JPH061608A - Production of conductive oxide thin film - Google Patents

Production of conductive oxide thin film

Info

Publication number
JPH061608A
JPH061608A JP16094392A JP16094392A JPH061608A JP H061608 A JPH061608 A JP H061608A JP 16094392 A JP16094392 A JP 16094392A JP 16094392 A JP16094392 A JP 16094392A JP H061608 A JPH061608 A JP H061608A
Authority
JP
Japan
Prior art keywords
thin film
conductive oxide
oxide thin
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16094392A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Watanabe
強 渡邊
Hiroo Yugami
浩雄 湯上
Mareo Ishigame
希男 石亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16094392A priority Critical patent/JPH061608A/en
Publication of JPH061608A publication Critical patent/JPH061608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve oxygen concn. controllability by forming the film while injecting or liberating oxygen ion into or from a thin film being formed by an electrochemical means. CONSTITUTION:A porous electrode of platinum net, etc., is formed on one side in contact with the atmosphere of a solid electrolyte substrate having oxygen ion conductivity such as a Y2O3-ZrO2 single crystal and a nonporous electrode such as a platinum thin film on the other side within a vacuum chamber. A DC power source is then connected between the porous and nonporous electrodes and set in the chamber. A substrate is heated and kept at a specified temp., the chamber is evacuated, and then gaseous oxygen is introduced to a specified partial pressure. A current is applied between both electrodes, and hence the oxygne ion generated by the reaction of the oxygen molecule in the atmosphere with an electron from the current is conducted in the solid electrolyte, implanted in a conductive oxide film being formed by vapor deposition and oxidized. A conductive oxide thin film with the oxidation state controlled is obtained by adjusting the current to be applied while the film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性酸化物薄膜の製造
方法に関し,特に正確な酸素濃度制御が要求される酸化
物超伝導薄膜の製造に好適な導電性酸化物薄膜の製造方
法に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive oxide thin film, and more particularly to a method for producing a conductive oxide thin film suitable for producing an oxide superconducting thin film which requires accurate oxygen concentration control.

【0002】[0002]

【従来の技術】導電性酸化物薄膜は、センサー、バリス
ター、タッチパネルをはじめとする数々のエレクトロニ
クスデバイスへの応用が期待されている。中でも、19
86年IBMのチェーリッヒ研究所の発見に端を発する
一群の酸化物超伝導薄膜は、ジョセフソン素子、SQU
ID等への各種応用が期待され、現在各所で精力的な研
究が行なわれている。
2. Description of the Related Art A conductive oxide thin film is expected to be applied to various electronic devices such as a sensor, a varistor and a touch panel. Among them, 19
A group of oxide superconducting thin films, which originated in the discovery of IBM's Cherich research institute in 1986, was Josephson device, SQU.
Various applications to ID and the like are expected, and energetic research is currently being conducted in various places.

【0003】これらの導電性酸化物薄膜の特性は、膜中
の酸素濃度に大きく依存しているので、その製造過程に
おいて、酸素濃度を精密かつ安定に抑制する酸化方法が
必要とされている。
Since the characteristics of these conductive oxide thin films largely depend on the oxygen concentration in the film, an oxidation method for precisely and stably suppressing the oxygen concentration is required in the manufacturing process thereof.

【0004】従来から行なわれている導電性酸化物薄膜
の酸化方法としては、大気、酸素、オゾン、NO2 等の
雰囲気中における熱酸化法と酸素プラズマによる酸化法
が一般的である。前者は主として、薄膜を製膜した後に
加熱アニールすることによって行なわれ、後者は主とし
て、スパッタリングやMBE等の薄膜の気相堆積法に用
いられる。
As a conventional oxidation method for a conductive oxide thin film, a thermal oxidation method in an atmosphere of air, oxygen, ozone, NO 2 or the like and an oxidation method using oxygen plasma are generally used. The former is mainly performed by forming a thin film and then annealing by heating, and the latter is mainly used in a vapor deposition method of a thin film such as sputtering or MBE.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の酸化法を用いた場合、導電性酸化物薄膜の種類によっ
ては、酸化を十分に行なうために高温に加熱しなければ
ならないので、その導電性酸化物薄膜を耐熱性の低い他
の材料と複合して、エレクトロニクスデバイスなどに応
用するのが困難な場合がある。
However, when these oxidation methods are used, the conductive oxide thin film must be heated to a high temperature in order to be sufficiently oxidized depending on the kind of the conductive oxide thin film. In some cases, it may be difficult to apply a thin material film to another material having low heat resistance and apply it to an electronic device or the like.

【0006】たとえばY―Ba―Cu―O系、Bi―S
r―Ca―Cu―O系、Tl―Ba―Ca―Cu―O系
等の酸化物高温超伝導薄膜を例にとると、臨界温度(T
c)と電流密度(Jc)がともに高い高品位の薄膜を得
るためには、熱酸化法を用いた場合には800℃以上の
温度でアニールする必要があり、酸素プラズマ法を用い
た場合には600℃以上の基板温度で製膜する必要があ
るといわれている。超伝導薄膜の現在の製膜技術におい
ては、このような高温の酸化プロセスが不可欠であるた
めに、超伝導薄膜をSi基板等の半導体用の基板材料上
に製膜した場合、高温による薄膜と基板との化学反応が
避けられず、エレクトロニクスデバイスへの応用の大き
な障害になっている。
For example, Y-Ba-Cu-O system, Bi-S
Taking high temperature oxide superconducting thin films such as r-Ca-Cu-O type and Tl-Ba-Ca-Cu-O type, the critical temperature (T
In order to obtain a high quality thin film having both high c) and current density (Jc), it is necessary to anneal at a temperature of 800 ° C. or higher when the thermal oxidation method is used, and when the oxygen plasma method is used. It is said that it is necessary to form a film at a substrate temperature of 600 ° C. or higher. Since the high temperature oxidation process is indispensable in the current film forming technology of superconducting thin film, when the superconducting thin film is formed on the substrate material for semiconductor such as Si substrate, it is not The chemical reaction with the substrate is unavoidable, which is a major obstacle to application to electronic devices.

【0007】また酸化物超伝導薄膜は、たとえばY1
2 Cu3 7-d(0<d<1)のように酸素欠損dが存
在し、この酸素欠損量が製膜時の酸素分圧や温度の変化
に対して敏感に変化する。従って膜中の酸素濃度を正確
に制御しながら、超伝導薄膜を安定に製膜することは、
現在でも困難な課題になっている。
The oxide superconducting thin film is, for example, Y 1 B
There is an oxygen deficiency d such as a 2 Cu 3 O 7-d ( 0 <d <1), and the amount of this oxygen deficiency changes sensitively to changes in oxygen partial pressure and temperature during film formation. Therefore, it is necessary to form a superconducting thin film stably while controlling the oxygen concentration in the film accurately.
Even now, it is a difficult task.

【0008】本発明はかかる現状の問題点を解決するた
めになされたものであり、PVD,CVD等の気相状態
の蒸発物質を基板上に堆積させる気相堆積法により導電
性酸化物薄膜を製造する方法において、低温で製膜でき
る導電性酸化物薄膜の製造方法を第1の目的とし、導電
性酸化物薄膜の酸素濃度を目的の値に制御し固定できる
導電性酸化物薄膜の製造方法を第2の目的とするもので
ある。
The present invention has been made in order to solve the above-mentioned problems of the present situation. A conductive oxide thin film is formed by a vapor deposition method such as PVD, CVD or the like in which vaporized substances in a vapor phase are deposited on a substrate. In the manufacturing method, the first object is a method of manufacturing a conductive oxide thin film that can be formed at a low temperature, and a method of manufacturing a conductive oxide thin film that can control and fix the oxygen concentration of the conductive oxide thin film to a target value. Is the second purpose.

