JP2815382B2 - Conductive oxide laminate - Google Patents

Conductive oxide laminate

Info

Publication number
JP2815382B2
JP2815382B2 JP1065891A JP6589189A JP2815382B2 JP 2815382 B2 JP2815382 B2 JP 2815382B2 JP 1065891 A JP1065891 A JP 1065891A JP 6589189 A JP6589189 A JP 6589189A JP 2815382 B2 JP2815382 B2 JP 2815382B2
Authority
JP
Japan
Prior art keywords
conductive oxide
oxygen
solid electrolyte
laminate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1065891A
Other languages
Japanese (ja)
Other versions
JPH02191381A (en
Inventor
希男 石亀
浩雄 湯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1065891A priority Critical patent/JP2815382B2/en
Publication of JPH02191381A publication Critical patent/JPH02191381A/en
Application granted granted Critical
Publication of JP2815382B2 publication Critical patent/JP2815382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物超伝導体等の導電性酸化物の酸素濃
度を定量的に制御でき、更には固定することができる導
電性酸化物積層体に関する。
Description: TECHNICAL FIELD The present invention relates to a conductive oxide which can quantitatively control and further fix the oxygen concentration of a conductive oxide such as an oxide superconductor. It relates to a laminate.

(従来の技術) 導電性酸化物は、センサー、バリスター等のエレクロ
トニクスデバイスへの応用が期待されている。中でも酸
化物超伝導体は、各種応用が期待され、多くの注目を集
めている。一方、これら導電性酸化物の物性は酸化物中
の酸素濃度に大きく依存しており、導電性酸化物を応用
するためには、その酸素濃度を精密かつ安定に制御し、
固定することが必要と言われている。
(Conventional technology) Conductive oxides are expected to be applied to electronic devices such as sensors and varistors. Above all, oxide superconductors are expected to be used in various applications and have received much attention. On the other hand, the physical properties of these conductive oxides greatly depend on the oxygen concentration in the oxide, and in order to apply conductive oxides, the oxygen concentration must be precisely and stably controlled.
It is said that it is necessary to fix.

従来から行なわれている、導電性酸化物の酸素濃度の
制御方法としては、廃棄または酸素雰囲気中における熱
酸化法と、スパッタリングやCVDを用いた酸素プラズマ
による酸化法が一般的である。前者はバルクや厚膜の導
電性酸化物の酸素濃度制御に、後者は薄膜の導電性酸化
物の酸素濃度制御に主として用いられている。
As a conventional method of controlling the oxygen concentration of a conductive oxide, a thermal oxidation method in a waste or in an oxygen atmosphere, and an oxidation method by oxygen plasma using sputtering or CVD are generally used. The former is mainly used for controlling the oxygen concentration of a bulk or thick-film conductive oxide, and the latter is mainly used for controlling the oxygen concentration of a thin-film conductive oxide.

また、導電性酸化物の酸素濃度の固定方法としては、
酸素濃度を制御した後、酸化物を酸素バリヤ性の高い材
料で被覆することが最も一般的に行なわれている。
Further, as a method of fixing the oxygen concentration of the conductive oxide,
After controlling the oxygen concentration, it is most common to coat the oxide with a material having a high oxygen barrier property.

(発明が解決しようとしている問題点) 熱酸化法を用いて導電性酸化物の酸素濃度を制御する
場合、導電性酸化物の種類によっては高温に、例えば酸
化物超伝導体では800〜1000℃程度の高温に加熱しなけ
ればならないので、その導電性酸化物をエレクトロニク
スデバイスなどに応用するのが困難な場合がある。ま
た、酸素プラズマによる酸化法を用いた場合、プラズマ
の状態により導電性酸化物の酸素濃度は大きく変化する
ので、応用を目的として、所定の酸素濃度を持った導電
性酸化物を再現性良く得ようとするならば、プラズマの
状態を常に厳密に制御する必要があり、実際上困難な場
合が多い。さらに、これらの酸素濃度制御法では、導電
性酸化物中に取込まれた酸素の量を定量的に評価するこ
とが難しい。
(Problems to be Solved by the Invention) When the oxygen concentration of the conductive oxide is controlled by using a thermal oxidation method, depending on the type of the conductive oxide, the temperature is high, for example, 800 to 1000 ° C. for the oxide superconductor. Since the conductive oxide must be heated to such a high temperature, it may be difficult to apply the conductive oxide to electronic devices and the like. In addition, when the oxidation method using oxygen plasma is used, the oxygen concentration of the conductive oxide changes greatly depending on the state of the plasma. Therefore, for the purpose of application, a conductive oxide having a predetermined oxygen concentration can be obtained with good reproducibility. If so, the state of the plasma must always be strictly controlled, which is often difficult in practice. Further, with these oxygen concentration control methods, it is difficult to quantitatively evaluate the amount of oxygen taken into the conductive oxide.

また、導電性酸化物の酸素濃度を固定するために、酸
素濃度を制御した後、その表面を酸素バリヤ性の高い材
料で被覆した場合、被覆する過程で酸素濃度が変化して
しまう恐れがある。
Further, if the surface is coated with a material having a high oxygen barrier property after controlling the oxygen concentration to fix the oxygen concentration of the conductive oxide, the oxygen concentration may be changed in the coating process. .

以上の通り、導電性酸化物の酸素濃度を正確に制御で
きる手段はいまだなく、またその酸素濃度を安定に保持
できる手段もないのが現状である。
As described above, at present, there is no means capable of accurately controlling the oxygen concentration of the conductive oxide, and no means capable of stably maintaining the oxygen concentration.

本発明はかかる現状に鑑みてなされたもので、導電性
酸化物の酸素濃度が正確に制御でき、またその経時変化
に対しても容易に再調整できる導電性酸化物積層体を第
1の目的とし、正確に制御された酸素濃度を安定に保持
できる、特性の長期安定性に優れた導電性酸化物積層体
を第2の目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a conductive oxide laminate in which the oxygen concentration of the conductive oxide can be accurately controlled, and which can be easily readjusted even with its aging. A second object of the present invention is to provide a conductive oxide laminate which can stably maintain an accurately controlled oxygen concentration and has excellent long-term stability of characteristics.

(発明の構成及び作用) 前述の目的は以下の本発明により達成される。(Structure and Function of the Invention) The above-mentioned object is achieved by the present invention described below.

すなわち本発明は、導電性酸化物と酸素イオン伝導性
を有する固体電解質とを積層した積層体からなり、固体
電解質を介して導電性酸化物の酸素濃度を制御するよう
にした導電性酸化物積層体において、該積層体の固体電
解質側の外面に導電性酸化物に対向するように酸素を通
しイオン化又は消イオンする電極を、その導電性酸化物
側の外面に酸素が透過できない酸素バリア性の電極を設
けると共に、該導電性酸化物を露出部が無いように酸素
が透過できない酸素バリヤー層で被覆したことを特徴と
する導電性酸化物積層体である。
That is, the present invention provides a conductive oxide laminate comprising a laminate in which a conductive oxide and a solid electrolyte having oxygen ion conductivity are laminated, and wherein the oxygen concentration of the conductive oxide is controlled via the solid electrolyte. In the body, an electrode that allows oxygen to pass through and ionizes or deionizes the outer surface on the solid electrolyte side of the laminate so as to face the conductive oxide has an oxygen barrier property that does not allow oxygen to permeate the outer surface on the conductive oxide side. A conductive oxide laminate comprising an electrode provided and the conductive oxide covered with an oxygen barrier layer through which oxygen cannot pass so that there is no exposed portion.

上述の本発明は、酸素イオン伝導性を有する固体電解
質と導電性酸化物を積層した積層体は、適当な温度に維
持しながらその積層方向に電圧を印加して電流を流す
と、固体電解質の酸素イオン伝導性により導電性酸化物
の酸素の酸素濃度が調整でき、且つその通電電気量(ク
ーロン量)により酸素濃度を性格に制御できることを見
出し、なされたものである。
The present invention described above is a laminate in which a solid electrolyte having oxygen ion conductivity and a conductive oxide are laminated, and a current is applied by applying a voltage in the laminating direction while maintaining an appropriate temperature. The inventors have found that the oxygen ion conductivity can adjust the oxygen concentration of oxygen in the conductive oxide, and that the oxygen concentration can be precisely controlled by the amount of electric current (coulomb amount).

そして、上述の構成から明らかなように、本発明の積
層体は単に両側に電極を配置して適当な温度に維持しな
がら電流を流すのみでその都度酸素濃度の調整ができ、
定期的に調整すれば長期に亘って安定な特性の維持が可
能であると共に、後述の実施例からも明らかなように低
い温度で調整できるので、素子の一部の導電性酸化物に
も適用できる。なお、定期的調整回復の面からは電極を
積層体に積層固定した構成が好ましい。
And, as is apparent from the above-described configuration, the laminate of the present invention can adjust the oxygen concentration in each case by merely arranging electrodes on both sides and flowing current while maintaining an appropriate temperature.
If it is adjusted periodically, stable characteristics can be maintained over a long period of time, and it can be adjusted at a low temperature as will be apparent from the examples described later. it can. In addition, from the viewpoint of periodic adjustment recovery, a configuration in which the electrodes are laminated and fixed to the laminate is preferable.

