレーザ−スパッタ
装置を用いて、電気絶縁性の酸素バリヤ層4として、厚
さ1μmのMaO簿膜4bを形成した。この酸素バリヤ
層4はY−3a −CuO簿112の一部が大気中に露
出することによって、その酸素のS度が変化するのを防
ぐのが目的である。
A four-terminal nonporous flat platinum electrode 5 in which four electrodes each having a length of 15 as and a thickness of 1 μm are arranged at predetermined intervals is Y-Ba −
It crosses over Cu-OiHIIJ2 and one end of it (M(1
The above-mentioned M(l OII'J
The attached YSZ substrate 1 was formed while being heated to 300°C. Further, the electrode can YSZ substrate 1 was placed at a 40-degree angle so that one end of the formed non-porous flat platinum electrode 5 was exposed and no surface of the y-Ba-Cu-0'fiJ film 2 was exposed.
While heating to 0° C., a 1 μm thick MaO film 4b was formed as an electrically insulating oxygen barrier layer 4 using the same excimer laser sputtering device. The purpose of this oxygen barrier layer 4 is to prevent the S degree of oxygen from changing when a part of the Y-3a-CuO book 112 is exposed to the atmosphere.

次に、直流安定化電源10の陰極を多孔質平板状白金電
極3に、陽極を無孔質平板状白金電極5につなぎ、8%
層体全体を大気中でYSZ基板1が酸素イオン伝導性を
示す温度の500℃に加熱維持しながら、1mAの電流
を10秒間ずつ断続的に流し、その都fIY−Ba −
Cu −0薄1g12の抵抗率を直流四端子法で測定し
た。すると第3図の実線に示すように、通電電気聞くク
ーロン量)がふえるに従って抵抗率が減少した。次に直
流安定化電源10の極性を反転し、逆方向に、上記と同
様に10秒間ずつ断続的に1mAの電流を流したところ
、第3図の破線に示すように、抵抗率は逆に増加しはじ
め、やがて元の値に戻った。これら一連の、YBa −
Cu −ONN22抵抗率の変化は可逆的であった。ま
た、通電電気量(クーロン量)の計測から通電電気量と
注入酸素イオンの量との間には定の相関性の良い対応関
係があり、通電電気m更には抵抗率により正確な酸素濃
度制御ができることがわかった。
Next, the cathode of the DC stabilized power supply 10 was connected to the porous flat platinum electrode 3, and the anode was connected to the non-porous flat platinum electrode 5.
While heating the entire layered body in the atmosphere at 500° C., the temperature at which the YSZ substrate 1 exhibits oxygen ion conductivity, a current of 1 mA was passed intermittently for 10 seconds at a time, and then the YSZ substrate 1 was heated to 500° C.
The resistivity of 1 g12 of Cu-0 thin film was measured by the DC four-terminal method. Then, as shown by the solid line in Figure 3, the resistivity decreased as the amount of coulombs (the amount of energized electricity) increased. Next, when the polarity of the DC stabilized power supply 10 was reversed and a current of 1 mA was passed intermittently in the opposite direction for 10 seconds in the same manner as above, the resistivity was reversed as shown by the broken line in Figure 3. It started to increase and then returned to its original value. These series of YBa −
The change in Cu-ONN22 resistivity was reversible. In addition, from the measurement of the amount of energized electricity (coulomb amount), there is a good correlation between the amount of energized electricity and the amount of injected oxygen ions, and the oxygen concentration can be controlled accurately by the energized electricity m and resistivity. It turns out that it can be done.

なお、かかるヒステリシスの殆んどない良好な対応関係
には酸素バリヤ層に用いたMu 01膜の優れた酸素バ
リヤ性が寄与していると考えられる。
It is considered that the excellent oxygen barrier properties of the Mu 01 film used as the oxygen barrier layer contribute to this good correspondence with almost no hysteresis.

本例で用いたMg0Ilは分析によれば(111)面が
膜面の垂直方向に配向した多結晶膜であり、従って上記
の点ではかかる配向の多結晶又は単結晶のMgO膜が好
ましい。
According to analysis, the Mg0Il used in this example is a polycrystalline film in which the (111) plane is oriented in a direction perpendicular to the film surface, and therefore, from the above point of view, a polycrystalline or single-crystalline MgO film with such an orientation is preferable.