【0009】[0009]

【発明の構成及び作用】上述の目的は以下の本発明によ
り達成される。すなわち本発明は、気相堆積法により導
電性酸化物薄膜を製造するに際し、酸素イオンを電気化
学的手段により、形成される薄膜へ注入または該薄膜か
ら放出させながら製膜を行なうことを特徴とする導電性
酸化物薄膜の製造方法である。
The above object can be achieved by the present invention described below. That is, the present invention is characterized in that, when a conductive oxide thin film is produced by a vapor deposition method, oxygen ions are injected into or released from the thin film to be formed by an electrochemical means to form a film. And a method for producing a conductive oxide thin film.

【0010】本発明において、上述の構成により導電性
酸化物薄膜を従来の製膜方法で不可能であった500℃
以下の低温で製膜できる驚くべき効果が得られる。
In the present invention, the conductive oxide thin film having the above-mentioned constitution cannot be formed by the conventional film forming method at 500 ° C.
The following surprising effects can be obtained at low temperatures.

【0011】本発明において、電気化学的手段が酸素イ
オン伝導性を有する固体電解質からなり、固体電解質が
酸素イオン伝導を示す温度範囲に製膜温度を保持すると
共に形成される導電性酸化物薄膜と該固体電解質の間に
電流を流しながら、導電性酸化物薄膜をこの固体電解質
の少なくとも一部分に接触するように製膜する方法が、
構成が簡単で好ましい。
In the present invention, the electrochemical means comprises a solid electrolyte having oxygen ion conductivity, and the conductive oxide thin film is formed while maintaining the film formation temperature in a temperature range where the solid electrolyte exhibits oxygen ion conductivity. A method of forming a conductive oxide thin film so as to contact at least a part of the solid electrolyte while applying an electric current between the solid electrolytes,
The configuration is simple and preferable.

【0012】また上述の本発明において、導電性酸化物
薄膜の種類によっては、導電性酸化物薄膜の製膜後、製
膜温度から室温に冷却する過程の該導電性酸化物薄膜と
固体電解質が共に酸素イオン伝導を示す温度範囲におい
て、該導電性酸化物薄膜と該固体電解質の間に電流を流
すことによって、該導電性酸化物薄膜の酸素濃度を調整
することが好ましい。このようにすることにより導電性
酸化物薄膜の酸素濃度を目的とする値に制御固定できる
効果が得られる。
Further, in the above-mentioned present invention, depending on the kind of the conductive oxide thin film, the conductive oxide thin film and the solid electrolyte may be formed in the process of cooling from the film forming temperature to room temperature after forming the conductive oxide thin film. It is preferable to adjust the oxygen concentration of the conductive oxide thin film by passing an electric current between the conductive oxide thin film and the solid electrolyte in a temperature range in which both show oxygen ion conduction. By doing so, the effect that the oxygen concentration of the conductive oxide thin film can be controlled and fixed to a target value can be obtained.

【0013】以下本発明の詳細を説明する。The details of the present invention will be described below.

【0014】本発明が適用される導電性酸化物薄膜は、
電子・イオン混合伝導性を示す導電性酸化物薄膜なら
ば、その種類、材質、全導電率に占める電子導電率とイ
オン導電率の割合に特に制限はない。かかる導電性酸化
物薄膜としては、たとえばTi 2 3 ,Ti2 5 、M
WO3 (M:アルカリ金属,Ag,H,O<x≦
1),Ce1-x Gd2-x/2 (0.1≦x≦0.5)
あるいは最近注目を集めている酸化物超伝導体等の導電
性酸化物薄膜がある。
The conductive oxide thin film to which the present invention is applied is
If it is a conductive oxide thin film that exhibits mixed electron / ion conductivity
For example, its type, material, electronic conductivity and
There is no particular limitation on the rate of ON conductivity. Such conductive oxidation
As the thin film, for example, Ti 2O3, Ti2OFive, M
xWO3(M: alkali metal, Ag, H, O <x ≦
1), Ce1-xGdxO2-x / 2(0.1 ≦ x ≦ 0.5)
Or the conductivity of oxide superconductors, etc., which has recently been attracting attention
There is a thin oxide film.

【0015】なお、酸化物超伝導薄膜としては一般式;
(La1-x 2 CuO4-d(M=Ba,Sr,C
a,x=0〜1、0<d<1)で表わされるLa―Sr
―Cu―O系超伝導体、一般式;LnBa2 Cu3
7-d(Ln=Y,La,Nd,Sm,Eu,Gd,D
y,Ho,Er,Tm,Yb,Lu,O<d<1)で表
わされるY―Ba―Cu―O系超伝導体、一般式;Bi
2 Sr2 Can-1 Cun 2n +4(n=1,2,3)で表
わされるBi―Sr―Ca―Cu―O系超伝導体、一般
式;Tl2 Ba2 Can-1 Cun 2n+4(n=1,2,
3)で表わされるTl―Ba―Ca―Cu―O系超伝導
体等の薄膜が挙げられる。
The oxide superconducting thin film has the general formula;
(La 1-x M x ) 2 CuO 4-d (M = Ba, Sr, C
a, x = 0 to 1, La-Sr represented by 0 <d <1)
-Cu-O superconductor, general formula; LnBa 2 Cu 3 O
7-d (Ln = Y, La, Nd, Sm, Eu, Gd, D
y-Ho-Er-Tm-Yb-Lu-Y-Ba-Cu-O-based superconductor represented by O <d <1), general formula: Bi
Bi—Sr—Ca—Cu—O superconductor represented by 2 Sr 2 C n-1 C n O 2n +4 (n = 1, 2, 3), general formula: Tl 2 Ba 2 C an -1 Cu n O 2n + 4 (n = 1, 2,
Examples thereof include thin films of Tl—Ba—Ca—Cu—O based superconductors represented by 3).

【0016】また、本発明に用いる酸素イオン伝導性を
有する固体電解質は酸素イオン伝導性を有するものであ
れば、その種類と材質に特に制限はない。かかる固体電
解質としてはY2 3 ―ZrO2 (YSZ),CaO―
ZrO2 (CSZ),Bi23 ,Bi2 3 ―Y2
3 ,Bi2 3 ―Nb2 5 ,Bi2 3 ―WO3 ,B
2 1-X Cu5.5-1.5x(x=0〜0.5)等が知
られているが、本発明には酸素イオン導電率が大きく、
電子導電率が小さいもので、緻密な構造で、酸素イオン
伝導を示す範囲外の温度では酸素バリヤ性が高いものが
好ましい。かかる点から約400℃以上の温度で酸素イ
オン伝導が可能な、Y2 5 ―ZrO2(YSZ),C
aO―ZrO2 (CSZ)をはじめとする螢石(CaF
2 )型の結晶構造を持つ固体電解質と、約200℃以上
の温度で酸素イオン伝導が可能な、BiV1-x Cu
5.5-1.5x(x=0〜0.5)などの固体電解質が特に望
ましい。
The solid electrolyte having oxygen ion conductivity used in the present invention is not particularly limited in kind and material as long as it has oxygen ion conductivity. As such a solid electrolyte, Y 2 O 3 —ZrO 2 (YSZ), CaO—
ZrO 2 (CSZ), Bi 2 O 3 , Bi 2 O 3 —Y 2 O
3 , Bi 2 O 3 —Nb 2 O 5 , Bi 2 O 3 —WO 3 , B
i 2 V 1-X Cu x O 5.5-1.5x (x = 0 to 0.5) and the like are known, but in the present invention, the oxygen ion conductivity is large,
A substance having a small electronic conductivity, a dense structure, and a high oxygen barrier property at a temperature outside the range showing oxygen ion conduction is preferable. From this point of view, Y 2 O 5 —ZrO 2 (YSZ), C capable of conducting oxygen ions at a temperature of about 400 ° C. or higher.
Fluorite (CaF) including aO-ZrO 2 (CSZ)
2 ) type solid electrolyte with crystal structure and BiV 1-x Cu x O capable of oxygen ion conduction at temperatures above 200 ° C
Solid electrolytes such as 5.5-1.5x (x = 0 to 0.5) are particularly desirable.