ところで、長期安定性面から、上述の本発明におい
て、導電性酸化物に電極を設けた後、導電性酸化物を露
出部がないように酸素が通過できない酸素バリヤ層で被
覆した構成としている。本構成により、固体電解質の導
電性酸化物と対向する表面に接してもう一方の電極を配
置して電源をオンにして電流を流し、導電性酸化物の酸
素濃度を所望の値に調整した後、電源をオフにし、固体
電解質が酸素イオン伝導を示さなくなる温度まで冷却す
ると、固体電解質は酸素バリヤ層となるので、導電性酸
化物は酸素濃度調整終了と同時に全体を酸素バリヤ層で
被覆されたこととなり、性格な酸素濃度で長期に安定し
た導電性酸化物積層体が実現される。
By the way, from the viewpoint of long-term stability, in the present invention described above, after the conductive oxide is provided with an electrode, the conductive oxide is covered with an oxygen barrier layer through which oxygen cannot pass so that there is no exposed portion. With this configuration, after the other electrode is arranged in contact with the surface of the solid electrolyte facing the conductive oxide, the power is turned on, a current flows, and the oxygen concentration of the conductive oxide is adjusted to a desired value. When the power was turned off and the solid electrolyte was cooled to a temperature at which the oxygen electrolyte did not exhibit oxygen ion conduction, the solid electrolyte became an oxygen barrier layer. As a result, a conductive oxide laminate that is stable for a long period of time at a specific oxygen concentration is realized.

なお、上述の本発明積層体の酸素濃度制御に用いる電
極のうち固体電解質に接して配置する電極は固体電解質
が酸素の授受を雰囲気との間で行なえるように後述する
多孔質構造のものが使用される。
Among the electrodes used for controlling the oxygen concentration of the above-described laminate of the present invention, the electrode arranged in contact with the solid electrolyte has a porous structure described later so that the solid electrolyte can exchange oxygen with the atmosphere. used.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の積層体に用いられる導電性酸化物は、電子・
イオン混合伝導性を有する導電性酸化物ならば、その種
類、材質、全導電率に占める電子導電率とイオンの導電
率の割合に得に制限はない。かかる伝導性酸化物として
は、たとえば、Ti2O3,Ti2O5あるいは最近注目を集めて
いる酸化物超伝導体等の導電性酸化物がある。なお、酸
化物超伝導体としては一般式;(La1-x Mx2Cu O
4−δ(M=Ba,Sr,Ca,X=0〜1,δ=0〜1)で表わさ
れるLa−Sr−Cu−O系超伝導体、一般式;LnBa2 Cu3 O
7−δ(Ln=Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Lu,δ
=0〜1)で表わされるY−Ba−Cu−O系超伝導体、一
般式;Bi2 Sr2 Can-1 Cun O(y≦2n+4;n=1,2,3)で表
わされるBi−Sr−Ca−Cu−O系超伝導体、一般式;Tl2 B
a2 Can-1 Cun Oy(y≦2n+4;n=1,2,3)で表わされるT
l−Ba−Ca−Cu−O系超伝導体等が挙げられる。ところ
で、本発明は前述した通り低温で正確な酸素濃度制御が
でき、更には経時的にも安定した構成ができるものであ
り、各種応用特に電子デバイスの応用に際しかかる構成
が要求されている前述の酸化物超伝導体に好ましく適用
できるものである。また、本発明に用いる酸素イオン伝
導性を有する固体電解質は酸素イオン伝導性を有するも
のであれば、その種類と材質に得に制限はない。かかる
固体電解質としては、Y2O3−ZrO2(YSZ),CaO−ZrO2(C
SZ),Bi2O3,Bi2O3−Y2O3,Bi2O3−Nb2O5,Bi3O3−WO3,等
が知られているが、本発明には酸素イオン導電率が大き
く、電子導電率が小さいもので、緻密な構造で、酸素イ
オン伝導を示す温度以外では酸素バリア性が高いものが
好ましい。かかる点からY2O3−ZrO2(YSZ),CaO−ZrO2
(CSZ)をはじめとする蛍石(CaF2)型結晶構造を持つ
酸化物固溶体系の固体電解質が望ましい。
The conductive oxide used in the laminate of the present invention may be an electron oxide.
As long as it is a conductive oxide having mixed ion conductivity, its type, material, and ratio of the electronic conductivity and the ion conductivity to the total conductivity are not particularly limited. Such conductive oxides include, for example, conductive oxides such as Ti 2 O 3 , Ti 2 O 5, and oxide superconductors that have recently attracted attention. The oxide superconductor has a general formula: (La 1-x M x ) 2 Cu O
4-δ (M = Ba, Sr, Ca, X = 0 to 1, δ = 0 to 1) La—Sr—Cu—O-based superconductor represented by the general formula: LnBa 2 Cu 3 O
7−δ (Ln = Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, δ
Y-Ba-Cu-O system superconductor represented by = 0-1), the general formula; represented by n = 1,2,3); Bi 2 Sr 2 Ca n-1 Cu n O (y ≦ 2n + 4 Bi-Sr-Ca-Cu-O-based superconductor, general formula; Tl 2 B
a 2 C a n-1 C n O y (y ≦ 2n + 4; n = 1,2,3) T
l-Ba-Ca-Cu-O-based superconductors and the like. By the way, the present invention can accurately control the oxygen concentration at a low temperature as described above, and furthermore, can have a stable configuration over time. It can be preferably applied to an oxide superconductor. The type and material of the solid electrolyte having oxygen ion conductivity used in the present invention are not particularly limited as long as the solid electrolyte has oxygen ion conductivity. Such solid electrolyte, Y 2 O 3 -ZrO 2 ( YSZ), CaO-ZrO 2 (C
SZ), Bi 2 O 3 , Bi 2 O 3 —Y 2 O 3 , Bi 2 O 3 —Nb 2 O 5 , Bi 3 O 3 —WO 3 , etc. are known. Those having high conductivity, low electron conductivity, a dense structure, and high oxygen barrier properties at temperatures other than the temperature at which oxygen ion conduction is exhibited are preferable. From this point, Y 2 O 3 -ZrO 2 (YSZ), CaO-ZrO 2
A solid electrolyte of an oxide solid solution type having a fluorite (CaF 2 ) type crystal structure such as (CSZ) is desirable.

なお、以上の伝導性酸化物及び酸素イオン伝導性を有
する固体電解質の厚み、大きさ、形状に特に制限はな
い。また、導電性酸化物は酸化物単体であっても、また
デバイスとして形成されたものでも、あるいは電子デバ
イスなどの一部として形成されたものであってもよい。
The thickness, size, and shape of the conductive oxide and the solid electrolyte having oxygen ion conductivity are not particularly limited. In addition, the conductive oxide may be an oxide alone, may be formed as a device, or may be formed as a part of an electronic device or the like.

そして、導電性酸化物と固体電解質との積層方法も両
者が酸素イオンの授受を行なえる程度に接続されておれ
ばよく、特に制限はなく、単に両者を密着させるのみで
も充分である。しかし、これらの条件は、目的とする積
層体を実際に形成した場合に、積層体が力学的に安定で
あるように選択されなければならない。たとえば好まし
い例として、力学的に安定な平板状の導電性酸化物の片
面い、酸素イオン伝導性を有する固体電解質の薄膜をス
パッタリング等の物理蒸着法で積層した場合、力学的に
安定な平板状の酸素イオン伝導性を有する固体電解質の
片面に、導電性酸化物の薄膜をスパッタリング等の物理
蒸着法で積層した場合、あるいは、力学的に安定な平板
状の導電性酸化物と、同じく力学的に安定な平板状の酸
素イオン伝導性を有する固体電解質を、力学的な方法で
すき間がないように圧着接合した場合、などが挙げられ
る。中でも導電性酸化物または固体電解質の平板状の基
体上に物理蒸着(PVD)法、化学蒸着(CVD)法等の気相
堆積法により導電性酸化物または固体電解質の薄膜を形
成した薄膜積層体構造のものが電気的な接続性及び機械
的な接着性に優れており好ましい。
The method for laminating the conductive oxide and the solid electrolyte may be any connection as long as they can exchange oxygen ions. There is no particular limitation, and it is sufficient to simply make the two adhere. However, these conditions must be selected so that the laminate is mechanically stable when the desired laminate is actually formed. For example, as a preferred example, when a thin film of a solid electrolyte having oxygen ion conductivity is laminated on one side of a mechanically stable plate-shaped conductive oxide by physical vapor deposition such as sputtering, a mechanically stable plate-like conductive oxide is obtained. When a conductive oxide thin film is laminated on one side of a solid electrolyte having oxygen ion conductivity by physical vapor deposition such as sputtering, or a mechanically stable flat conductive oxide When a stable and flat plate-like solid electrolyte having oxygen ion conductivity is press-bonded by a mechanical method so that there is no gap, and the like. Above all, a thin film laminate in which a conductive oxide or solid electrolyte thin film is formed on a flat substrate of a conductive oxide or solid electrolyte by a vapor deposition method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) Those having a structure are preferable because they have excellent electrical connectivity and mechanical adhesiveness.