次に直流安定化電源10をオフにして、積層体を室mに
戻すと、Y−Ba −Cl −0薄1!2の抵抗率は5
00℃で最後に得られた値に固定された。
Next, when the DC stabilized power supply 10 is turned off and the laminate is returned to chamber m, the resistivity of Y-Ba-Cl-0 thin 1!2 is 5.
It was fixed at the last value obtained at 00°C.

Y−Ba−Cu−0は酸素欠損型の酸化物超伝導体であ
り、含まれる酸素濃度が^い程、抵抗率が小さくなるこ
とが知られている。従って、上記で示した500℃にお
けるY−Ba −Cu −081I2の抵抗率の変化は
、YSZ基板1からY−[3a−Cu−0薄112へ、
II!イオンの注入又は排出が行なわれ、Y−Ba −
CLI −0薄膜2の酸素濃度が制御されていることに
対応している。また室温においてY−Ba −Cu −
0薄膜2の抵抗率が定となったのは、酸素濃度が固定さ
れたことに対応している。
Y-Ba-Cu-0 is an oxygen-deficient oxide superconductor, and it is known that the resistivity decreases as the oxygen concentration increases. Therefore, the change in resistivity of Y-Ba-Cu-081I2 at 500°C shown above is from the YSZ substrate 1 to the Y-[3a-Cu-0 thin 112,
II! Ions are implanted or ejected, and Y-Ba −
This corresponds to the fact that the oxygen concentration of the CLI-0 thin film 2 is controlled. Moreover, at room temperature, Y-Ba-Cu-
The reason why the resistivity of the 0 thin film 2 became constant corresponds to the fact that the oxygen concentration was fixed.

上記測定の終了後、積層体を再び大気中で500℃に加
熱維持しながら、前記測定と同様な方法を用いて、Y−
Ba −Cu −01膜2にYSZ基板1から酸素イオ
ンを注入し、Y−Ba −Cu −0薄膜2の特性の変
化を調べた。以下にその手順をホす。
After the above measurements were completed, the Y-
Oxygen ions were implanted into the Ba-Cu-01 film 2 from the YSZ substrate 1, and changes in the characteristics of the Y-Ba-Cu-0 thin film 2 were investigated. The steps are below.

直流安定化電源10の陰極を多孔質平板状白金電極3に
、陽極を無孔質平板状白金電極5に接続し、大気中50
0℃において、1  mAの電流を20秒間、ずなわら
2X10−2クーロンの電気量を通電した。
The cathode of the DC stabilized power supply 10 was connected to the porous flat platinum electrode 3, the anode was connected to the non-porous flat platinum electrode 5, and the
At 0° C., a current of 1 mA was applied for 20 seconds with an amount of electricity of 2×10 −2 coulombs.

通電終了後、速やかに積層体を室温に冷却して、Y−B
a −CLI −0f11112の酸素濃度を固定した
猪、液体ヘリウムにより冷却して前述の直流四端子法に
よりY−Ba −Cu −0iJ躾2の低温抵抗率の測
定を行なうとともに、X線回折による単位格子のC軸長
の測定を行なった。続いて上記と同じ操作を2回繰り返
した。つまり、合計6X1G−2クーロンの電気量を2
X10−2クーロンずつ3回に分けてY−Ba −Cu
−0薄112に注入し、その都度上述のY−Ba −C
u −0薄膜2の低温抵抗率とC軸の長さを測定した。
After energization, the laminate is quickly cooled to room temperature and Y-B
The low-temperature resistivity of Y-Ba-Cu-0iJ-2 was measured using the DC four-probe method described above after cooling the boar with a fixed oxygen concentration of a-CLI-0f11112 using liquid helium. The C-axis length of the grating was measured. Subsequently, the same operation as above was repeated twice. In other words, the total amount of electricity of 6X1G-2 coulombs is 2
Y-Ba-Cu divided into 3 times of X10-2 coulombs
-0thin 112, each time the above-mentioned Y-Ba-C
The low-temperature resistivity and C-axis length of u-0 thin film 2 were measured.

また、以上の操作が全て終了した後、1週間以上室内に
放置したがY−Ba −Cu−0簿11!!!2の抵抗
率には、経時変化はみられなかった。
Also, after all the above operations were completed, I left it indoors for more than a week, but the Y-Ba-Cu-0 book 11! ! ! No change over time was observed in the resistivity of No. 2.