【0017】ところで、本発明は前述のように、低温に
おいて導電性酸化物薄膜の製膜と酸素濃度制御を行なえ
るものであり、各種応用特にエレクトロニクスデバイス
の応用に際し高温の製造プロセスが好ましくない前述の
酸化物超伝導薄膜の製造に好ましく適用できるものであ
る。
By the way, as described above, the present invention is capable of forming a conductive oxide thin film and controlling the oxygen concentration at a low temperature, and the high temperature manufacturing process is not preferable for various applications, especially for electronic devices. It can be preferably applied to the production of the oxide superconducting thin film.

【0018】なお、以上の導電性酸化物薄膜及び酸素イ
オン伝導性を有する固体電解質の厚み、大きさ、形状に
特に制限はない。また導電性酸化物薄膜は、単体であっ
ても、デバイスとして形成されたものであっても更には
エレクトロニクスデバイス等の一部として形成されたも
のであっても良い。
The thickness, size and shape of the above-mentioned conductive oxide thin film and solid electrolyte having oxygen ion conductivity are not particularly limited. The conductive oxide thin film may be a single substance, a device formed as a device, or a part of an electronic device or the like.

【0019】以下に本発明の製造方法の手順を説明す
る。まず固体電解質の表面の一部分に固体電解質が雰囲
気との間で酸素を授受できるような多孔質の電極を形成
する。この電極は、電子伝導性を有する導電率の大きい
導電性物質で、化学的に安定なもので多孔質構造のもの
であれば、その種類、形成方法に特に制限はないが、好
ましい例としては白金の多孔構造体が挙げられる。例え
ば、100〜200メッシュ程度の白金網を固体電解質
に力学的に密着させて、多孔質電極として用いることが
できる。
The procedure of the manufacturing method of the present invention will be described below. First, a porous electrode is formed on a part of the surface of the solid electrolyte so that the solid electrolyte can exchange oxygen with the atmosphere. This electrode is a conductive substance having electronic conductivity and high conductivity, and if it is chemically stable and has a porous structure, its type and forming method are not particularly limited, but preferable examples are as follows. A porous structure of platinum is included. For example, a platinum mesh of about 100 to 200 mesh can be mechanically brought into close contact with the solid electrolyte and used as a porous electrode.

【0020】次に先に形成した多孔質電極と接触しない
ような基板上の一部分に無孔質の電極を形成する。この
電極は、電子伝導性のみを有する導電率の大きい導電性
物質で化学的に安定なものであれば、その種類、形成方
法に特に制限はないが、好ましい例としてはPVD,C
VD等の気相堆積法により形成された連続膜からなる白
金電極が挙げられる。
Next, a non-porous electrode is formed on a portion of the substrate that does not come into contact with the previously formed porous electrode. This electrode is not particularly limited in kind and forming method as long as it is a conductive substance having only electronic conductivity and high conductivity and is chemically stable, but preferable examples include PVD and C.
An example of the platinum electrode is a continuous film formed by a vapor deposition method such as VD.

【0021】ところで上述の2種類の電極の形成される
位置は、基板の種類によって2つの場合が考えられる。
その1つは図1に示すように基板にYSZ等の酸素イオ
ン導電性を有する固体電解質基板1を用いた場合であ
る。この場合、多孔質電極2と無孔質電極3は基板の対
向する面にそれぞれ形成される。もう1つは、図2に示
すように基板にSi基板等の酸素イオン伝導性を有さな
い基板4を用いた場合である。この場合、固体電解質薄
膜5をあらかじめ基板表面の一部分にPVD,CVD等
の気相堆積法により形成しておく。そして固体電解質薄
膜5の表面の一部分に接触する位置に多孔質電極2を形
成し、さらに固体電解質薄膜5と同一の面上に、固体電
解質5及び多孔質電極2と接触しないようにこれらから
離れた場所に無孔質電極3が形成される。すなわち、固
体電解質基板1をはさんで基板の両面の一方の面に多孔
質電極2が他方の面に無孔質電極3が配置される場合
と、基板4の片面に両電極2,3が配置される場合の2
つの場合が考えられる。
By the way, there may be two positions where the above-mentioned two types of electrodes are formed, depending on the type of the substrate.
One of them is a case where a solid electrolyte substrate 1 having oxygen ion conductivity such as YSZ is used as the substrate as shown in FIG. In this case, the porous electrode 2 and the non-porous electrode 3 are formed on the opposite surfaces of the substrate, respectively. The other is a case where a substrate 4 having no oxygen ion conductivity such as a Si substrate is used as the substrate as shown in FIG. In this case, the solid electrolyte thin film 5 is previously formed on a part of the substrate surface by a vapor deposition method such as PVD or CVD. Then, the porous electrode 2 is formed at a position in contact with a part of the surface of the solid electrolyte thin film 5, and is separated from these on the same surface as the solid electrolyte thin film 5 so as not to contact the solid electrolyte 5 and the porous electrode 2. The non-porous electrode 3 is formed at the open position. That is, the case where the porous electrode 2 is arranged on one surface of the substrate and the non-porous electrode 3 is arranged on the other surface across the solid electrolyte substrate 1 and the case where both electrodes 2 and 3 are arranged on one surface of the substrate 4 2 when placed
There are two possible cases.

【0022】上述のように両電極2,3を形成したなら
ば、無孔質電極3と多孔質電極2の間に直流電源6をつ
なぎ、真空チャンバー中にセットする。導電性酸化物薄
膜7の製膜は、基板を一定の温度に加熱し、その温度に
保持しつつ、多孔質電極2と無孔質電極3の間に直流電
流を流しながらPVD,CVDなどの気相堆積法を用い
て行なう。この基板温度は導電性酸化物薄膜7では酸素
の注入または放出が可能で、かつ固体電解質1,5では
酸素イオン伝導が可能な温度範囲にあれば特に制限はな
い。この温度は用いる固体電解質1,5、対象となる導
電性酸化物薄膜7の製膜条件等により異なるが通常20
0〜700℃程度の温度範囲にある。
After forming both electrodes 2 and 3 as described above, a DC power source 6 is connected between the nonporous electrode 3 and the porous electrode 2 and set in a vacuum chamber. The conductive oxide thin film 7 is formed by heating the substrate to a constant temperature and maintaining the temperature at that temperature while applying a direct current between the porous electrode 2 and the non-porous electrode 3 such as PVD or CVD. The vapor deposition method is used. The substrate temperature is not particularly limited as long as the conductive oxide thin film 7 can inject or release oxygen and the solid electrolytes 1 and 5 are in a temperature range in which oxygen ion conduction is possible. This temperature varies depending on the solid electrolytes 1 and 5 used, the film forming conditions of the target conductive oxide thin film 7, etc.
It is in the temperature range of 0 to 700 ° C.

【0023】導電性酸化物薄膜7は固体電解質1,5と
無孔質電極3には接触するが、多孔質電極2には接触し
ないような基板1,4上の位置に製膜する。導電性酸化
物薄膜7の製膜方法に特に制限はないが、製膜中多孔質
電極2は酸素を含む雰囲気に接し、雰囲気との間で酸素
をやりとりできるような構成が必要である。たとえば、
基板に固体電解質を用いた図1のような場合には、基板
1の多孔質電極2側の面が大気に接し、導電性酸化物薄
膜7が製膜される反対側の面が真空チャンバー内にある
ようにすれば良い。また酸素イオン伝導性を示さない基
板4を用いた図2のような場合には、基板全体を真空チ
ャンバー内に入れ、酸素を含む雰囲気中で製膜すれば良
い。
The conductive oxide thin film 7 is formed at a position on the substrates 1 and 4 that contacts the solid electrolytes 1 and 5 and the nonporous electrode 3 but does not contact the porous electrode 2. The method for forming the conductive oxide thin film 7 is not particularly limited, but the porous electrode 2 during film formation needs to be in contact with an atmosphere containing oxygen so that oxygen can be exchanged with the atmosphere. For example,
In the case of using a solid electrolyte for the substrate as shown in FIG. 1, the surface of the substrate 1 on the side of the porous electrode 2 is in contact with the atmosphere and the surface on the opposite side on which the conductive oxide thin film 7 is formed is in the vacuum chamber. It should be as in. Further, in the case of using the substrate 4 which does not show the oxygen ion conductivity as shown in FIG. 2, the whole substrate may be placed in a vacuum chamber and the film may be formed in an atmosphere containing oxygen.