次に、上述のようにして得られた積層体の導電性酸化
物の酸素濃度の調整手順を説明する。導電性酸化物と酸
素イオン伝導性を有する固体電解質の積層体を形成した
ならば、積層された酸化物と固体電解質の表面にそれぞ
れ電極を配置する。酸化物側には、酸化物の表面の一部
に、固体電解質に接触しないように、酸素バリヤ性のあ
る無孔質の電極を形成する。この電極は、電子伝導性の
みを示す導電率の大きい導電性物質で、化学的に安定な
ものであるならば、その種類に得に制限はないが、好ま
しい例としては白金及び金が挙げられる。また固体電解
質側には、固体電解質の表面の一部に、導電性酸化物に
接触しないように、酸素を通しイオン化又は消イオン化
する多孔質の電極を形成する。この電極は、電子伝導性
を示す同電率の大きい導電性物質で、化学的に安定なも
のであれば、その種類に特に制限はないが、好ましい例
としては白金が挙げられる。
Next, a procedure for adjusting the oxygen concentration of the conductive oxide of the laminate obtained as described above will be described. After forming a laminate of the conductive oxide and the solid electrolyte having oxygen ion conductivity, electrodes are arranged on the surfaces of the laminated oxide and the solid electrolyte, respectively. On the oxide side, a nonporous electrode having an oxygen barrier property is formed on a part of the surface of the oxide so as not to contact the solid electrolyte. This electrode is a conductive material having high conductivity showing only electron conductivity, and if it is chemically stable, there is no particular limitation on its type, but preferred examples include platinum and gold. . On the solid electrolyte side, a porous electrode is formed on a part of the surface of the solid electrolyte, through which oxygen is passed to ionize or deionize so as not to come into contact with the conductive oxide. The type of the electrode is not particularly limited as long as it is a conductive substance exhibiting electron conductivity and having the same electric conductivity and is chemically stable. Preferable examples include platinum.

それぞれの電極の厚みと面積に特に制限はないが、電
極の面積は少なくとも、酸化物と固体電解質の接触面積
の数分の一以上であることが望ましい。
Although the thickness and area of each electrode are not particularly limited, it is preferable that the area of the electrode is at least a fraction of the contact area between the oxide and the solid electrolyte.

積層体に電極を形成したならば、形成した無孔質電極
と多孔質電極の間に直流電源をつなぎ、大気または酸素
を含む雰囲気中で積層体を室温から加熱して一定の温度
に保つ。この温度は、積層体に用いられている酸化物と
固体電解質において、酸化物では酸素の注入または排出
が可能で、且つ固体電解質では酸素イオン伝導が可能な
温度範囲にあれば得に制限はない。この温度は用いる固
体電解質、対象となる導電性酸化物の特性等で異なる
が、通常300〜900℃程度の温度範囲にある。
After the electrodes are formed on the laminate, a DC power supply is connected between the formed nonporous electrode and the porous electrode, and the laminate is heated from room temperature in an atmosphere containing air or oxygen to maintain a constant temperature. This temperature is not particularly limited as long as the oxide and the solid electrolyte used in the laminate are in a temperature range in which oxygen can be injected or discharged in the oxide and the solid electrolyte can conduct oxygen ions. . This temperature varies depending on the solid electrolyte used, the characteristics of the target conductive oxide, and the like, but is usually in the temperature range of about 300 to 900 ° C.

酸化物の酸素濃度を増加させるには、直流電源の陰極
を固体電解質側の電極に、陽極を酸化物側の電極にそれ
ぞれ接続し、積層体を上記の温度範囲内における温度の
一定の温度に加熱した状態で、適当な大きさの電流を流
す。すると固体電解質の多孔質電極において、酸素分子
と電子が反応し酸素イオンが発生する。この酸素イオン
は固体電解質中をイオン伝導し、酸化物に注入される。
注入された酸素イオンは、酸化物中の酸素欠陥位置に取
込まれて周りのイオンと結合する。酸化物の内部では、
電荷の中性を保つために電子を放出する。放出された電
子は、酸化物の無孔質電極を通って電源の陽極に戻る。
尚、無孔質電極には電子導電性のみを示す導電性物質が
用いられているので、酸素イオンはブロックされ電子の
みが通過する。
In order to increase the oxygen concentration of the oxide, the cathode of the DC power supply is connected to the electrode on the solid electrolyte side, and the anode is connected to the electrode on the oxide side, and the laminate is heated to a certain temperature within the above temperature range. In the heated state, an appropriate current is applied. Then, in the porous electrode of the solid electrolyte, oxygen molecules and electrons react to generate oxygen ions. The oxygen ions conduct in the solid electrolyte and are injected into the oxide.
The implanted oxygen ions are taken into oxygen vacancies in the oxide and combine with surrounding ions. Inside the oxide,
It emits electrons to keep the charge neutral. The emitted electrons return to the anode of the power supply through the nonporous oxide electrode.
Since a non-porous electrode is made of a conductive material exhibiting only electron conductivity, oxygen ions are blocked and only electrons pass.

逆に酸化物の酸素濃度を減少させるには、直流電源の
極性を反転し、上記と同様の温度に加熱した状態で適当
な大きさの電流を流す。すると積層体の酸化物の内部で
は、上記で述べた反応の逆反応が進行し、酸化物から固
体電解質へイオンが排出される。排出された酸素イオン
は固体電解質を通り、固体電解質の多孔質電極において
電子を吸収されすなわち消イオン化され、酸素分子とな
って雰囲気中へ放出される。
Conversely, in order to decrease the oxygen concentration of the oxide, the polarity of the DC power supply is reversed, and a current of an appropriate magnitude is passed while heating to the same temperature as above. Then, inside the oxide of the laminate, a reverse reaction of the above-described reaction proceeds, and ions are discharged from the oxide to the solid electrolyte. The discharged oxygen ions pass through the solid electrolyte, are absorbed by the solid electrolyte porous electrode, that is, are deionized, and are released into the atmosphere as oxygen molecules.

積層体に流す電流の大きさには特に制限はないが、当
然のことではあるが、積層体が破壊されない程度の大き
さの範囲内になければならない。
The magnitude of the current flowing through the laminate is not particularly limited, but, needless to say, it must be within a range that does not destroy the laminate.

導電性酸化物の酸素濃度は、上記のように積層体の積
層方向に電流を流し、電流の方向、大きさ、通電時間を
調整することによって、制御することができる。そし
て、所定の酸素濃度が得られたならば電流を止め、固体
電解質の酸素イオン伝導が停止する温度まで積層体を冷
却することによって、導電性酸化物の酸素濃度を固定す
ることができる。
The oxygen concentration of the conductive oxide can be controlled by flowing a current in the stacking direction of the stacked body and adjusting the direction, magnitude, and duration of the current as described above. Then, when a predetermined oxygen concentration is obtained, the current is stopped, and the laminate is cooled to a temperature at which oxygen ion conduction of the solid electrolyte stops, whereby the oxygen concentration of the conductive oxide can be fixed.

ただし上記のように導電性酸化物の酸素濃度を制御し
た後において、導電性酸化物と固体電解質の界面におけ
る酸素分圧と雰囲気中の酸素分圧が異なる場合には、電
流を停止した後も若干量の酸素イオンが導電性酸化物と
固体電解質の間を移動し、固体電解質に酸素分圧の差に
応じた電気分極が発生し、酸素濃度に若干の変動が生ず
ることが考えられる。これに対しては、電流を停止した
後に、得られた酸素濃度を維持するために必要十分な大
きさの電圧を積層体の積層方法に印加しながら、固体電
解質の酸素イオン伝導が停止する温度まで積層体を冷却
すれば、冷却した酸素濃度の値を変化させずに固定する
こができる。従って、酸化物超伝導体のごとくその酸素
濃度をより厳密に制御する必要がある場合には、かかる
制御方法が好ましく適用される。
However, after controlling the oxygen concentration of the conductive oxide as described above, if the oxygen partial pressure at the interface between the conductive oxide and the solid electrolyte is different from the oxygen partial pressure in the atmosphere, even after the current is stopped. It is conceivable that a slight amount of oxygen ions move between the conductive oxide and the solid electrolyte, electric polarization occurs in the solid electrolyte according to the difference in oxygen partial pressure, and a slight change occurs in the oxygen concentration. On the other hand, after stopping the current, the temperature at which the oxygen ion conduction of the solid electrolyte stops while applying a voltage of a magnitude necessary and sufficient to maintain the obtained oxygen concentration to the lamination method of the laminate. If the laminate is cooled down, the value of the cooled oxygen concentration can be fixed without changing. Therefore, when it is necessary to more strictly control the oxygen concentration as in the case of an oxide superconductor, such a control method is preferably applied.