第4図に上記で測定した各通電電気量におけるY−Ba
 −Cu −0薄WA2の低温における抵抗率と温度と
の関係を示す。図中A、B、Cの各曲線は、通電電気量
が積算で2X10−2クーロン(A)。
Figure 4 shows Y-Ba at each amount of electricity measured above.
The relationship between the resistivity and temperature at low temperatures of -Cu -0 thin WA2 is shown. In the figure, each of the curves A, B, and C has an integrated amount of electricity of 2X10-2 coulombs (A).

4X10−2クーロン(B)、6x10−2クーロン(
C)の各場合におけるY−Ba −Cu −0薄M2の
低温抵抗率をそれぞれ表わしている。への場合、今回の
測定温度範囲、6〜273にでは超伝導状態が得られな
かったが、B、Cの場合、IOK、 57にでそれぞれ
超伝導状態が得られた。通電電気量換言すれば酸素注入
量が増加するに従ってY−Ba −Cu −0薄llI
2の超伝導特性は明らかに向上している。
4x10-2 coulombs (B), 6x10-2 coulombs (
The low-temperature resistivity of Y-Ba-Cu-0 thin M2 in each case of C) is shown. In the case of B and C, a superconducting state was not obtained in the measured temperature range of 6 to 273, but in the case of B and C, a superconducting state was obtained at IOK and 57, respectively. In other words, as the amount of oxygen injection increases, Y-Ba-Cu-0 thin llI
The superconducting properties of No. 2 are clearly improved.

第5図に前述の測定による通電電気聞とYBa −Cu
 −Q簿膜2のC軸の長さとの関係を示す。通電電気聞
が増加するに従って、C軸の長さが短くなっていること
がわかる。
Fig. 5 shows the energized electric current and YBa-Cu
- The relationship between the Q-value and the C-axis length of the membrane 2 is shown. It can be seen that the length of the C-axis becomes shorter as the energized electric current increases.

ところで、Y+ Ba 2 C030y −6超伝導体
は酸素化学量論数(7−δ)が、6〜7の縫囲内にある
場合、(7−δ)の値が大きい程、抵抗がゼロになる臨
界温度TOが高く、かつC軸の長さが短くなることが知
られている(たとえばJ apanJ ournal 
of Applied  Physics、26. (
7) 。
By the way, in Y+ Ba 2 C030y -6 superconductor, when the oxygen stoichiometric number (7-δ) is within the range of 6 to 7, the larger the value of (7-δ), the more the resistance becomes zero. It is known that the critical temperature TO is high and the length of the C axis is short (for example, Japan Journal
of Applied Physics, 26. (
7).

(1987) 、 +11156 、5olid  s
tateCommunications、66、  (
9) 、  (1988) 、 p953)。
(1987), +11156, 5olids
tateCommunications, 66, (
9), (1988), p953).

先に示した第4図、第5図の結果はこれらの公知の知見
と一致している。従って本発明により通電電気量に対応
してY−Ba −Cu −0薄膜2の酸素イオンが注入
され、Y−Ba −Cu −0薄膜2の酸素濃度が正確
に制御できることは明らかで、本発明が高品質の酸化物
超伝導体の安定生産に大きな寄与をなすことが理解でき
る。
The results shown in FIGS. 4 and 5 shown above are consistent with these known findings. Therefore, it is clear that according to the present invention, oxygen ions are implanted into the Y-Ba-Cu-0 thin film 2 in accordance with the amount of electricity applied, and the oxygen concentration of the Y-Ba-Cu-0 thin film 2 can be accurately controlled. It can be understood that this greatly contributes to the stable production of high-quality oxide superconductors.