【0024】そして、導電性酸化物薄膜7の製膜中に、
膜の酸化の促進が好ましい場合には、直流電源6の陰極
を多孔質電極2に、陽極を無孔質電極3にそれぞれ接続
し、適当な大きさの電流を通電する。すると多孔質電極
2と固体電解質1,5の界面において、雰囲気中の酸素
分子と直流電源6からの電子が反応し酸素イオンが発生
する。この酸素イオンは固体電解質1,5中をイオン伝
導し、導電性酸化物薄膜7が形成される固体電解質1,
5の表面に達し、製膜中の導電性酸化物薄膜7に注入さ
れる。注入された酸素イオンは、無孔質電極2方向に導
電性酸化物薄膜7内をイオン伝導するが、一部の酸素イ
オンは導電性酸化物薄膜7内の酸素欠陥位置に取り込ま
れて周りのイオンと結合する。その際、電子が膜中に放
出されるが、この電子は導電性酸化物薄膜7中を電子伝
導して無孔質電極3を通り直流電源6の陽極に戻る。導
電性酸化物薄膜7に注入された酸素イオンで、上述の酸
素欠陥位置に取り込まれなかったものは、そのまま膜中
をイオン伝導して、導電性酸化物薄膜7と無孔質電極3
が接触する界面において、電子を無孔質電極3に吸収さ
れ、酸素分子となって離脱する。
Then, during the formation of the conductive oxide thin film 7,
When it is desired to accelerate the oxidation of the film, the cathode of the DC power supply 6 is connected to the porous electrode 2 and the anode is connected to the non-porous electrode 3, and an electric current of an appropriate magnitude is applied. Then, at the interface between the porous electrode 2 and the solid electrolytes 1 and 5, oxygen molecules in the atmosphere react with electrons from the DC power source 6 to generate oxygen ions. The oxygen ions are ion-conducted in the solid electrolytes 1 and 5 to form the conductive oxide thin film 7.
It reaches the surface of 5 and is injected into the conductive oxide thin film 7 during film formation. The implanted oxygen ions are ion-conducted in the conductive oxide thin film 7 in the direction of the non-porous electrode 2, but a part of the oxygen ions are taken into oxygen defect positions in the conductive oxide thin film 7 and the surrounding oxygen ions are absorbed. Combines with ions. At that time, electrons are emitted into the film, but the electrons are electron-conducted in the conductive oxide thin film 7, pass through the nonporous electrode 3, and return to the anode of the DC power supply 6. Oxygen ions injected into the conductive oxide thin film 7 that are not taken into the above-mentioned oxygen defect positions are ion-conducted in the film as they are, and the conductive oxide thin film 7 and the nonporous electrode 3
Electrons are absorbed by the non-porous electrode 3 at the interface with which they come into contact with each other, and become an oxygen molecule to be released.

【0025】導電性酸化物薄膜7の種類によっては、製
膜中、膜の酸化をある程度抑制した方が膜質の良いもの
が得られる場合がある。このような場合には、直流電源
6の極性を反転し、前述とは逆の方向に電流を流しなが
ら、導電性酸化物薄膜7の製膜を行なう。すると上述し
た反応の逆反応が進行し、導電性酸化物薄膜7から固体
電解質1,5へ酸素イオンが放出され、導電性酸化物薄
膜7の酸化が抑制される。
Depending on the type of the conductive oxide thin film 7, it may be possible to obtain a film of good quality by suppressing the oxidation of the film to some extent during the film formation. In such a case, the polarity of the DC power supply 6 is reversed, and the conductive oxide thin film 7 is formed while flowing a current in the opposite direction to the above. Then, the reverse reaction of the above-mentioned reaction proceeds, oxygen ions are released from the conductive oxide thin film 7 to the solid electrolytes 1 and 5, and the oxidation of the conductive oxide thin film 7 is suppressed.

【0026】通電する電流の大きさに特に制限はない
が、当然のことではあるが、導電性酸化物薄膜7、固体
電解質1,5及び電極2,3が破壊されない程度の大き
さの範囲内になければならない。
There is no particular limitation on the magnitude of the electric current to be applied, but it goes without saying that the conductive oxide thin film 7, the solid electrolytes 1 and 5 and the electrodes 2 and 3 are not destroyed. Must be in

【0027】導電性酸化物薄膜7の酸化状態は、上記の
ように製膜中に通電する電流の方向と大きさによって制
御される。ところで、製膜終了後さらに導電性酸化物薄
膜7の酸素濃度を制御する必要がある場合には、加熱し
た基板を製膜時の温度から室温に冷却する過程において
も、導電性酸化物薄膜7と固体電解質1,5が共に酸素
イオン伝導する温度範囲では、両者の間で通電すること
によって、酸化物薄膜の酸素濃度を調整し膜質を改善す
ることができ、これを利用することにより、一層正確な
濃度制御が可能となる。
The oxidization state of the conductive oxide thin film 7 is controlled by the direction and magnitude of the current flowing during film formation as described above. By the way, when it is necessary to further control the oxygen concentration of the conductive oxide thin film 7 after completion of the film formation, the conductive oxide thin film 7 can be formed even in the process of cooling the heated substrate from room temperature to room temperature. In the temperature range in which both the solid electrolytes 1 and 5 conduct oxygen ions, the oxygen concentration of the oxide thin film can be adjusted and the film quality can be improved by applying an electric current between the two. Accurate concentration control is possible.

【0028】以上のような手順に従うことによって、目
的とする導電性酸化物薄膜を低温でかつ制御された酸素
濃度で製造することができる。
By following the above procedure, the target conductive oxide thin film can be manufactured at a low temperature and a controlled oxygen concentration.

【0029】以下に本発明の実施例を示す。Examples of the present invention will be shown below.

【0030】[0030]

【実施例1】図3に示すような、レーザーアブレーショ
ンを利用した製膜装置を用いて、Y系酸化物超伝導体の
一種であるSm―Ba―Cu―O薄膜を以下の通り製膜
した。
Example 1 An Sm-Ba-Cu-O thin film, which is a type of Y-based oxide superconductor, was formed as follows using a film forming apparatus using laser ablation as shown in FIG. .

【0031】装置の真空チャンバー8には、YSZセラ
ミックスの円筒管を利用した基板ホルダー9が設置さ
れ、その先端面の基板取着部には15mm×15mm×1mm
の大きさのYSZ(100)単結晶基板10が、マス
ク11を基板ホルダー9に螺着することによってすき間
なく圧着してある。YSZからなる基板ホルダー9の基
板取着部の大気側の面には、多孔質電極12として15
0メッシュの白金網をほぼ全面に亘るように図示省略し
た押圧部材で押圧保持することにより密着させて設け
た。YSZ基板10の露出している表面には、図4に点
線で示す正方形リングの形状、具体的には、外辺が6mm
でリング巾Wが1mmで厚さ150nmの白金連続薄膜か
らなる無孔質電極13をあらかじめレーザーアブレーシ
ョンで形成しておいた。
A substrate holder 9 using a cylindrical tube of YSZ ceramics is installed in the vacuum chamber 8 of the apparatus, and a substrate mounting portion on the tip surface of the substrate holder 9 is 15 mm × 15 mm × 1 mm.
The YSZ (100) single crystal substrate 10 having a size of t is pressure-bonded without any gap by screwing the mask 11 to the substrate holder 9. The porous electrode 12 is formed on the surface of the substrate holder 9 made of YSZ on the atmosphere side.
A platinum mesh of 0 mesh was pressed and held by a pressing member (not shown) so as to cover almost the entire surface so as to be in close contact. On the exposed surface of the YSZ substrate 10, the shape of the square ring shown by the dotted line in FIG. 4, specifically, the outer edge is 6 mm.
Then, the nonporous electrode 13 made of a platinum continuous thin film having a ring width W of 1 mm and a thickness of 150 nm was previously formed by laser ablation.