ところで、導電性酸化物の種類によっては、その露出
部分において、用いられている雰囲気との間で酸素のや
りとりを行うものがあり、上記で述べた積層構成のみで
は、酸素濃度を制御あるいは固定することが困難な場合
がある。このような酸化物の場合には、前述したように
積層体に電極を形成した後に、酸化物の表面で雰囲気に
露出している部分を、酸素を阻止して通さない酸素バリ
ヤ性が高くかつ電気的に絶縁性の高い材料で被覆した積
層構成とすることにより目的を達成することができる。
この被覆材料は前述の酸素バリヤ性を有するものであれ
ば特に制限はなく公知の電子デバイスの封止剤等が適用
できるが、耐熱性面からAl2O3,MgO,Al2O3−MgO,SiO2,Si
3N4等のセラミックス誘電体が好ましい。
By the way, depending on the type of the conductive oxide, there is a type in which oxygen is exchanged between the exposed portion and the atmosphere in which it is used, and the above-described stacked structure alone controls or fixes the oxygen concentration. It can be difficult. In the case of such an oxide, after the electrodes are formed on the laminate as described above, the portion of the oxide surface that is exposed to the atmosphere has a high oxygen barrier property that blocks oxygen and does not pass through. The object can be achieved by forming a laminated structure covered with a material having high electrical insulation.
The coating material is not particularly limited as long as it has the above-described oxygen barrier property, and a known sealing agent for an electronic device can be applied.However, from the viewpoint of heat resistance, Al 2 O 3 , MgO, Al 2 O 3 −MgO , SiO 2 , Si
Ceramic dielectrics 3 N 4 or the like are preferable.

このように、積層体の形成段階において、導電性酸化
物の露出部分を必要に応じて前述の酸化バリヤ等で被覆
しておけば、酸化物の全表面は該酸素バリヤ層と酸素バ
リヤ性の高い電極及びイオン伝導性を示す温度以下では
酸素バリヤ性を示す固体、電解質で被覆される、換言す
れば全表面が酸素バリヤ層で被覆されるので、Y−Ba−
Cu−O系等の酸化物超伝導体の如く、雰囲気との間で直
接酸素を授受する酸素濃度が不安定な導電性酸化物の場
合でも、酸化物の酸素濃度を制御、固定することが可能
になる。なお、雰囲気との間で酸素の授受を行なうが、
酸素濃度変化の速度が非常に遅く、経時的変化のみが問
題となる導電性酸化物の場合には、前記酸素バリヤ層の
形成は、酸素濃度の調整後であってもよい。この場合
は、酸素濃度の調整時の温度に耐える必要がないので、
酸素バリヤ層には電子デバイスの封止剤として公知の各
種の合成樹脂も適用できる。
As described above, if the exposed portion of the conductive oxide is covered with the above-described oxide barrier or the like as necessary at the stage of forming the stacked body, the entire surface of the oxide is in contact with the oxygen barrier layer and the oxygen barrier property. Below the temperature of high electrode and ionic conductivity, it is coated with a solid or electrolyte exhibiting oxygen barrier properties. In other words, since the entire surface is coated with an oxygen barrier layer, Y-Ba-
Even in the case of a conductive oxide having an unstable oxygen concentration, such as a Cu-O-based oxide superconductor, which directly exchanges oxygen with the atmosphere, it is possible to control and fix the oxygen concentration of the oxide. Will be possible. In addition, oxygen is exchanged with the atmosphere,
In the case of a conductive oxide in which the rate of change of the oxygen concentration is very slow and only the change with time is a problem, the formation of the oxygen barrier layer may be performed after the adjustment of the oxygen concentration. In this case, it is not necessary to withstand the temperature at the time of adjusting the oxygen concentration,
Various synthetic resins known as sealants for electronic devices can be applied to the oxygen barrier layer.

ところで、酸素バリヤ層は同じ材料で構成する必要が
無いことは言うまでもないことで、例えば電気絶縁性を
必要な個所にはその特性を備えたものを、電極と兼用す
る場合には金属膜等の導電性を備えたものを用いる等、
積層体の用途に応じた構成が採用される。重要な点は、
導電性酸化物の全表面を酸素バリヤ性の材料で被覆する
ことである。
By the way, it is needless to say that the oxygen barrier layer does not need to be composed of the same material.For example, a material having the characteristics is used where electrical insulation is required. Such as using conductive material,
A configuration according to the use of the laminate is adopted. The important point is that
The entire surface of the conductive oxide is coated with an oxygen barrier material.

なお、酸素バリヤ層の形成は用いる材料に応じて公知
の形成法から適宜選択する。例えば前述したセラミック
誘電体の場合は、反応性スパッタリング等のPVD法を用
いて薄膜状に形成すると、各種形状に適応できる点及び
密着性、膜質等から好ましく、合成樹脂の場合はコーテ
ィング法が同様の理由から好ましく適用される。
Note that the formation of the oxygen barrier layer is appropriately selected from known formation methods depending on the material to be used. For example, in the case of the above-described ceramic dielectric, it is preferable to form it into a thin film using a PVD method such as reactive sputtering from the viewpoint of adaptability to various shapes and adhesion, film quality, and the like. Is preferably applied for the following reason.

以下に本発明の実施例を示す。 Hereinafter, examples of the present invention will be described.

(実施例1) 第1図に示すように、20mm×20mmの大きさで、厚さ1m
mの平板状のYSZ単結晶からなる固体電解質基板(以下
“YSZ基板”という)1上の中心部に、YSZ基板1を400
℃に加熱しながら、エキシマレーザースパッタ装置を用
いて、導電性酸化物膜2として10mm×10mmの大きさで、
厚さ1μmのY−Ba−Cu−O薄膜(具体的にはY1Ba2Cu3
7−δ薄膜)を形成した。YSZは酸素イオン伝導を
有する固体電解質として知られている。また、Y−Ba−
Cu−Oは酸素欠損を持つ酸化物超伝導体として知られて
いる。
(Example 1) As shown in FIG. 1, the size is 20 mm × 20 mm and the thickness is 1 m.
The YSZ substrate 1 is placed at the center on a solid electrolyte substrate (hereinafter, referred to as “YSZ substrate”) 1 made of a YSZ single crystal having a flat plate shape of m.
While heating to ° C., using an excimer laser sputtering device, the conductive oxide film 2 in the size of 10 mm × 10 mm,
A Y-Ba-Cu-O thin film having a thickness of 1 µm (specifically, Y 1 Ba 2 Cu 3
O 7-δ thin film). YSZ is known as a solid electrolyte having oxygen ion conduction. In addition, Y-Ba-
Cu-O is known as an oxide superconductor having an oxygen vacancy.

なお、同図に示すように、YSZ基板1の導電性酸化物
膜2を形成する面の反対側の面に、多孔質平板状の白金
電極3を前もって以下のように形成しておいた。すなわ
ち、白金ペーストをYSZに塗布した後、大気中で100℃程
度の温度に加熱することによって形成した。多孔質白金
電極3は、導電性酸化物膜2より大きい15mm×15mmの大
きさとし、これに対向する配置になるように形成した。
As shown in the figure, a porous flat plate-like platinum electrode 3 was previously formed on the surface of the YSZ substrate 1 opposite to the surface on which the conductive oxide film 2 was formed as follows. That is, after the platinum paste was applied to YSZ, it was formed by heating to about 100 ° C. in the air. The porous platinum electrode 3 had a size of 15 mm × 15 mm larger than the conductive oxide film 2 and was formed so as to face the conductive oxide film 2.

次に、酸素バリヤ層2を兼ねた電気絶縁性の保護膜と
して厚さ1μmのAl2O3−MgO薄膜4aを、前述の膜付YSZ
基板1を400℃に加熱しながら、Y−Ba−Cu−O薄膜2
と同様にエキシマレーザースパッタ装置を用いてY−Ba
−Cu−O薄膜2をマスクしてその側面に接するようにYS
Z基板1上に形成した。
Next, an Al 2 O 3 -MgO thin film 4a having a thickness of 1 μm as an electrically insulating protective film also serving as the oxygen barrier layer 2 was formed using the above-mentioned YSZ-coated film.
While heating the substrate 1 to 400 ° C., the Y—Ba—Cu—O thin film 2
Y-Ba using an excimer laser sputtering device
−Cu—O thin film 2 is masked and YS is
It was formed on a Z substrate 1.

また同様にして、エキシマレーザースパッタ装置を用
いて、第2図に示すように抵抗測定端子を兼ねた、巾1m
m、長さ15mmで厚さ1μmの4本の電極を所定間隔で配
置した四端子の無孔質平板状白金電極5をY−Ba−Cu−
O薄膜2上を横断し、その一端がAl2O3−MgO薄膜4aに渡
るように形成した。
Similarly, using an excimer laser sputtering device, a width of 1 m, which also served as a resistance measuring terminal as shown in FIG.
m, a four-terminal nonporous flat platinum electrode 5 having a length of 15 mm and a thickness of 1 μm arranged at a predetermined interval was used as a Y-Ba-Cu-
It was formed so as to cross over the O thin film 2 and one end thereof to extend over the Al 2 O 3 —MgO thin film 4a.

その後同様にエキシマレーザースパッタ装置を用い、
形成した無孔質平板状白金電極5の一部が露出し、Y−
Ba−Cu−O薄膜2は露出している表面がなくなるよう
に、電気絶縁性の酸素バリヤ層4として、厚さ1μmの
YSZ薄膜4bを多孔質白金電極3と略同じ大きさに形成し
た。Y−Ba−Cu−O薄膜2は大気に露出すると、その酸
素濃度が変化しやすいので、このように露出している部
分がなくなるように酸素バリヤ層4で被覆することが必
要である。
After that, similarly using an excimer laser sputtering device,
Part of the formed non-porous flat platinum electrode 5 is exposed, and Y-
The Ba—Cu—O thin film 2 has a thickness of 1 μm as an electrically insulating oxygen barrier layer 4 so that the exposed surface is eliminated.
The YSZ thin film 4b was formed to have substantially the same size as the porous platinum electrode 3. When the Y—Ba—Cu—O thin film 2 is exposed to the atmosphere, its oxygen concentration is liable to change. Therefore, it is necessary to cover the Y—Ba—Cu—O thin film 2 with the oxygen barrier layer 4 so that the exposed portion disappears.