(発明の効果) 以上の通り本発明は酸素イオン伝導性を有する固体電解
質を用いることにより、酸化物超伝導体の酸素濃度を比
較的低温で正確に制御でき、又そのまま固定できるもの
であり、M素濃度の正確な1、II御とその長期安定性
が実用に際し不可欠と云われる酸化物超伝導体及び酸化
物超伝導体を用いた各種デバイスの安定生産に大きな効
果を奏するものである。このように本発明は、酸化物超
伝導体の実用化に大きな寄与をなす工業上非常に有用な
ものである。
(Effects of the Invention) As described above, the present invention uses a solid electrolyte having oxygen ion conductivity to accurately control the oxygen concentration in an oxide superconductor at a relatively low temperature, and also allows it to be fixed as it is. Accurate control of the M element concentration of 1 and II and its long-term stability have a great effect on the stable production of oxide superconductors and various devices using oxide superconductors, which are said to be essential for practical use. As described above, the present invention is industrially very useful and makes a significant contribution to the practical application of oxide superconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の説明図、第2図は該実施例の積層部の
平面図、第3図は実施例の通電電気量と抵抗率の関係を
示すグラフで、横軸は通電電気量(X10−2り一0ン
)、l軸は抵抗率(lΩ・C#I)であり、第4図は実
施例の温度と抵抗率との関係を示すグラフで、横軸は温
度(K)、縦軸は抵抗率(lΩ・α)であり、第5図は
実施例の通電電気量と単位格子のC軸の長さを示すグラ
フで、横軸は通電電気1(xlo−2クーロン)、縦軸
は単位格子のC軸の長さ(入)である。 1:固体電解質(YSZ)基板 2二酸化物超伝導体(Y−Ba −Cu −0) 薄膜 3:多孔質平板状白金電極 4:酸素バリヤ層 5:無孔質平板状白金電極 10:直流安定化電源 第 1 図 特許出願人 帝 人 株 式 会 社 石  亀  希  男 第 22 抵抗率(mΩ・ cm) 抵抗率(mΩ cm) 抵抗率(mΩ cm)
Figure 1 is an explanatory diagram of the example, Figure 2 is a plan view of the laminated portion of the example, and Figure 3 is a graph showing the relationship between the amount of energized electricity and resistivity of the example, where the horizontal axis is the amount of energized electricity. (X10-2 R10), the l axis is resistivity (lΩ・C#I), and FIG. 4 is a graph showing the relationship between temperature and resistivity in the example, and the horizontal axis is temperature (K ), the vertical axis is the resistivity (lΩ・α), and FIG. ), the vertical axis is the length (in) of the C axis of the unit cell. 1: Solid electrolyte (YSZ) substrate 2 Dioxide superconductor (Y-Ba-Cu-0) Thin film 3: Porous flat platinum electrode 4: Oxygen barrier layer 5: Non-porous flat platinum electrode 10: DC stable Power Supply Figure 1 Patent Applicant Teijin Ltd. Nozomi Ishi Kame No. 22 Resistivity (mΩ cm) Resistivity (mΩ cm) Resistivity (mΩ cm)

Claims (1)

【特許請求の範囲】 1、酸化物超伝導体の製造方法において、酸化物超伝導
体と酸素イオン伝導性を有する固体電解質とを積層する
工程と、固体電解質の酸化物超伝導体と対向する位置に
酸素を通しイオン化又は消イオン化する電極を積層する
工程と、酸化物超伝導体の固体電解質と対向する位置に
酸素を通さない酸素バリヤ性の電極を積層する工程と、
得られた積層体を固体電解質が酸素イオン伝導を示す温
度範囲に維持しつつその電極間に電流を流すことにより
酸化物超伝導体の酸素濃度を制御する工程とからなるこ
とを特徴とする酸化物超伝導体の製造方法。 2、固体電解質と積層され、その上に前記電極が積層さ
れた酸化物超伝導体を酸素バリヤーで被覆する工程を有
する請求項第1項記載の酸化物超伝導体の製造方法。 酸素濃度を制御する工程において、酸化物 超伝導体の抵抗率を測定して、該抵抗率が所定値に達し
た時電流を停止する請求項第1項又は第2項記載の酸化
物超伝導体の製造方法。 酸素濃度を制御した後、該酸素濃度を維持 するに必要な電圧を両電極間に印加しながら、該積層体
を固体電解質が酸素イオン伝導性を示さなくなる温度ま
で冷却し、その後電圧印加を停止する請求項第1項〜第
3項記載のいずれかの酸化物超伝導体の製造方法。 前記酸化物超伝導体がY−Ba−Cu−O 系酸化物超伝導体である請求項第1項〜第4項記載のい
ずれかの酸化物超伝導体の製造方法。 前記酸化物超伝導体をスパッタリング法等 の気相堆積法により固体電解質基板に積層する請求項第
5項記載の酸化物超伝導体の製造方法。
[Claims] 1. In a method for producing an oxide superconductor, a step of stacking an oxide superconductor and a solid electrolyte having oxygen ion conductivity, and stacking the solid electrolyte opposite to the oxide superconductor. A step of laminating an electrode that allows oxygen to pass through and ionizes or deionizes the electrode, and a step of laminating an electrode with an oxygen barrier property that does not allow oxygen to pass through the electrode at a position facing the solid electrolyte of the oxide superconductor.
An oxidation process characterized by a step of controlling the oxygen concentration of the oxide superconductor by passing a current between the electrodes while maintaining the obtained laminate in a temperature range in which the solid electrolyte exhibits oxygen ion conduction. Method for producing physical superconductors. 2. The method for producing an oxide superconductor according to claim 1, further comprising the step of coating the oxide superconductor, which is laminated with a solid electrolyte and on which the electrode is laminated, with an oxygen barrier. The oxide superconductor according to claim 1 or 2, wherein in the step of controlling the oxygen concentration, the resistivity of the oxide superconductor is measured and the current is stopped when the resistivity reaches a predetermined value. How the body is manufactured. After controlling the oxygen concentration, the stack is cooled to a temperature at which the solid electrolyte no longer exhibits oxygen ion conductivity while applying a voltage necessary to maintain the oxygen concentration between the two electrodes, and then the voltage application is stopped. A method for producing an oxide superconductor according to any one of claims 1 to 3. 5. The method for producing an oxide superconductor according to any one of claims 1 to 4, wherein the oxide superconductor is a Y-Ba-Cu-O based oxide superconductor. 6. The method for producing an oxide superconductor according to claim 5, wherein the oxide superconductor is laminated on a solid electrolyte substrate by a vapor deposition method such as a sputtering method.
JP1065892A 1989-03-20 1989-03-20 Production of oxide superconductor Pending JPH02248301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065892A JPH02248301A (en) 1989-03-20 1989-03-20 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065892A JPH02248301A (en) 1989-03-20 1989-03-20 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02248301A true JPH02248301A (en) 1990-10-04