【0032】真空チャンバー8を排気し、基板加熱ヒー
ター17によって基板ホルダー9を加熱し、YSZ基板
10の露出部分の表面温度を500℃で一定に保つと共
に、図示省略した供給管より真空チャンバー8内で酸素
ガスをフローさせ0.1Torrの圧力に保った。この
ような条件の下、直流電源14の陰極を多孔質電極12
に陽極を無孔質電極13につなぎ、0〜50μAの範囲
で夫々所定の電流Iを流してYSZ基板10側から酸素
イオンを注入させながら、図4に示すようにマスク11
で定められた正方形具体的には8mm×8mmの面積で厚さ
300nmの各通電電流Iに応じた夫々のSm―Ba―
Cu―O薄膜15を、YSZ基板10の露出面上にレー
ザーアブレーションを用いて製膜した。ところで、上述
のような方向に電流を流すと、基板ホルダー9とYSZ
基板10をイオン伝導した酸素イオンがYSZ基板10
と無孔質電極13との界面で酸素ガスに変化して、チャ
ンバー8の圧力が上昇するが、それは0〜50μAの範
囲の通電電流Iでは1×10-7Torr以下であり、製
膜中の酸素分圧(0.1Torr)にはほとんど影響し
なかった。
The vacuum chamber 8 is evacuated, the substrate holder 9 is heated by the substrate heater 17, the surface temperature of the exposed portion of the YSZ substrate 10 is kept constant at 500 ° C., and the inside of the vacuum chamber 8 is supplied from a supply pipe (not shown). Oxygen gas was caused to flow in and maintained at a pressure of 0.1 Torr. Under such conditions, the cathode of the DC power supply 14 is connected to the porous electrode 12
An anode is connected to the non-porous electrode 13 and a predetermined current I is applied in the range of 0 to 50 μA to inject oxygen ions from the YSZ substrate 10 side, and as shown in FIG.
The squares defined in 1. Specifically, each Sm-Ba-corresponding to each conduction current I having an area of 8 mm x 8 mm and a thickness of 300 nm.
The Cu—O thin film 15 was formed on the exposed surface of the YSZ substrate 10 by laser ablation. By the way, when an electric current is applied in the above-mentioned direction, the substrate holder 9 and the YSZ
Oxygen ions that have ion-conducted through the substrate 10 are YSZ substrate 10
At the interface between the non-porous electrode 13 and the non-porous electrode 13, the pressure in the chamber 8 rises, but it is 1 × 10 −7 Torr or less at the energizing current I in the range of 0 to 50 μA. Had little effect on the oxygen partial pressure (0.1 Torr).

【0033】レーザーブレーションは、XeCl(キセ
ノンクロライド)エキシマレーザー(波長308nm)
を石英窓16を通してチャンバー8内に導入して所定速
度で回転するターゲット17に照射し、レーザー出力:
35mJ/パルス、繰返し周波数:20Hz、ターゲッ
ト基板間距離:40mm、ターゲット17の組成:Sm 1
Ba2 Cu3 x の条件で行なった。製膜終了後、通電
を停止すると共にチャンバー8を1気圧の酸素で満た
し、10℃/minの速度で基板を室温に冷却した。
Laser abrasion was performed using XeCl (XeCl
Non-chloride) Excimer laser (wavelength 308nm)
Is introduced into the chamber 8 through the quartz window 16
Irradiate the target 17 rotating at a degree, laser output:
35 mJ / pulse, repetition frequency: 20 Hz, target
G Distance between substrates: 40 mm, composition of target 17: Sm 1
Ba2Cu3OxIt was performed under the conditions of. After film formation, energize
Stop and fill chamber 8 with 1 atm of oxygen.
Then, the substrate was cooled to room temperature at a rate of 10 ° C./min.

【0034】得られた夫々のSm―Ba―Cu―O薄膜
15について、X線回折パターンの通電電流Iに対する
変化を測定したところ図5のようになった。図から明ら
かなように、電流値によってX線回折パターンが顕著に
変化した。図5から超伝導相であるSm1 Ba2 Cu3
7-d相の(110)ピーク強度を測定し、通電電流に
対する単位膜厚当りの(110)ピーク強度の変化を求
めたところ、図6のようになり、I=5μAにおいて
(110)のピーク強度が最も強くなっていることがわ
かった。またSm―Ba―Cu―O薄膜15の抵抗率の
温度変化を直流四端子法で測定したところ、いずれのサ
ンプルも超伝導状態が得られなかった。そこで通電電流
に対する室温の抵抗率の変化を求めたところ、図7のよ
うにI=5μAで抵抗率が最も小さくなった。図6と図
7を比較すると(110)のピーク強度が強いほど室温
の抵抗率が小さくなる傾向がみられた。ところでSm―
Ba―Cu―O薄膜15の金属元素の組成を蛍光X線法
で求めたところ、組成に変化はみられなかったが、X線
回折パターンよりC軸の長さを測定し膜中の酸素濃度を
推定したところ、I=5〜10μAで最も高くなった。
For each of the obtained Sm-Ba-Cu-O thin films 15, the change in the X-ray diffraction pattern with respect to the applied current I was measured, and the result was as shown in FIG. As is clear from the figure, the X-ray diffraction pattern remarkably changed depending on the current value. From FIG. 5, Sm 1 Ba 2 Cu 3 which is a superconducting phase
The (110) peak intensity of the O 7-d phase was measured, and the change in the (110) peak intensity per unit film thickness with respect to the applied current was obtained. The result is as shown in FIG. 6, and at I = 5 μA, the (110) It was found that the peak intensity was the strongest. Further, when the temperature change of the resistivity of the Sm-Ba-Cu-O thin film 15 was measured by the DC four-terminal method, no superconducting state was obtained in any of the samples. Then, when the change in the resistivity at room temperature with respect to the applied current was obtained, the resistivity was smallest at I = 5 μA as shown in FIG. Comparing FIG. 6 and FIG. 7, it was observed that the higher the peak intensity of (110), the smaller the resistivity at room temperature. By the way Sm-
When the composition of the metal element of the Ba—Cu—O thin film 15 was determined by the fluorescent X-ray method, the composition did not change, but the length of the C-axis was measured from the X-ray diffraction pattern and the oxygen concentration in the film was measured. Was estimated to be highest at I = 5 to 10 μA.

【0035】Sm1 Ba2 Cu3 7-dをはじめとする
Y系超伝導体は、超伝導相の割合が大きいほど、あるい
は酸素濃度が高いほど、抵抗率の絶対値が小さくなるこ
とが知られている。従って図5、図6のX線回折の結果
と図7の抵抗率の結果を総合すると、I=5〜10μA
程度の電流を流し、酸素イオンを電気化学的に注入しな
がらSm―Ba―Cu―O薄膜15を製膜することによ
って、膜中のSm1 Ba2 Cu3 7-d超伝導相の割合
が増加したものと推定される。
In the Y-based superconductors such as Sm 1 Ba 2 Cu 3 O 7-d , the absolute value of the resistivity becomes smaller as the ratio of the superconducting phase increases or the oxygen concentration increases. Are known. Therefore, when the results of the X-ray diffraction of FIGS. 5 and 6 and the results of the resistivity of FIG. 7 are combined, I = 5 to 10 μA
The Sm 1 Ba 2 Cu 3 O 7-d superconducting phase in the film is formed by forming a Sm-Ba-Cu-O thin film 15 while applying a current of about 40% and electrochemically injecting oxygen ions. Is estimated to have increased.