次に上記積層体の導電性酸化物2の酸素濃度の制御と
固定の様子の確認を以下のようにして行なった。すなわ
ち、直流安定化電源(図示省略)の陰極を多孔質平板状
白金電極3につなぎ、陽極を無孔質平板状白金電極5に
つないで、前記積層体をYSZ基板1が酸素イオン伝導性
を示す温度の500℃に加熱維持しながら、1mAの電極を10
秒間ずつ断続的に流した。そしてその都度Y−Ba−Cu−
O薄膜2の抵抗率を、四端子の無孔質平板状白金電極5
を用いて、直流四端子法で測定した。すると、第3図の
実線に示すように、通電電気量がふえるに従って抵抗率
が減少し、やがて一定の値で飽和した。次に電源の極性
を反転し、逆方向に10秒間ずつ断続的に1mAの電流を流
したところ、第3図の破線に示すように抵抗率は逆に増
加しはじめ、やがて元の値に戻った。これら一連の、Y
−Ba−Cu−O薄膜2の抵抗率の変化は可逆的であった。
また、通電電気量(クローン量)の測定から、通電電気
量と注入酸素イオンの量に対応関係がみられた。
Next, the control of the oxygen concentration of the conductive oxide 2 of the laminated body and the state of fixing were confirmed as follows. That is, the cathode of the DC stabilized power supply (not shown) is connected to the porous plate-shaped platinum electrode 3 and the anode is connected to the non-porous plate-shaped platinum electrode 5. While maintaining the temperature at the indicated temperature of 500 ° C, connect the 1mA
It flowed intermittently every second. And each time Y-Ba-Cu-
The resistivity of the O thin film 2 is changed to a four-terminal nonporous flat platinum electrode 5.
Was measured by the DC four-terminal method. Then, as shown by the solid line in FIG. 3, the resistivity decreased as the amount of supplied electricity increased, and eventually became saturated at a constant value. Next, the polarity of the power supply was reversed, and a current of 1 mA was intermittently applied for 10 seconds in the reverse direction. As shown by the broken line in FIG. 3, the resistivity began to increase and eventually returned to the original value. Was. These series of Y
The change of the resistivity of the -Ba-Cu-O thin film 2 was reversible.
In addition, from the measurement of the amount of electricity (clone amount), it was found that there was a correspondence between the amount of electricity and the amount of implanted oxygen ions.

電流を止め、積層体を室温に戻すと、Y−Ba−Cu−O
薄膜2の抵抗率は500℃で最後に得られた値に固定さ
れ、1週間以上室内放置してもその特性に経時変化はみ
られなかった。
When the current was stopped and the laminate was returned to room temperature, Y-Ba-Cu-O
The resistivity of the thin film 2 was fixed to the value obtained last at 500 ° C., and its characteristics did not change with time even after being left indoors for one week or more.

Y−Ba−Cu−Oは酸素欠損型の酸化物超伝導体であ
り、含まれる酸素濃度が高い程、抵抗率が小さくなるこ
とが知られている。従って、上記で述べた500℃におけ
るY−Ba−Cu−O薄膜2の抵抗率の変化は、YSZ基板か
らY−Ba−Cu−O薄膜2へ酸素イオンの注入、排出が行
なわれ、Y−Ba−Cu−O薄膜2の酸素濃度が制御されて
いることに対応している。また室温においてY−Ba−Cu
−O薄膜2の抵抗率が一定になったことは、Y−Ba−Cu
−O薄膜2の酸素濃度が固定されたことに対応してい
る。
Y-Ba-Cu-O is an oxygen-deficient oxide superconductor, and it is known that the higher the oxygen concentration, the lower the resistivity. Therefore, the change in the resistivity of the Y-Ba-Cu-O thin film 2 at 500 ° C. described above is caused by oxygen ions being injected and discharged from the YSZ substrate into the Y-Ba-Cu-O thin film 2, This corresponds to the fact that the oxygen concentration of the Ba—Cu—O thin film 2 is controlled. At room temperature, Y-Ba-Cu
The fact that the resistivity of the -O thin film 2 became constant indicates that Y-Ba-Cu
This corresponds to the fact that the oxygen concentration of the -O thin film 2 is fixed.

(実施例2) Y,Ba,Cuの3元素の原子数の比がY:Ba:Cu=1:2:3にな
るようにY2O3,BaCO3,CuOをエタノール中で混合した後、
930℃で10時間焼成して、Y−Ba−Cu−Oの粉体を作成
した。この粉体にイソプロピルアルコールを加えてペー
スト状にした。
Example 2 After mixing Y 2 O 3 , BaCO 3 , and CuO in ethanol such that the ratio of the number of atoms of the three elements Y, Ba, and Cu becomes Y: Ba: Cu = 1: 2: 3. ,
By baking at 930 ° C. for 10 hours, a powder of Y—Ba—Cu—O was prepared. Isopropyl alcohol was added to this powder to form a paste.

第1図に示すように、20mm×20mmの大きさで厚さ1mm
のYSZ基板1の中心部に、上記のY−Ba−Cu−Oのペー
ストをスクリーン印刷した後、900℃で2時間焼成し、1
0mm×10mmの大きさで厚さ10μmのY−Ba−Cu−O膜2
を形成した。
As shown in Fig. 1, the size is 20mm x 20mm and the thickness is 1mm
The Y-Ba-Cu-O paste is screen-printed on the center of the YSZ substrate 1 and then baked at 900 ° C. for 2 hours.
Y-Ba-Cu-O film 2 having a size of 0 mm × 10 mm and a thickness of 10 μm
Was formed.

ただし、YSZ基板1のY−Ba−Cu−O膜2を形成する
面の反対側の面の中心部には、実施例1の場合と同様
に、15mm×15mmの大きさの多孔質平板状白金電極3をあ
らかじめ形成しておいた。
However, in the center of the surface of the YSZ substrate 1 opposite to the surface on which the Y-Ba-Cu-O film 2 is formed, a porous flat plate having a size of 15 mm × 15 mm is formed in the same manner as in the first embodiment. The platinum electrode 3 was formed in advance.

以下第1図、第2図に示すように、実施例1と同様の
積層構成で、Al2O3−MgO膜4a、無孔質平板状白金電極
5、YSZ薄膜4bをエキシマレーザースパッタ装置を用い
てそれぞれ順に形成した。
As shown in FIGS. 1 and 2 , an Al 2 O 3 —MgO film 4 a, a nonporous plate-like platinum electrode 5, and a YSZ thin film 4 b are laminated with an excimer laser sputtering apparatus in the same lamination structure as in the first embodiment. Each was formed in order.

Al2O3−MgO膜4aは酸素バリヤ層4を兼ねた絶縁性の保
護層として、YSZ基板1を400℃に加熱しながら、Y−Ba
−Cu−O膜2の側面に接するようにYSZ基板1上に厚さ
μmに形成した。無孔質平板状白金電極は、抵抗率測定
端子を兼ねるために、幅1mm、長さ15mm、厚さ1μmの
電極を所定の間隔で配置した四端子の電極として、Y−
Ba−Cu−O膜2上を横断しAl2O3−MgO膜4aに渡るように
形成された。さらにYSZ薄膜4bは絶縁性の酸素バリヤ層
4として、Y−Ba−Cu−O膜2の露出部分を被覆するよ
うに、積層体の中心に、15mm×15mmの大きさで厚さ1μ
mに形成された。
The Al 2 O 3 —MgO film 4a is used as an insulating protective layer also serving as the oxygen barrier layer 4 while heating the YSZ substrate 1 to 400 ° C.
-Formed on the YSZ substrate 1 to a thickness of μm so as to be in contact with the side surface of the Cu-O film 2. The non-porous flat platinum electrode is a four-terminal electrode having a width of 1 mm, a length of 15 mm, and a thickness of 1 μm arranged at predetermined intervals in order to also serve as a resistivity measuring terminal.
The film was formed so as to cross over the Ba—Cu—O film 2 and extend to the Al 2 O 3 —MgO film 4a. Further, the YSZ thin film 4b serves as an insulating oxygen barrier layer 4 so as to cover the exposed portion of the Y-Ba-Cu-O film 2 at the center of the laminated body with a size of 15 mm × 15 mm and a thickness of 1 μm.
m.