Family

ID=13300067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065892A Pending JPH02248301A (en) 1989-03-20 1989-03-20 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02248301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2113304A1 (en) * 1995-12-05 1998-04-16 Espan Carburos Metal Variable electrical conduction device.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261623A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Manufacture of electric conductive material thin film
JPS6412428A (en) * 1987-07-07 1989-01-17 Matsushita Electric Ind Co Ltd Manufacture of superconducting film
JPS6452324A (en) * 1987-08-21 1989-02-28 Matsushita Electric Ind Co Ltd Superconductor
JPS6459709A (en) * 1987-08-28 1989-03-07 Seiko Epson Corp Superconductive molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261623A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Manufacture of electric conductive material thin film
JPS6412428A (en) * 1987-07-07 1989-01-17 Matsushita Electric Ind Co Ltd Manufacture of superconducting film
JPS6452324A (en) * 1987-08-21 1989-02-28 Matsushita Electric Ind Co Ltd Superconductor
JPS6459709A (en) * 1987-08-28 1989-03-07 Seiko Epson Corp Superconductive molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2113304A1 (en) * 1995-12-05 1998-04-16 Espan Carburos Metal Variable electrical conduction device.

Similar Documents

Publication Publication Date Title
US4963524A (en) Sputtering device for manufacturing superconducting oxide material and method therefor
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
Umbach et al. Rare‐earth oxides as artificial barriers in superconducting tunneling junctions
JPH02248301A (en) Production of oxide superconductor
JP2815382B2 (en) Conductive oxide laminate
JP3037358B2 (en) Manufacturing method of oxide superconductor and oxide superconductor laminate
JPH0280302A (en) Production of electroconductive oxide
Yamakawa et al. Structural and electrical properties of antiferroelectric lead zirconate thin films prepared by reactive magnetron co-sputtering
EP0306286B1 (en) Method and apparatus for manufacturing superconducting ceramics materials
JPH0825742B2 (en) How to make superconducting material
US5053833A (en) Device made of oxide superconductive material covered with ion conductive means for adjusting the doping level and tc thereof
Miyamura et al. Electrochemical studies of lithium nitride solid electrolyte for electrochromic devices
JP6706817B2 (en) Electric field control electrode and electric double layer device
Ratkje et al. The Transported Entropy of Oxygen Ion in Yttria‐Stabilized Zirconia
JP2585561B2 (en) Oxide superconducting material
JP2585269B2 (en) Superconducting transistor
JPH0541237A (en) Solid fuel cell
JPH061608A (en) Production of conductive oxide thin film
JP2564562B2 (en) How to make superconducting material
JPS6273155A (en) Characteristic improving method of oxygen sensor
JPH0246608A (en) Protective membrane for superconductive member
JP2683689B2 (en) Method for producing oxide superconducting thin film
Bian et al. Solid-State Electrochemical Thermal Transistors with Large Thermal Conductivity Switching Widths
KR20240026175A (en) electronic transistor
JP2611332B2 (en) Manufacturing method of thin film superconductor