【0036】[0036]

【実施例2】図3の装置を用い、レーザーアブレーショ
ンの条件を、レーザー出力:300mJ/パルス、くり
返し周波数:3Hz、ターゲット基板間距離:60mm、
ターゲット組成:Sm1 Ba2.24Cu3.74、チャン
バー内酸素分圧:0.3Torrに変更し、白金無孔質
電極13を形成したYSZ基板10上に実施例1と同様
に所定の電流を流して酸素イオンを注入しながら、48
0℃の基板温度で、Sm―Ba―Cu―O薄膜15を製
膜した。製膜終了後通電を停止し、チャンバー8を1気
圧の酸素で満たし、10℃/minの速度で450℃ま
で冷却し、450℃で30分間温度を保持して後、再び
10℃/minの速度で室温まで冷却した。その結果、
電流Iが0の場合(ケース1)にくらべて、1μAの電
流Iを通電すること(ケース2)によって、図8のX線
回折パターンのC軸方向結晶軸(003),(006)
のピークの変化からわかるように、超伝導相のC軸配向
が強くなると共に、室温の抵抗率が300mΩ・cmか
ら20mΩ・cmに減少した。
Example 2 Using the apparatus shown in FIG. 3, the laser ablation conditions were laser output: 300 mJ / pulse, repetition frequency: 3 Hz, target substrate distance: 60 mm,
Target composition: Sm 1 Ba 2.24 Cu 3.74 O x , oxygen partial pressure in chamber: 0.3 Torr was changed, and a predetermined current was applied to the YSZ substrate 10 on which the platinum non-porous electrode 13 was formed as in Example 1. While injecting oxygen ions,
The Sm-Ba-Cu-O thin film 15 was formed at a substrate temperature of 0 ° C. After film formation, the energization is stopped, the chamber 8 is filled with oxygen at 1 atm, cooled to 450 ° C. at a rate of 10 ° C./min, the temperature is held at 450 ° C. for 30 minutes, and then again at 10 ° C./min. Cool to room temperature at a rate. as a result,
Compared to the case where the current I is 0 (case 1), a current I of 1 μA is applied (case 2), so that the crystal axes (003), (006) in the C-axis direction of the X-ray diffraction pattern of FIG.
As can be seen from the change in the peak of, the C-axis orientation of the superconducting phase became stronger and the resistivity at room temperature decreased from 300 mΩ · cm to 20 mΩ · cm.

【0037】しかしI=0,1μAいずれの場合も抵抗
率の温度変化は半導体的で超伝導状態は得られなかっ
た。そこで上述のケース2のI=1μAの場合と全く同
じ条件でSm―Ba―Cu―O薄膜15を製膜すると共
に、上述と同様のチャンバー8の酸素ガスによるリーク
および冷却操作中においても、製膜中と同様に、Sm―
Ba―Cu―O薄膜15とYSZからなる基板ホルダー
9及び基板10が酸素イオン伝導する間は、I=1μA
の電流を流し酸素イオンの注入を続けた(ケース3)。
その結果、上述のI=1μAのケース2の場合と同じX
線回折パターンが得られと共に、室温抵抗率が20mΩ
・cmから8mΩ・cmに減少した。抵抗率の温度変化
を測定したところ、半導体的な温度変化を示したが、T
c=10Kの超伝導特性が得られた。また実施例1と同
様にして、螢光X線法及びX線回折法によりSm―Ba
―Cu―O薄膜15の金属元素の組成と酸素濃度を求め
たところ、金属元素の組成に変化はみられなかったが、
酸素濃度はケース1<ケース2<ケース3のようにケー
ス3が最も高くなっていた。
However, when I = 0 or 1 μA, the change in resistivity with temperature was semiconductor-like and a superconducting state was not obtained. Therefore, the Sm-Ba-Cu-O thin film 15 is formed under exactly the same conditions as in the case 2 above where I = 1 μA, and even during the leak and cooling operation by the oxygen gas in the chamber 8 similar to the above. As in the film, Sm-
While the substrate holder 9 and the substrate 10 made of the Ba—Cu—O thin film 15 and YSZ conduct oxygen ion, I = 1 μA
And the oxygen ion implantation was continued (Case 3).
As a result, the same X as in case 2 of I = 1 μA described above is obtained.
A line diffraction pattern is obtained and room temperature resistivity is 20 mΩ.
・ It decreased from cm to 8 mΩ ・ cm. When the temperature change of the resistivity was measured, it showed a semiconductor-like temperature change.
A superconducting property of c = 10K was obtained. Further, in the same manner as in Example 1, Sm-Ba was measured by the fluorescent X-ray method and the X-ray diffraction method.
When the composition of the metal element and the oxygen concentration of the —Cu—O thin film 15 were obtained, no change was observed in the composition of the metal element.
The oxygen concentration was highest in case 3 as in case 1 <case 2 <case 3.

【0038】酸化物超伝導薄膜を得るためには、従来の
いずれの製膜法を用いても、通常600℃以上の基板温
度が必要とされている。しかしながら、本製造方法を用
いることによって、480℃という低い基板温度におい
ても超伝導薄膜を得ることが可能となった。
In order to obtain an oxide superconducting thin film, a substrate temperature of 600 ° C. or higher is usually required regardless of any conventional film forming method. However, by using this manufacturing method, a superconducting thin film can be obtained even at a substrate temperature as low as 480 ° C.

【0039】[0039]

【実施例3】次に酸素イオン伝導性を有さない基板を用
いてSm―Ba―Cu―O薄膜を製膜した場合の実施例
を図9、図10により説明する。
[Embodiment 3] Next, an embodiment in which an Sm-Ba-Cu-O thin film is formed using a substrate having no oxygen ion conductivity will be described with reference to FIGS. 9 and 10.

【0040】30mm×20mm×0.3mmの大きさのS
i(111)単結晶基板18を平板状の基板加熱ヒータ
ーを内蔵した基板ホルダー19の上に乗せ、製膜装置の
中に図9のようにセットした。製膜装置は図3に示す実
施例1、2で用いたものと基本的に同じのレーザーアブ
レーションを利用した装置であるが、実施例1、2とは
基板ホルダー部分の配置が異なり、図9に示されるよう
に、図3のYSZ円筒管を用いた基板ホルダー9の位置
に前述のSi基板18を乗せた基板ホルダー19がセッ
トされ、図3と全く同様にその上部にあるターゲット
(図示省略)から、レーザーアブレーションにより薄膜
を堆積した。
S having a size of 30 mm × 20 mm × 0.3 mm t
The i (111) single crystal substrate 18 was placed on a substrate holder 19 having a flat plate substrate heater incorporated therein, and set in a film forming apparatus as shown in FIG. The film forming apparatus is basically the same as the one used in Examples 1 and 2 shown in FIG. 3 using laser ablation, but the arrangement of the substrate holder portion is different from those in Examples 1 and 2, and the film forming apparatus shown in FIG. As shown in FIG. 3, the substrate holder 19 on which the above-mentioned Si substrate 18 is placed is set at the position of the substrate holder 9 using the YSZ cylindrical tube in FIG. ), A thin film was deposited by laser ablation.

【0041】まず、Si基板18上に20mm×10mmの
大きさで厚さ1000nmのYSZ薄膜20と、20mm
×7.5mmの大きさで厚さ150nmの白金無孔質電極
13を図9、図10に示すような両者がSi基板18の
両端に位置する配置で、互いに接触しないようにそれぞ
れ図示の所定形状にマスク方式により形成した。これら
の製膜の際の基板温度は、YSZ薄膜20の場合が30
0℃、白金無孔質電極13の場合が100℃であった。
First, a YSZ thin film 20 having a size of 20 mm × 10 mm and a thickness of 1000 nm and a thickness of 20 mm are formed on a Si substrate 18.
The non-porous platinum electrodes 13 each having a size of 7.5 mm and a thickness of 150 nm are arranged at both ends of the Si substrate 18 as shown in FIGS. The shape was formed by a mask method. The substrate temperature at the time of forming these films is 30 in the case of the YSZ thin film 20.
The temperature was 0 ° C. and 100 ° C. in the case of the platinum nonporous electrode 13.