このようにして作成した導電性酸化物、Y−Ba−Cu−
O膜2の低温にあける抵抗率を液体ヘリウムで冷却し、
直流四端子法を用いて測定したところ、第4図のように
半導体的挙動を示し、超伝導を示さなかった。そこで、
直流安定化電源(図示省略)の陰極を多孔質平板状白金
電極3に接続し、陽極を無孔質平板状白金電極5に接続
して、積層体を大気中で500℃に加熱しながら、1mAの電
流を70秒間通電し、Y−Ba−Cu−O膜2に酸素イオンを
注入した後、電源をオフにし、積層体を室温に冷却して
酸素濃度を固定した。そしてY−Ba−Cu−O膜2の低温
の抵抗率を前述と同様にして測定したところ、第5図の
実線Aに示すように、抵抗率が約1/1000に減少するとと
もに30Kで超伝導を示した。
The conductive oxide thus prepared, Y-Ba-Cu-
The resistivity of the O film 2 at a low temperature is cooled by liquid helium,
When measured using the DC four-terminal method, it showed a semiconductor-like behavior as shown in FIG. 4 and did not show superconductivity. Therefore,
The cathode of a DC stabilized power supply (not shown) is connected to the porous plate-shaped platinum electrode 3, the anode is connected to the non-porous plate-shaped platinum electrode 5, and the laminate is heated to 500 ° C. in the atmosphere. After a current of 1 mA was passed for 70 seconds to implant oxygen ions into the Y-Ba-Cu-O film 2, the power was turned off and the laminate was cooled to room temperature to fix the oxygen concentration. The low-temperature resistivity of the Y—Ba—Cu—O film 2 was measured in the same manner as described above. As shown by the solid line A in FIG. Showed conduction.

抵抗率の測定終了後、積層体を大気中で再び500℃に
加熱しながら、積層方向に沿って、前回とは逆向きで、
1mAの大きさの電流を50秒間通電し、Y−Ba−Cu−O膜
2から酸素イオンを排出した後、電源をオフにし、積層
体を冷却して酸素濃度を再び固定した。そしてY−Ba−
Cu−O膜2の低温抵抗率を測定したところ、第5図の破
線Bに示すように、抵抗率が増大し、10K以上の温度で
は超伝導を示さなくなった。
After the resistivity measurement is completed, the laminate is heated again to 500 ° C. in the air, and in the stacking direction, in the opposite direction to the previous one,
After a current of 1 mA was passed for 50 seconds to discharge oxygen ions from the Y-Ba-Cu-O film 2, the power was turned off, the laminate was cooled, and the oxygen concentration was fixed again. And Y-Ba-
When the low-temperature resistivity of the Cu—O film 2 was measured, the resistivity increased as shown by a dashed line B in FIG. 5, and no superconductivity was exhibited at a temperature of 10 K or more.

以上の操作が終了し、積層体が室温にもどされた後、
Y−Ba−Cu−O膜2の抵抗率は一定になり、経時変化は
みられなかった。
After the above operation is completed and the laminate is returned to room temperature,
The resistivity of the Y—Ba—Cu—O film 2 became constant, and no change with time was observed.

(実施例3) 第1図に示すように、20mm×20mmの大きさで厚さ1mm
の平板状のYSZ単結晶からなる固体電解質基板(以下“Y
SZ基板”という)1上の中心部に、YSZ基板1を200℃に
加熱しながら、RFマグネトロンスパッタ装置を用いて、
導電性酸化物膜2として10mm×10mmの大きさで、厚さ1
μmのY−Ba−Cu−O薄膜(具体的にはY1Ba2 Cu3 O
7−δ薄膜)を形成した後、酸素雰囲気中900℃で1時
間熱処理してY−Ba−Cu−O薄膜2を結晶化させた。な
お、この熱処理は、前述の通りY−Ba−Cu−O薄膜2を
結晶化させるために行なったものであり、その酸素濃度
を制御することを目的として行なったものではない。
(Example 3) As shown in FIG. 1, a size of 20 mm × 20 mm and a thickness of 1 mm
Solid electrolyte substrate (hereinafter referred to as “Y
While heating the YSZ substrate 1 to 200 ° C. in the center on the “SZ substrate” 1, using an RF magnetron sputtering apparatus,
The conductive oxide film 2 has a size of 10 mm × 10 mm and a thickness of 1 mm.
μm Y-Ba-Cu-O thin film (specifically, Y 1 Ba 2 Cu 3 O
After forming the ( 7-δ thin film), a heat treatment was performed at 900 ° C. for 1 hour in an oxygen atmosphere to crystallize the Y—Ba—Cu—O thin film 2. This heat treatment is performed for crystallizing the Y-Ba-Cu-O thin film 2 as described above, and is not performed for the purpose of controlling the oxygen concentration.

なお、実施例1とまったく同じようにして同図に示す
ように、YSZ基板1のY−Ba−Cu−O薄膜2を形成する
面の反対側の面に、実施例1と同じ配置で同じ大きさの
多孔質平板状の白金電極3を前もって形成しておいた。
As shown in the same drawing as in the first embodiment, the same arrangement and the same arrangement as in the first embodiment is applied to the surface of the YSZ substrate 1 opposite to the surface on which the Y-Ba-Cu-O thin film 2 is formed. A porous flat plate-like platinum electrode 3 having a size was formed in advance.

次に、酸素バリヤ層4を兼ねた電気絶縁性の保護層と
して厚さ1μmのMgO薄膜4aを、前述の膜付YSZ基板1を
400℃に加熱しながら、エキシマレーザースパッタ装置
を用いY−Ba−Cu−O薄膜2をマスクしてその側面に接
するようにYSZ基板1上に形成した。
Next, a 1 μm-thick MgO thin film 4 a as an electrically insulating protective layer also serving as the oxygen barrier layer 4 was applied to the above-mentioned YSZ substrate 1 with a film.
While heating to 400 ° C., the Y—Ba—Cu—O thin film 2 was masked using an excimer laser sputtering apparatus and formed on the YSZ substrate 1 so as to be in contact with the side surface.

また同様にして、エキシマレーザースパッタ装置を用
いて、実施例1と同じように、第2図に示すように抵抗
率測定端子を兼ねた、幅1mm、長さ15mmで厚さ1μmの
4本の電極を所定間隔で配置した四端子の無孔質平板状
白金電極5をY−Ba−Cu−O薄膜2上を横断し、その一
端がMgO薄膜4aに渡るようにMgO薄膜付YSZ基板1を300℃
に加熱しながら形成した。
Similarly, using an excimer laser sputtering apparatus, as in Example 1, four 1 mm-wide, 15 mm-long and 1 μm-thick, which also served as resistivity measuring terminals as shown in FIG. The YSZ substrate 1 with the MgO thin film 1 is traversed on the Y-Ba-Cu-O thin film 2 with a four-terminal non-porous flat platinum electrode 5 having electrodes arranged at predetermined intervals, and one end of the platinum electrode 5 extends over the MgO thin film 4a. 300 ℃
Formed while heating.

その後同様にエキシマレーザースパッタ装置を用い、
端子付のYSZ基板1を400℃に加熱しながら形成した無孔
質平板状白金電極5の一部が露出し、Y−Ba−Cu−O薄
膜2は露出している表面がなくなるように、電気絶縁性
の酸素バリヤ層4として、厚さ1μmのMgO薄膜4bを多
孔質白金電極3と略同じ大きさに形成した。
After that, similarly using an excimer laser sputtering device,
A part of the nonporous plate-like platinum electrode 5 formed while heating the YSZ substrate 1 with terminals to 400 ° C. is exposed, and the Y—Ba—Cu—O thin film 2 has no exposed surface. As the electrically insulating oxygen barrier layer 4, an MgO thin film 4 b having a thickness of 1 μm was formed in substantially the same size as the porous platinum electrode 3.

次に上記積層体のY−Ba−Cu−O薄膜2の酸素濃度の
制御と固定の様子の確認を実施例1と同様にして以下の
ようにして行なった。すなわち、直流安定化電源(図示
省略)の陰極を多孔質平板状白金電極3につなぎ、陽極
を無孔質平板状白金電極5につないで、前記積層体をYS
Z基板1が酸素イオン伝導性を示す温度の500℃に加熱し
ながら、1mAの電流を10秒間ずつ断続的に流した。そし
てその都度Y−Ba−Cu−O薄膜2の抵抗率を、四端子の
無孔質平板状白金電極5を用いて、直流四端子法で測定
した。すると、第6図の実線に示すように、通電電気量
がふえるに従って抵抗率が減少した。次に電源の極性を
反転し、逆方向に10秒間ずつ断続的に1mAの電極を流し
たところ、第6図の破線に示すように抵抗率は逆に増加
しはじめ、やがて元の値に戻った。これら一連の、Y−
Ba−Cu−O薄膜2の抵抗率の変化は第3図の実施例1に
比しヒステリシスの小さい可逆性を示し、また、通電電
気量(クローン量)の測定から、通電電気量と注入酸素
イオンの量の間に一定の相関性のよい対応関係がみら
れ、簡単に精度のよい濃度制御ができることが判った。
Next, the control of the oxygen concentration of the Y-Ba-Cu-O thin film 2 of the laminated body and the confirmation of the fixing state were performed in the same manner as in Example 1 as follows. That is, the cathode of a DC stabilized power supply (not shown) is connected to the porous plate-like platinum electrode 3, the anode is connected to the non-porous plate-like platinum electrode 5, and the laminate is subjected to YS.
A 1 mA current was intermittently applied for 10 seconds while the Z substrate 1 was heated to 500 ° C., which is a temperature at which oxygen ion conductivity was exhibited. Each time, the resistivity of the Y—Ba—Cu—O thin film 2 was measured by a DC four-terminal method using a four-terminal nonporous flat platinum electrode 5. Then, as shown by the solid line in FIG. 6, the resistivity decreased as the amount of supplied electricity increased. Next, when the polarity of the power supply was reversed and the 1 mA electrode was intermittently passed for 10 seconds in the reverse direction, the resistivity began to increase conversely as shown by the broken line in FIG. 6, and eventually returned to the original value. Was. These series of Y-
The change in the resistivity of the Ba—Cu—O thin film 2 shows a reversibility with a smaller hysteresis than that of the first embodiment shown in FIG. There was a certain correlation with a good correlation between the amounts of ions, indicating that accurate and accurate concentration control could be performed.