【0042】次に15mm×3.5mmの面積で150メッ
シュの白金網を、白金多孔質電極12として、YSZ薄
膜20の表面の図10に示すような位置図示省略したホ
ルダーにより窓着した。実施例1、2と同様に、真空チ
ャンバー8の外に直流電源14を置き、その陰極と多孔
質電極12を接続し、その陽極と無孔質電極13を接続
した。
Next, a platinum net of 150 mesh having an area of 15 mm × 3.5 mm was windowed as a platinum porous electrode 12 on the surface of the YSZ thin film 20 by a holder (not shown) as shown in FIG. As in Examples 1 and 2, a DC power supply 14 was placed outside the vacuum chamber 8, the cathode and the porous electrode 12 were connected, and the anode and the nonporous electrode 13 were connected.

【0043】以上の通り準備を行なった後、両電極1
2,13間に1μAの電流を流して酸素イオンを注入し
なが、17.5mm×10mmの大きさで厚さ600nmの
Sm―Ba―Cu―O薄膜15をレーザーアブレーショ
ンを用いて製膜し、通電を行なわず製膜したSm―Ba
―Cu―O薄膜と比較した。ただしこの場合は、実施例
1、2とは異なり、Sm―Ba―Cu―O薄膜15が形
成されないと通電は行なえないので、直流電源の印加電
圧を14Vに設定し、電流ゼロの状態で製膜を開始し
た。すると製膜が進むにつれて電流が流れるようにな
り、1μA流れるようになったところで電流を一定に、
そのまま製膜を続けた。Sm―Ba―Cu―O薄膜15
は、図9、図10に示すように、YSZ薄膜20、Si
基板18、白金無孔質電極13にはそれぞれ接触する
が、白金多孔質電極12には接触しないようなSi基板
18上の位置に製膜した。また製膜は、基板温度:48
0℃、チャンバー内酸素分圧:0.3Torr、レーザ
ー出力:300mJ/パルス、繰り返し周波数:3H
z、ターゲット基板間距離:60mmのような条件で行な
い、製膜終了後、真空チャンバー8を1気圧の酸素ガス
で満たし、実施例2と同じ冷却条件で、室温まで冷却し
た。なお、1μAで安定するように通電を行ないながら
製膜した場合は、製膜終了後も通電を止めず、冷却過程
においてもSm―Ba―Cu―O薄膜15とYSZ薄膜
20が共に酸素イオン伝導する温度範囲では、そのまま
1μAの通電を行ない、YSZ薄膜20からSm―Ba
―Cu―O薄膜15へ酸素イオンを注入し続け、酸素濃
度の制御を行なった。
After preparing as described above, both electrodes 1
A current of 1 μA was passed between 2 and 13 to implant oxygen ions, but an Sm-Ba-Cu-O thin film 15 of 17.5 mm x 10 mm and a thickness of 600 nm was formed by laser ablation. , Sm-Ba formed into a film without energization
-Compared with Cu-O thin film. However, in this case, unlike Embodiments 1 and 2, energization cannot be performed unless the Sm-Ba-Cu-O thin film 15 is formed. Therefore, the applied voltage of the DC power supply is set to 14 V, and the current is zero. The membrane was started. Then, as the film formation progresses, the current starts to flow, and when the current reaches 1 μA, the current is kept constant,
The film formation was continued as it was. Sm-Ba-Cu-O thin film 15
As shown in FIGS. 9 and 10, the YSZ thin film 20, Si
A film was formed at a position on the Si substrate 18 that was in contact with the substrate 18 and the platinum nonporous electrode 13 but did not contact the platinum porous electrode 12. In addition, the film is formed at a substrate temperature of 48
0 ° C, oxygen partial pressure in chamber: 0.3 Torr, laser output: 300 mJ / pulse, repetition frequency: 3H
z, distance between target substrates: 60 mm, and after film formation, the vacuum chamber 8 was filled with oxygen gas at 1 atm and cooled to room temperature under the same cooling conditions as in Example 2. In addition, when the film is formed while the current is being supplied so as to be stable at 1 μA, the current is not stopped even after the film is formed, and the Sm-Ba-Cu-O thin film 15 and the YSZ thin film 20 both have oxygen ion conductivity during the cooling process. In the temperature range to be applied, the current of 1 μA is applied as it is, and the YSZ thin film 20 moves to Sm-Ba.
The oxygen concentration was controlled by continuously injecting oxygen ions into the —Cu—O thin film 15.

【0044】また、比較のため通電をしないことを除い
ては全く同じようにしてSm―Ba―Cu―O薄膜15
を作成した。
For comparison, the Sm-Ba-Cu-O thin film 15 was prepared in the same manner except that no current was applied.
It was created.

【0045】通電の有無による、Sm―Ba―Cu―O
薄膜15の膜質の変化を調べたところ、螢光X線法で測
定した膜中の金属元素の組成に差異はみられなかった
が、X線回折のパターンは第8図と同様、1μAの通電
を行なって製膜すると、結晶のC軸が膜面垂直方向に配
向する結果が得られた。また抵抗率の温度変化を測定し
たところ、通電を行なわなかった膜は半導体的で、超伝
導状態は得られなかったが、通電を行なった膜は抵抗率
の絶対値が2桁小さくなり、Tc=8Kの超伝導特性が
得られた。
Sm-Ba-Cu-O depending on the presence or absence of energization
When the change in the film quality of the thin film 15 was examined, no difference was found in the composition of the metal elements in the film measured by the fluorescent X-ray method, but the X-ray diffraction pattern was the same as in FIG. When the film was formed by carrying out, the result that the C axis of the crystal was oriented in the direction perpendicular to the film surface was obtained. When the change in resistivity with temperature was measured, the film that was not energized was semiconductor-like, and a superconducting state was not obtained, but the film that was energized had an absolute value of the resistivity decreased by two orders of magnitude. = 8K superconducting properties were obtained.

【0046】以上のように、Si基板のように酸素イオ
ン伝導性を有さないが、半導体等のエレクトロニクスデ
バイスに広く使用されている基板上においても、本製造
方法によって、500℃以下の低温プロセスで、酸化物
超伝導薄膜を製造することが可能となった。
As described above, even on a substrate which does not have oxygen ion conductivity like a Si substrate but is widely used for electronic devices such as semiconductors, the present manufacturing method allows a low temperature process of 500 ° C. or less. Now, it is possible to manufacture an oxide superconducting thin film.

【0047】[0047]

【発明の効果】以上の通り本発明は酸素イオンを電気化
学的に注入または放出しながら導電性酸化物薄膜を製膜
することにより、従来の製造方法では困難であった低温
の基板温度での製膜を可能にするものであり、超伝導薄
膜をはじめ多方面への応用が期待できる工業上非常に有
用なものである。
INDUSTRIAL APPLICABILITY As described above, the present invention forms a conductive oxide thin film while electrochemically injecting or releasing oxygen ions, so that it is possible to achieve a low substrate temperature which has been difficult by the conventional manufacturing method. It enables film formation, and is very useful industrially, which can be expected to be applied to various fields including superconducting thin films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する場合の要部基本構成の説明図
である。
FIG. 1 is an explanatory diagram of a basic configuration of a main part when implementing the present invention.

【図2】本発明を実施する場合の要部基本構成の説明図
である。
FIG. 2 is an explanatory diagram of a basic configuration of a main part when the present invention is implemented.

【図3】実施例1、2に用いた製膜装置の構成の説明図
である。
FIG. 3 is an explanatory diagram of a configuration of a film forming apparatus used in Examples 1 and 2.

【図4】実施例1、2に用いた無孔質電極の説明図であ
る。
FIG. 4 is an explanatory diagram of a non-porous electrode used in Examples 1 and 2.

【図5】実施例1で得られた膜のX線回折のグラフで、
横軸はX線回折角の2倍の値[単位は度(deg.)]
で、縦軸はX線回折強度(任意単位)である。
5 is a graph of X-ray diffraction of the film obtained in Example 1, FIG.
The horizontal axis is the value twice the X-ray diffraction angle [unit is degree (deg.)].
The vertical axis represents the X-ray diffraction intensity (arbitrary unit).

【図6】実施例1における製膜時の通電電流(μA)と
得られた膜の(110)X線回折ピークの単位膜厚当た
りの強度(任意単位)の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the applied current (μA) during film formation and the intensity (arbitrary unit) per unit film thickness of the (110) X-ray diffraction peak of the obtained film in Example 1.

【図7】実施例1における製膜時の通電電流(μA)と
得られた膜の室温における電気抵抗率(mΩ・cm)の
関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the applied current (μA) during film formation and the electrical resistivity (mΩ · cm) of the obtained film at room temperature in Example 1.

【図8】実施例2で得られた膜のX線回折のグラフで、
各軸は図5と同じである。
8 is a graph of X-ray diffraction of the film obtained in Example 2,
Each axis is the same as in FIG.

【図9】実施例3に用いた製膜装置の要部構成の説明図
である。
FIG. 9 is an explanatory diagram of a main part configuration of a film forming apparatus used in Example 3.

【図10】実施例3に用いた基板の電極配置の説明図で
ある。
FIG. 10 is an explanatory diagram of electrode arrangement on the substrate used in Example 3;

【符号の説明】 1 :固体電解質基板 2 :多孔質電極 3 :無孔質電極 4 :酸素イオン伝導性を有さない基板 5 :固体電解質薄膜 6 :直流電源 7 :導電性酸化物薄膜 8 :真空チャンバー 9 :基板ホルダー 10:YSZ(100)単結晶基板 11:基板マスク 12:多孔質電極 13:無孔質電極 14:直流電源 15:Sm―Ba―Cu―O薄膜 16:石英窓 17:基板加熱ヒーター 18:Si(111)単結晶基板 19:基板ホルダー 20:YSZ薄膜[Explanation of symbols] 1: solid electrolyte substrate 2: porous electrode 3: non-porous electrode 4: substrate having no oxygen ion conductivity 5: solid electrolyte thin film 6: direct current power supply 7: conductive oxide thin film 8: Vacuum chamber 9: Substrate holder 10: YSZ (100) single crystal substrate 11: Substrate mask 12: Porous electrode 13: Nonporous electrode 14: DC power supply 15: Sm-Ba-Cu-O thin film 16: Quartz window 17: Substrate heating heater 18: Si (111) single crystal substrate 19: Substrate holder 20: YSZ thin film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 気相堆積法により導電性酸化物薄膜を製
造するに際し、酸素イオンを電気化学的手段により、形
成される薄膜へ注入または該薄膜から放出させながら製
膜を行なうことを特徴とする導電性酸化物薄膜の製造方
法。
1. A method for producing a conductive oxide thin film by a vapor deposition method, characterized in that oxygen ion is injected into or released from the thin film to be formed by an electrochemical means to form the film. Method for producing a conductive oxide thin film.
【請求項2】 前記電気化学的手段が酸素イオン伝導性
を有する固体電解質を用いた電気化学的手段である請求
項1記載の導電性酸化物薄膜の製造方法。
2. The method for producing a conductive oxide thin film according to claim 1, wherein the electrochemical means is an electrochemical means using a solid electrolyte having oxygen ion conductivity.
【請求項3】 前記固体電解質を基板とし、該基板上に
導電性酸化物薄膜を製膜する請求項1または請求項2記
載の導電性酸化物薄膜の製造方法。
3. The method for producing a conductive oxide thin film according to claim 1, wherein the solid electrolyte is used as a substrate, and a conductive oxide thin film is formed on the substrate.
【請求項4】 導電性酸化物薄膜の堆積部の少なくとも
一部分に前記固体電解質の薄膜を形成した基材を基板と
し、その堆積部に導電性酸化物薄膜を堆積させる請求項
2記載の導電性酸化物薄膜の製造方法。
4. The conductive material according to claim 2, wherein the base material having the thin film of the solid electrolyte formed on at least a part of the deposited portion of the conductive oxide thin film serves as a substrate, and the conductive oxide thin film is deposited on the deposited portion. Method for manufacturing oxide thin film.
【請求項5】 前記基材がシリコン基板等の半導体用基
板である請求項4記載の導電性酸化物薄膜の製造方法。
5. The method for producing a conductive oxide thin film according to claim 4, wherein the base material is a semiconductor substrate such as a silicon substrate.
【請求項6】 製膜後、更に電気化学的手段により酸素
イオンを導電性酸化物薄膜に注入または導電性酸化物薄
膜から放出させることにより、導電性酸化物薄膜の酸素
濃度を制御する請求項1〜請求項5記載のいずれかの導
電性酸化物薄膜の製造方法。
6. The oxygen concentration of the conductive oxide thin film is controlled by further injecting oxygen ions into the conductive oxide thin film or releasing it from the conductive oxide thin film by electrochemical means after the film formation. The method for producing a conductive oxide thin film according to claim 1.
【請求項7】 前記導電性酸化物薄膜の酸素濃度の制御
を、製膜後の冷却過程で行なう請求項6記載の導電性酸
化物薄膜の製造方法。
7. The method for producing a conductive oxide thin film according to claim 6, wherein the oxygen concentration of the conductive oxide thin film is controlled in a cooling process after the film formation.
【請求項8】 前記導電性酸化物薄膜が酸化物超伝導薄
膜である請求項1〜請求項7記載のいずれかの導電性酸
化物薄膜の製造方法。
8. The method for producing a conductive oxide thin film according to claim 1, wherein the conductive oxide thin film is an oxide superconducting thin film.
JP16094392A 1992-06-19 1992-06-19 Production of conductive oxide thin film Pending JPH061608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16094392A JPH061608A (en) 1992-06-19 1992-06-19 Production of conductive oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16094392A JPH061608A (en) 1992-06-19 1992-06-19 Production of conductive oxide thin film

Publications (1)

Publication Number Publication Date
JPH061608A true JPH061608A (en) 1994-01-11

Family

ID=15725577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16094392A Pending JPH061608A (en) 1992-06-19 1992-06-19 Production of conductive oxide thin film

Country Status (1)

Country Link
JP (1) JPH061608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516181A4 (en) * 2014-10-08 2016-03-15 Weber Hydraulik Gmbh hydraulic power unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516181A4 (en) * 2014-10-08 2016-03-15 Weber Hydraulik Gmbh hydraulic power unit
AT516181B1 (en) * 2014-10-08 2016-03-15 Weber Hydraulik Gmbh hydraulic power unit

Similar Documents

Publication Publication Date Title
US4912087A (en) Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
US5316585A (en) Method for fabricating superconducting materials and superconductive thin films
US4963524A (en) Sputtering device for manufacturing superconducting oxide material and method therefor
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
JPH061608A (en) Production of conductive oxide thin film
KR920007799B1 (en) Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its
JPH0825742B2 (en) How to make superconducting material
US5225396A (en) Method for forming an oxide superconducting film
EP0349341A2 (en) Method of improving and/or producing oxide superconductor
JP3037358B2 (en) Manufacturing method of oxide superconductor and oxide superconductor laminate
JP2583552B2 (en) Method for producing oxide superconducting thin film
US5252390A (en) Laminated film
US5441623A (en) Sputtering apparatus for making high temperature superconducting oxide films
JP2815382B2 (en) Conductive oxide laminate
JP2742418B2 (en) Method for producing oxide superconducting thin film
KR970009739B1 (en) Method of manufacture for superconductor thin film
JPH04193703A (en) Production of superconducting thin film
JPH01188677A (en) Production of superconducting thin film
Bian et al. Solid‐State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH0196015A (en) Formation of superconducting thin film
JP2868526B2 (en) Method and apparatus for producing thin layer of oxide high-temperature superconductor
JP3169278B2 (en) Thin film forming method and thin film forming apparatus
JPH02133316A (en) Production of superconducting material
JPH0280302A (en) Production of electroconductive oxide