なお、かかるヒステリシスの殆んどない良好な対応関
係は酸素バリヤ層に用いたMgO膜の優れた酸素バリヤ性
が寄与していると考えられる。本例で用いたMgO膜は分
析によれば(111)面が膜面の垂直方向に配向した多結
晶膜であり、従って上記の点ではかかる配向の多結晶ま
たは単結晶のMgO膜が好ましい。
It should be noted that the excellent correspondence with almost no hysteresis is attributed to the excellent oxygen barrier property of the MgO film used for the oxygen barrier layer. According to the analysis, the MgO film used in this example is a polycrystalline film in which the (111) plane is oriented in the direction perpendicular to the film surface. Therefore, in the above-mentioned point, a polycrystalline or single-crystal MgO film having such an orientation is preferable.

電流を止め、積層体を室温に戻すと、Y−Ba−Cu−O
薄膜2の抵抗率は50℃で最後に得られた値に固定され
た。
When the current was stopped and the laminate was returned to room temperature, Y-Ba-Cu-O
The resistivity of the thin film 2 was fixed at 50 ° C. to the value obtained last.

さらに前記抵抗率測定の終了後、積層体を再び大気中
で500℃に加熱維持しながら、前記低効率測定と同様な
方法を用いて、Y−Ba−Cu−O薄膜2にYSZ基板1から
酸素イオンを注入し、Y−Ba−Cu−O薄膜2の特性の変
化を調べた。以下にその手順を示す。
Further, after completion of the resistivity measurement, the Y-Ba-Cu-O thin film 2 is transferred from the YSZ substrate 1 to the Y-Ba-Cu-O thin film 2 by using the same method as the low-efficiency measurement while maintaining the laminate at 500 ° C. in the air again. Oxygen ions were implanted, and changes in the characteristics of the Y-Ba-Cu-O thin film 2 were examined. The procedure is described below.

直流安定化電源の陰極を多孔質平板状白金電極3に、
陽極を無孔質平板上白金電極5に接続し、大気中500℃
において、1mAの電流を20秒間、すなわち2×10-2クー
ロンの電気量を通電した。通電終了後、速やかに積層体
を室温に冷却して、Y−Ba−Cu−O薄膜2の酸素濃度を
固定した後、液体ヘリウムで冷却し、Y−Ba−Cu−O薄
膜2の低温抵抗率の測定を行うと共に、X線回折による
単位格子のC軸長の測定を行なった。続いて上記と同じ
操作を2回繰り返した。つまり、合計6×10-2クーロン
の電気量を2×10-2クーロンずつ3回に分けてY−Ba−
Cu−O薄膜2に注入し、その都度Y−Ba−Cu−O薄膜2
の低温における抵抗率とC軸の長さを測定した。また、
以上の操作が全て終了した後、1週間以上室温に放置し
たが、Y−Ba−Cu−O薄膜2の抵抗率には経時変化はみ
られなかった。
The cathode of the DC stabilized power supply is connected to the porous flat platinum electrode 3,
Connect the anode to the platinum electrode 5 on a non-porous flat plate, and
In the above, a current of 1 mA was applied for 20 seconds, that is, an electric quantity of 2 × 10 -2 coulombs was supplied. After completion of the energization, the laminate is immediately cooled to room temperature, the oxygen concentration of the Y-Ba-Cu-O thin film 2 is fixed, and then cooled with liquid helium, and the low-temperature resistance of the Y-Ba-Cu-O thin film 2 is reduced. The ratio was measured, and the C-axis length of the unit cell was measured by X-ray diffraction. Subsequently, the same operation as described above was repeated twice. In other words, the total amount of electricity of 6 × 10 -2 coulomb is divided into three times of 2 × 10 -2 coulomb and Y-Ba-
Injected into the Cu-O thin film 2, each time the Y-Ba-Cu-O thin film 2
Was measured for the resistivity at low temperature and the length of the C-axis. Also,
After all the above operations were completed, the film was allowed to stand at room temperature for one week or more. However, the resistivity of the Y—Ba—Cu—O thin film 2 did not change with time.

第7図に上記のように測定した各通電電気量における
Y−Ba−Cu−O薄膜2の低温における温度と抵抗率との
関係を示す。図中A,B,Cの各曲線は、通電電気量が積算
で、2×10-2クローン(A)、4×10-2クーロン
(B)、6×10-2クーロン(C)の各場合におけるY−
Ba−Cu−O薄膜2の低温抵抗率をそれぞれ表わしてい
る。Aの場合、今回の測定温度範囲、6〜273Kでは超伝
導状態が得られなかったが、B,Cの場合、10K,57Kでそれ
ぞれ超伝導状態が得られた。通電電気量、換言すれば酸
素注入量が増加するに従ってY−Ba−Cu−O薄膜2の超
伝導特性は明らかに向上している。
FIG. 7 shows the relationship between the temperature and the resistivity at a low temperature of the Y—Ba—Cu—O thin film 2 at the respective amounts of electricity measured as described above. The curves A, B, and C in the figure represent the cumulative amounts of electricity supplied, and represent the 2 × 10 -2 clones (A), 4 × 10 -2 coulombs (B), and 6 × 10 -2 coulombs (C). Y- in the case
5 shows the low-temperature resistivity of the Ba—Cu—O thin film 2. In the case of A, the superconducting state could not be obtained in the current measurement temperature range of 6 to 273K, but in the case of B and C, the superconducting state was obtained at 10K and 57K, respectively. The superconducting property of the Y-Ba-Cu-O thin film 2 is clearly improved as the amount of supplied electricity, in other words, the amount of injected oxygen increases.

第8図に前述のようにして測定した通電電気量とY−
Ba−Cu−O薄膜2のC軸の長さとの関係を示す。通電電
気量が増加するに従って、C軸の長さが短くなっている
ことがわかる。
FIG. 8 shows the amount of electricity supplied and Y-
The relationship with the length of the C-axis of the Ba—Cu—O thin film 2 is shown. It can be seen that the length of the C-axis becomes shorter as the amount of supplied electricity increases.

ところで、YBa2 Cu3 O7−δ超伝導体は酸素の化学量
論数(7−δ)が、6〜7の範囲内にある場合、(7−
δ)の値が大きい程、抵抗がゼロになる臨界温度Tcが高
く、かつC軸の長さが短くなることが知られている。
(たとえば、Japan Journal of Applied Physics,26,
(7),(1987),P1156,Solid State Communications,
66,(9),(1988),P953)。先に示した第7図、第8
図の結果はこれらの公知の知見と一致している。従って
本発明の固体電解質と積層する構成により、通電電気量
に対応してY−Ba−Cu−O薄膜2に酸素イオンが注入さ
れY−Ba−Cu−O薄膜2の酸素濃度が正確に制御できる
ということは明らかで、本発明が酸化物超伝導体の特性
向上、安定化に大きな効果を奏することが理解できる。
By the way, when the stoichiometric number (7-δ) of oxygen is in the range of 6 to 7, the YBa 2 Cu 3 O 7-δ superconductor has (7-
It is known that the larger the value of δ), the higher the critical temperature Tc at which the resistance becomes zero and the shorter the length of the C-axis.
(For example, Japan Journal of Applied Physics, 26,
(7), (1987), P1156, Solid State Communications,
66, (9), (1988), P953). 7 and 8 shown above.
The results in the figure are consistent with these known findings. Therefore, by the structure of laminating with the solid electrolyte of the present invention, oxygen ions are implanted into the Y-Ba-Cu-O thin film 2 corresponding to the amount of electricity supplied, and the oxygen concentration of the Y-Ba-Cu-O thin film 2 is accurately controlled. Obviously, it can be understood that the present invention has a great effect on improving and stabilizing the characteristics of the oxide superconductor.

(発明の効果) 以上の通り、本発明は酸化物超伝導体等の導電酸化物
と固体電解質を積層した積層体を基本構成とするもので
あり、従来不可能であった導電性酸化物、中でも酸化物
超伝導体の正確な酸素濃度制御を可能にしたものであ
り、比較的低温で該酸素濃度の正確な制御が可能である
という効果を有し、各種デバイスへの応用を開くもので
ある。そして、導電性酸化物を露出部がないように酸素
バリヤ層で被覆する構成により、制御した酸素濃度がそ
のまま安定に長期に亘って保持できるという待望の効果
が得られるものである。かかる効果を奏する本発明は、
導電性酸化物中でも実用化に際し特性の正確な制御とそ
の長期安定性が待望されている酸化物超伝導体の実用化
に大きな寄与をなすものであり、工業上非常に有用なも
のである。
(Effects of the Invention) As described above, the present invention has a basic structure of a laminate in which a conductive oxide such as an oxide superconductor and a solid electrolyte are laminated, and a conductive oxide that has been impossible in the past. Above all, it enables precise control of oxygen concentration in oxide superconductors, has the effect of enabling accurate control of the oxygen concentration at relatively low temperatures, and opens applications to various devices. is there. The long-awaited effect that the controlled oxygen concentration can be stably maintained over a long period of time can be obtained by the configuration in which the conductive oxide is covered with the oxygen barrier layer so that there is no exposed portion. The present invention having such an effect,
Among conductive oxides, they make a great contribution to the practical use of oxide superconductors, which are expected to have accurate control of characteristics and long-term stability in practical use, and are industrially very useful.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の断面図、第2図は該実施例の
平面図、第3図は実施例1での電流による導電性酸化物
の酸素濃度の制御状況を示すグラフで、その横軸は通電
電気量(クーロン)、縦軸は抵抗率(Ω・cm)であり、
第4図、第5図は実施例2の結果を示すグラフで、その
横軸は温度(K)で、縦軸は抵抗率(Ω・cm)であり、
第6図、第7図、第8図は実施例3の結果を示すグラフ
で、第6図は通電電気量(×10-2クーロン)と抵抗率の
関係を示すグラフ、第7図は、低温における温度(K)
と抵抗率の関係を示すグラフ、第8図は通電電気量とC
軸の長さ(Å)との関係を示すグラフである。 1:固体電解質(YSZ)基板、2:導電性酸化物(Y−Ba−C
u−O)薄膜、3:多孔質平板状白金電極、4:酸素バリヤ
層、5:無孔質平板状白金電極。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a plan view of the embodiment, and FIG. 3 is a graph showing a control situation of an oxygen concentration of a conductive oxide by a current in the embodiment 1. The horizontal axis is the amount of electricity (coulomb) and the vertical axis is the resistivity (Ω · cm).
4 and 5 are graphs showing the results of Example 2, in which the horizontal axis is temperature (K) and the vertical axis is resistivity (Ω · cm).
FIGS. 6, 7, and 8 are graphs showing the results of Example 3, FIG. 6 is a graph showing the relationship between the amount of energized electricity (× 10 −2 coulombs) and the resistivity, and FIG. Temperature at low temperature (K)
FIG. 8 is a graph showing the relationship between resistivity and resistivity, and FIG.
It is a graph which shows the relationship with axis length ((triangle | delta)). 1: Solid electrolyte (YSZ) substrate, 2: Conductive oxide (Y-Ba-C)
u-O) thin film, 3: porous plate-like platinum electrode, 4: oxygen barrier layer, 5: non-porous plate-like platinum electrode.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/24 ZAA H01L 39/24 ZAAB (56)参考文献 特開 昭63−158452(JP,A) 特開 平1−148712(JP,A) 特開 平1−157481(JP,A) 特表 平2−504259(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 H01L 39/22 - 39/24 H01L 39/02 - 39/04 C01B 13/14 H01B 12/02 C01G 1/00 G01N 27/46Continuation of the front page (51) Int.Cl. 6 Identification symbol FI H01L 39/24 ZAA H01L 39/24 ZAAB (56) References JP-A-63-158452 (JP, A) JP-A-1-148712 (JP, A) JP-A-1-157481 (JP, A) JP-A-2-504259 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 39/00 H01L 39/22-39 / 24 H01L 39/02-39/04 C01B 13/14 H01B 12/02 C01G 1/00 G01N 27/46

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性酸化物と酸素イオン伝導性を有する
固体電解質とを積層した積層体からなり、固体電解質を
介して導電性酸化物の酸素濃度を制御するようにした導
電性酸化物積層体において、該積層体の固体電解質側の
外面に導電性酸化物に対向するように酸素を通しイオン
化又は消イオン化する電極を、その導電性酸化物側の外
面に酸素が透過できない酸素バリア性の電極を設けると
共に、該導電性酸化物を露出部が無いように酸素が透過
できない酸素バリヤー層で被覆したことを特徴とする導
電性酸化物積層体。
1. A conductive oxide laminate comprising a laminate in which a conductive oxide and a solid electrolyte having oxygen ion conductivity are laminated, wherein the oxygen concentration of the conductive oxide is controlled via the solid electrolyte. In the body, an electrode that allows oxygen to pass through and ionizes or deionizes the outer surface on the solid electrolyte side of the laminate so as to face the conductive oxide has an oxygen barrier property that does not allow oxygen to pass through the outer surface on the conductive oxide side. A conductive oxide laminate comprising an electrode, and the conductive oxide covered with an oxygen barrier layer through which oxygen cannot pass so that there is no exposed portion.
【請求項2】請求項第1項記載の導電性酸化物積層体に
おいて、固体電解質側の電極が多孔質電極であり、導電
性酸化物側の電極が無孔質電極である導電性酸化物積層
体。
2. The conductive oxide laminate according to claim 1, wherein the electrode on the solid electrolyte side is a porous electrode, and the electrode on the conductive oxide side is a non-porous electrode. Laminate.
【請求項3】請求項第1項又は第2項記載の導電性酸化
物積層体において、酸素バリヤー層に(111)面が膜面
の垂直方向に配向した。多結晶又は単結晶のMgO薄膜を
用いた導電性酸化物積層体。
3. The conductive oxide laminate according to claim 1, wherein the (111) plane is oriented in the direction perpendicular to the film surface in the oxygen barrier layer. A conductive oxide laminate using a polycrystalline or single-crystal MgO thin film.
【請求項4】請求項第1項〜第3項記載のいずれかの導
電性酸化物積層体において、導電性酸化物が酸化物超伝
導体である導電性酸化物積層体。
4. The conductive oxide laminate according to claim 1, wherein the conductive oxide is an oxide superconductor.
【請求項5】請求項第4項記載の導電性酸化物積層体に
おいて、導電性酸化物がY−Ba−Cu−O系の酸化物超伝
導体である導電性酸化物積層体。
5. The conductive oxide laminate according to claim 4, wherein the conductive oxide is a Y—Ba—Cu—O-based oxide superconductor.
【請求項6】請求項第1項〜第5項記載のいずれかの導
電性酸化物積層体において、固体電解質及び導電性酸化
物が板状体である導電性酸化物積層体。
6. The conductive oxide laminate according to claim 1, wherein the solid electrolyte and the conductive oxide are plate-like bodies.
【請求項7】請求項第6項記載の導電性酸化物積層体に
おいて、固体電解質基板上に気相堆積法により導電性酸
化物薄膜を積層した導電性酸化物積層体。
7. The conductive oxide laminate according to claim 6, wherein a conductive oxide thin film is laminated on the solid electrolyte substrate by a vapor deposition method.
【請求項8】請求項第6項記載の導電性酸化物積層体に
おいて、固体電解質基板上に塗布法により導電性酸化物
薄膜を積層した導電性酸化物積層体。
8. The conductive oxide laminate according to claim 6, wherein a conductive oxide thin film is laminated on the solid electrolyte substrate by a coating method.
JP1065891A 1988-09-14 1989-03-20 Conductive oxide laminate Expired - Fee Related JP2815382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065891A JP2815382B2 (en) 1988-09-14 1989-03-20 Conductive oxide laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-228338 1988-09-14
JP22833888 1988-09-14
JP1065891A JP2815382B2 (en) 1988-09-14 1989-03-20 Conductive oxide laminate

Publications (2)

Publication Number Publication Date
JPH02191381A JPH02191381A (en) 1990-07-27
JP2815382B2 true JP2815382B2 (en) 1998-10-27

Family

ID=26407057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065891A Expired - Fee Related JP2815382B2 (en) 1988-09-14 1989-03-20 Conductive oxide laminate

Country Status (1)

Country Link
JP (1) JP2815382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340453A (en) * 2004-05-26 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing oxide high-temperature superconductor high-frequency element

Also Published As

Publication number Publication date
JPH02191381A (en) 1990-07-27

Similar Documents

Publication Publication Date Title
US4963524A (en) Sputtering device for manufacturing superconducting oxide material and method therefor
CN1031911A (en) Make the method for super conducting patterns
CA1330548C (en) Method and apparatus for producing thin film of compound having large area
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JP2815382B2 (en) Conductive oxide laminate
JP3037358B2 (en) Manufacturing method of oxide superconductor and oxide superconductor laminate
EP0306286B1 (en) Method and apparatus for manufacturing superconducting ceramics materials
JPH07106882B2 (en) Method for producing conductive oxide
JPS63310515A (en) Manufacture of superconductor membrane
JPH0825742B2 (en) How to make superconducting material
US5225396A (en) Method for forming an oxide superconducting film
JPH02248301A (en) Production of oxide superconductor
JP2585561B2 (en) Oxide superconducting material
JPH0380578A (en) Manufacture of superconducting element, superconducting transistor, and superconducting thin line
KR960001194B1 (en) Method for adjusting the threshold temperature the saturation
JP3061634B2 (en) Oxide superconducting tape conductor
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JP2529347B2 (en) Preparation method of superconducting thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH0764678B2 (en) Method for producing superconducting thin film
JP2683689B2 (en) Method for producing oxide superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH061608A (en) Production of conductive oxide thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH0246608A (en) Protective membrane for superconductive member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees