JPS6273155A - Characteristic improving method of oxygen sensor - Google Patents

Characteristic improving method of oxygen sensor

Info

Publication number
JPS6273155A
JPS6273155A JP60212648A JP21264885A JPS6273155A JP S6273155 A JPS6273155 A JP S6273155A JP 60212648 A JP60212648 A JP 60212648A JP 21264885 A JP21264885 A JP 21264885A JP S6273155 A JPS6273155 A JP S6273155A
Authority
JP
Japan
Prior art keywords
sensor element
oxygen sensor
partial pressure
oxygen
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212648A
Other languages
Japanese (ja)
Inventor
Noboru Yamazoe
昇 山添
Norio Miura
則雄 三浦
Shigeki Kuwata
桑田 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60212648A priority Critical patent/JPS6273155A/en
Publication of JPS6273155A publication Critical patent/JPS6273155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve response speed in a low temperature region, by exposing an oxygen sensor element to a gas stream, which has a partial vapor pressure of 0.005-1atm, at a temperature of 80-250 deg.C to perform steam treatment. CONSTITUTION:A reference electrode is provided at one surface of a solid state electrolyte layer comprising a fluoride ion conductor, and a detecting electrode is provided at the other surface thereof. Thus, an oxygen sensor element is formed. The oxygen sensor element is exposed to a gas stream, which has a partial pressure of steam at 0.005-1atm, at a temperature of 80-250 deg.C, and steam treatment is performed. For example, a mixture of Sn and SnF2 is fused and fixed to a solid state electrolyte layer comprising an LaF3 single crystal as the fluoride ion conductor, and a reference electrode is formed. Platinum is vapor deposited and a detecting electrode is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 大発明は、フッ化物イオン導電体を固体電解質として利
用した低温作動型の酸素センサーの特性改善特に応答速
度の改善方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving the characteristics, particularly the response speed, of a low-temperature operating type oxygen sensor using a fluoride ion conductor as a solid electrolyte.

〔従来技術〕[Prior art]

従来、固体電解質酸素センサーとしては安定化ツルフェ
アを用いた酸素センサーが既に実用化され自動車、ゼイ
ラー等の空燃費制御用として広く使用さね、ている。し
かし、安定化ノルコニアを用いた酸素センサーは、安定
化ノルコニアの抵抗が500℃以下では高くなるために
、作動温度が500℃以上と限定され低温域の酸素セン
サーとしては使用することができない。現在低温域用と
しては、クラーク型酸素センサーで代表される液体電解
ηを用すたセンサーが一部で使用されているが、液体電
解質を利用しているためにメンテナンス上不利であり、
小型化も困難であるという欠点を有する。
Conventionally, as a solid electrolyte oxygen sensor, an oxygen sensor using stabilized turfium has already been put into practical use and is widely used for air/fuel efficiency control in automobiles, Zeilers, etc. However, oxygen sensors using stabilized norconia cannot be used as oxygen sensors in low-temperature ranges because the resistance of stabilized norconia becomes high at temperatures below 500° C., so the operating temperature is limited to 500° C. or higher. Currently, some sensors using liquid electrolyte η, such as Clark-type oxygen sensors, are used for low-temperature applications, but because they use a liquid electrolyte, they are disadvantageous in terms of maintenance.
It also has the disadvantage of being difficult to miniaturize.

そのため近年、固体電解質を利用した酸素センサーの研
究が注目されているが、低温域で充分な実用性金何する
酸素センサーは未だ開発されていない。
For this reason, research into oxygen sensors using solid electrolytes has attracted attention in recent years, but an oxygen sensor that is sufficiently practical at low temperatures has not yet been developed.

酸素センサーの固体電解質としては、S rCt2 。The solid electrolyte for the oxygen sensor is SrCt2.

5b205’nH2O,LaF3.Pb5nF4. B
iF3.PbF2などが研究されているが、これらのう
ちフッ化物イオン導電体は5b205nH20と共に低
温でも比較的高い導電率を有する点で有望視されている
。しかしフッ化物イオン導電体を利用した酸素センサー
は低温域でも比較的温度の高い領域少なくとも100℃
をこえる領域を作動温度とすることが必要であり、10
0℃以下乃至室温では応答速度が極めて遅い欠点を有し
ている。例えば室温において0.2気圧から1.0気圧
の酸素分圧の変化に対して応答速度が90分以上という
時間を要する。
5b205'nH2O, LaF3. Pb5nF4. B
iF3. PbF2 and the like are being studied, and among these, fluoride ion conductors are seen as promising because they have relatively high conductivity even at low temperatures, along with 5b205nH20. However, oxygen sensors using fluoride ion conductors operate in relatively high temperature ranges of at least 100°C even at low temperatures.
It is necessary to set the operating temperature to a region exceeding 10
It has the disadvantage that the response speed is extremely slow at temperatures below 0°C or at room temperature. For example, a response time of 90 minutes or more is required for a change in oxygen partial pressure from 0.2 atm to 1.0 atm at room temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、かかる現況に鑑みフッ化物イオン導電体を固
体電解質として利用した酸素センサーの低温域就中10
0℃以下乃至室温の領域における応答速度の改善方法を
提供すること全意図する。
In view of the current situation, the present invention provides an oxygen sensor using a fluoride ion conductor as a solid electrolyte in a low temperature range of 10 to 10%.
The present invention is intended to provide a method for improving response speed in the temperature range from below 0° C. to room temperature.

なお、本発明におけるフッ化物イオン導電体を固体屯解
質層に使用した酸素センサー素子は、溶存U ’にセン
サー北子としても利用できるが溶存酸素センサー素子と
して使用した場合は比較的応答速度が早くその改善の必
要性は余シ高くない。
The oxygen sensor element of the present invention using the fluoride ion conductor in the solid solute layer can also be used as a sensor for dissolved U', but when used as a dissolved oxygen sensor element, the response speed is relatively low. There is no great need for immediate improvement.

〔問題点全解決するための手段〕[Means to solve all problems]

大発明は上記の意図を達成するために次の構成全採用す
る。即ち、 本発明は、フッ化物イオン導電体からなる固体′4解質
層の一側面に参照極、他側面に検知極が配されて構成さ
瓦る・′1!未センサー素子を80〜250℃の温度に
おいて、0005〜1atmの水蒸気分圧4(有するガ
ス気流中にさらすことによって水蒸気処理を行なうこと
′fr:特徴とする酸素センサー素子の特性改善方法で
ある。
The great invention employs the following configurations to achieve the above intention. That is, the present invention is constructed by disposing a reference electrode on one side of a solid solute layer made of a fluoride ion conductor and a detection electrode on the other side. A method for improving the characteristics of an oxygen sensor element is characterized in that a non-sensor element is subjected to a water vapor treatment by exposing it to a gas stream having a water vapor partial pressure of 4 (0005 to 1 atm) at a temperature of 80 to 250°C.

フッ化物イオン導電体としては特に制限されないが、代
表的なものとしてtri LaF!、、BiF6.Pb
F2及びP b S n F 4が挙げられる。本発明
においては、これらのうちから適宜選ばれた一以上の単
結晶、多結晶、圧粉体またはその焼結体あるいは蒸N膜
が使用される。
The fluoride ion conductor is not particularly limited, but triLaF! is a typical example. ,,BiF6. Pb
F2 and PbSnF4. In the present invention, one or more single crystals, polycrystals, green compacts, sintered bodies thereof, or vaporized N films appropriately selected from these are used.

フッ化物イオン導゛准体からなる固体直解質層の一側面
に参照極、他側面に検知極が配されて酸素センサー素子
が構成される。参照極、検知極は従来一般に酸素センサ
ー金構成する場合に採用されていると同様な手段によっ
て構成される。即ち、通常、参照極は、金属と金属フッ
化物の混合体即ち、SnとS nF 2 lAg (!
:AgF 、P bとPbF2.BiとB I F s
の混合体が素材として用いられ、これらを固体電解實層
の一側面に圧着、融着、蒸着その他の適当な手段により
配し、リード線を適宜の方法で取り出した後に外気との
接触を避けるために封止して参照極とされる。また検知
極は白金、・2ラソウム等の貴金属が末材として用いら
れ、これら全固体電解質層の他イJ11面に蒸着、圧着
その他の手段により配して構成される。
A reference electrode is arranged on one side of a solid direct solution layer made of a fluoride ion conductor, and a detection electrode is arranged on the other side, thereby constructing an oxygen sensor element. The reference electrode and the detection electrode are constructed by the same means as conventionally employed in the construction of gold oxygen sensors. That is, the reference electrode is usually made of a mixture of metal and metal fluoride, namely Sn and SnF 2 lAg (!
:AgF, Pb and PbF2. Bi and B I F s
A mixture of these is used as a material, and these are placed on one side of the solid electrolyte layer by pressure bonding, fusion bonding, vapor deposition, or other appropriate means, and contact with the outside air is avoided after the lead wire is taken out by an appropriate method. It is then sealed and used as a reference electrode. The sensing electrode is constructed by using a noble metal such as platinum or 2 latium as a powder material, and disposing it on the J11 surface in addition to the all-solid electrolyte layer by vapor deposition, pressure bonding, or other means.

本発明の最大の特徴は上記のようにして構成された酸素
センサー素子を80〜250℃の温度においてO,OO
5〜l atmの水蒸気分圧全有するガス気流中にさら
すことによって水蒸気処理全行なうことである。水蒸気
処理の温度は80〜250℃の範囲内で実がへすること
が必要であり、就中100〜200℃の範囲内が好まし
い。80℃未満では、応答速度の改善効果が余りみられ
ず80℃を境界としてそれ以上特に100℃以上におい
て飛躍的な改善がみられる。また250℃を超える場合
は参照極やシール剤などに対する悪影響がみられ、その
結果応答速度の改善の面でも低下乃至飽和状態の傾向が
みられる。
The greatest feature of the present invention is that the oxygen sensor element constructed as described above can be heated to O, OO at temperatures of 80 to 250°C.
The entire steam treatment is carried out by exposure to a gas stream having a total steam partial pressure of 5 to 1 atm. The temperature of the steam treatment must be within the range of 80 to 250°C to cool the fruit, and preferably within the range of 100 to 200°C. Below 80°C, there is not much improvement in the response speed, and above 80°C, a dramatic improvement is seen, especially above 100°C. Furthermore, if the temperature exceeds 250°C, there is an adverse effect on the reference electrode, sealing agent, etc., and as a result, there is a tendency for the response speed to decrease or become saturated.

また、0.005〜1atm更に好ましくUo、01〜
Q、 l atmの水蒸気分圧を有するガス気流中にさ
らすことが必要である。雰囲気ガスの種類は特に限定さ
れず、通常は、空気又は窒素・アルゴンなどの不活性ガ
スなどが用いられる。
Further, 0.005 to 1 atm, more preferably Uo, 01 to
It is necessary to expose it to a gas stream having a water vapor partial pressure of Q, l atm. The type of atmospheric gas is not particularly limited, and usually air or an inert gas such as nitrogen or argon is used.

水蒸気分圧が0.005 atm未膚の場合は、応答速
度の改善の効果が著しく低下しまた1atm’i超える
場合は改善の効果がほぼ飽和する傾向がみられる。
When the water vapor partial pressure is less than 0.005 atm, the effect of improving the response speed is significantly reduced, and when it exceeds 1 atm'i, the improving effect tends to be almost saturated.

上記の温度範囲、水蒸気分圧の条件全満足するガス気流
雰囲気は、例えば、恒@槽中に水をはったがラスピン装
置き、これに一定流量のガスを流すことによって一定の
水蒸気圧とし、さらにこのガスを酸素ガスセンサー素子
の置かれたガラス管中に流し、この部分全電気炉により
特定の温度に加熱するなどの手段によって得ることがで
きる。
A gas flow atmosphere that satisfies all of the above conditions of temperature range and water vapor partial pressure can be created, for example, by using a Raspin device containing water in a thermostat, and by flowing a constant flow rate of gas through it, the water vapor pressure is maintained at a constant level. Further, this gas can be obtained by such means as flowing this gas into a glass tube in which an oxygen gas sensor element is placed and heating it to a specific temperature in a partially electric furnace.

このようなガス気流雰囲気中において水蒸気処理を行な
う時間は、−概に定まらないが、応答速度の良好な改善
のためには充分な水蒸気処理を行なうことが望まれる。
Although the time period for performing the steam treatment in such a gas flow atmosphere is not generally determined, it is desirable to perform the steam treatment sufficiently in order to improve the response speed.

充分な水蒸気処理が行なわれたかどうかは応答速度の改
善効果の611]定から容易に知ることができる。一般
に水蒸気処理による応答速度の改善効果は、水蒸気処理
時間の経過とともに飽和状態になる傾向がみられるため
、3〜24時間通常5〜15時間程度行なえば充分な水
蒸気処理と言える場合が多い。
Whether sufficient water vapor treatment has been carried out can be easily determined from the improvement effect on response speed. In general, the response speed improvement effect of steam treatment tends to reach saturation as the steam treatment time elapses, so it can often be said that steam treatment is sufficient if it is carried out for 3 to 24 hours, usually for about 5 to 15 hours.

史に、本発明の最も好ましい態様としては、水蒸気処理
に次いで、エイジング処理を行なう態様である。ここで
エイ・ソング処理とは、固体電解質と電極間の界面での
電荷移動を円滑にする手段を称する。このようなエイジ
ング処理全行なうことによシ応答速度の改善程度は一層
顕著になる。
Historically, the most preferred embodiment of the present invention is an embodiment in which aging treatment is performed subsequent to steam treatment. Here, the A-Song treatment refers to a means for smoothing charge transfer at the interface between the solid electrolyte and the electrode. By performing all of these aging processes, the degree of improvement in response speed becomes even more remarkable.

エイジング処理の具体的手段として代表的な、態様を挙
げれば下記のものがある@その1は1酸素分圧の比が2
以上ある酸素分圧の高い雰囲気と低いV囲気に交互にさ
らす態様である。酸素分圧の比が2以上好ましくは3以
上あることが必要であシ、これ未満の分圧差ではエイジ
ング処理の効果が余りみられなtx、、また酸素分圧の
高い雰囲気における酸素分圧が余り小さい場合はエイジ
ング処理に長時間を要するために、酸素分圧の高い雰囲
気における酸素分圧は0.01atm以上であることが
好ましbo また雰囲気ガスの(・種類としては酸素センサー素子に
悪影響を与えるものでなけJしば適宜選び得るが、代表
的なものとして窒素、アルゴン・ヘリウムなどの不活性
ガスが挙げられる。また、本態様のエイジング処理では
充分なエイジング沈埋効果を得るためには、酸素分圧の
高い雰囲気と低い雰囲気に少なくとも5回以上好ましく
は10回以上交互にさらすことが望まれる。この回数は
、両案囲気の酸素分圧比が小さくなれば増やす必要があ
るが例えば酸素分圧が1気圧と0.2気圧つまり分圧比
が5の場合は5〜30回程度交互にさらすこと即ち酸素
分圧の高い雰囲気と低い雰囲気の夫々の雰囲気VC5〜
30回程度交互にさらすことが好ましい。なお、水蒸気
処理時における処理温度が低いほどエイジング処理時の
上記回数は多くすることが債まれる。各雰囲気における
1回のさらす時間は通常5〜60分権度であり、一般に
エイジング処理の初期段階においては比較的長い時間さ
らすことが好ましい。また、酸素分圧の低い5嬰囲気に
おける酸素分圧は零乃至零に近い値であっても差支えな
い。例えば、・ηぶ分圧の高い;囲気として空気、低い
雰囲気として苅窒素雰囲気を採用するのも好寸しい一つ
の態様である。
Typical examples of specific aging treatment methods include the following: (1) The ratio of 1 oxygen partial pressure is 2
This is a mode in which exposure is alternately made to an atmosphere with a high oxygen partial pressure and an atmosphere with a low V atmosphere. It is necessary that the ratio of oxygen partial pressures is 2 or more, preferably 3 or more, and if the partial pressure difference is less than this, the effect of aging treatment will not be seen much, and the oxygen partial pressure in an atmosphere with high oxygen partial pressure is If it is too small, the aging process will take a long time, so it is preferable that the oxygen partial pressure in an atmosphere with a high oxygen partial pressure is 0.01 atm or more. Inert gases such as nitrogen, argon, helium, etc. are representative examples, although they can be selected as appropriate.In addition, in the aging treatment of this embodiment, in order to obtain a sufficient aging effect, It is desirable to alternately expose the atmosphere to an atmosphere with a high oxygen partial pressure and an atmosphere with a low oxygen partial pressure at least 5 times, preferably 10 times or more.This number of times needs to be increased as the oxygen partial pressure ratio of both atmospheres becomes smaller, but for example, if the oxygen partial pressure is If the partial pressure is 1 atm and 0.2 atm, that is, the partial pressure ratio is 5, the exposure should be alternated about 5 to 30 times, that is, the atmosphere with high oxygen partial pressure and the atmosphere with low oxygen partial pressure VC5~
It is preferable to alternately expose about 30 times. Note that the lower the treatment temperature during the steam treatment, the greater the number of times during the aging treatment. The time for one exposure in each atmosphere is usually 5 to 60 minutes, and it is generally preferable to expose for a relatively long time in the early stages of aging treatment. Further, the oxygen partial pressure in the 5-300-degree atmosphere, where the oxygen partial pressure is low, may be zero or a value close to zero. For example, one suitable embodiment is to use air as the surrounding atmosphere and a nitrogen atmosphere as the low atmosphere.

その21″i、外部から変@rに正金印加する態様であ
る。変動電圧としては一定屯圧全断続的に印加する場合
や2踵の高低電圧全交互に印加する場合硯は連続的に変
化する電圧を印加する場合などが挙げられる。これらい
ずれの場合も印加される電圧の最高値と最低値の差が1
0 mV好ましくは20mV以上あることが望まれる。
21"i, this is a mode in which specie is applied from the outside to the variable @r. As a variable voltage, when a constant pressure is applied intermittently, or when the high and low voltages of the two heels are applied alternately, the inkstone is continuously applied. Examples include cases where a varying voltage is applied.In any of these cases, the difference between the highest and lowest voltage applied is 1.
It is desired that the voltage is 0 mV, preferably 20 mV or more.

また、変動電圧の印加能時間は、変動?1工圧の変動周
期にも関連するが、一般に30分以上であり1通常は2
時間程度以上が好ましい。
Also, does the application time of variable voltage vary? 1 It is also related to the fluctuation period of construction pressure, but it is generally 30 minutes or more, and 1 usually 2 minutes.
It is preferable to spend about an hour or more.

〔作用〕[Effect]

本発明における水蒸気処理及びエイジング処理がどのよ
うな作用によって酸素センサー素子の応答速度の改善を
もたらすのか明確ではないが、本発明者は次のように推
測している。即ち、水蒸気処理に、よって、フッ化物イ
オン導電体表面にオキ7フツ化物thハイドロオキシフ
ツ化物が生成しているものと予想され、これにより気相
中の酸素とフッ化物イオン導電体中のフッ化物イオン間
の電気的接続が良好と々す、またエイジング処理に工っ
で、電解質と電極間の界面での電荷移動が円滑になるた
めに応答速度が改善されるものと推測している。
Although it is not clear how the water vapor treatment and aging treatment of the present invention improve the response speed of the oxygen sensor element, the present inventor speculates as follows. That is, it is expected that oxy7 fluoride th hydroxyfluoride is generated on the surface of the fluoride ion conductor due to the water vapor treatment, and this causes the oxygen in the gas phase and the fluoride in the fluoride ion conductor to be generated. It is speculated that the response speed is improved because the electrical connection between the compound ions is good, and the aging treatment smoothes charge transfer at the interface between the electrolyte and the electrode.

〔効果〕 本発明の実施によって酸素センサー素子の応答速度が飛
躍的に改善される。改善の程度は、フッ化物イオンsj
T、 ’iβ体、参照極及び検知極の素材の1墳や酸素
センサー素子のj;、ν成法並びに水蒸気処理やエイジ
ング処理の態様更には作動温度等によって相違するが、
概括的には、水蒸気処理によって3〜6倍程度更にエイ
ジング処理全施した場合ば]、O〜40倍程度の応答速
度の改善叩ち応答時間の短縮の効果がみられる。−例ヲ
挙げれば、フッ化物イオン導電体としてLaF 3単結
晶金用めてなる固体電解質層にSnとS nF 2の混
合換金融着して参照極とし、白金全蒸着して検知極とし
た酸素センサー素子は、そのままでに室温において0,
2気圧から10気圧の酸飛分圧の変化に対して、応答速
度は9()分収上を要するが、本発明の水蒸気処理及び
エイジング処理全実施することにより、応答速度は5分
以内にまで改善てれた。以下更に、本発明の実施例及び
比校例を挙げて本発明の具体的な効果金示す。
[Effect] By implementing the present invention, the response speed of the oxygen sensor element is dramatically improved. The degree of improvement is determined by the fluoride ion sj
T, 'iβ body, reference electrode and sensing electrode materials, oxygen sensor element j;, ν formation method, steam treatment and aging treatment modes, and operating temperature, etc.
Generally speaking, if the water vapor treatment is applied by about 3 to 6 times, and if the entire aging treatment is performed, then the effect of improving the response speed by about 0 to 40 times and shortening the hitting response time can be seen. - To give an example, a mixed exchange of Sn and SnF 2 was deposited on a solid electrolyte layer made of LaF 3 single crystal gold as a fluoride ion conductor to form a reference electrode, and platinum was fully vapor-deposited to form a sensing electrode. The oxygen sensor element has a temperature of 0,
The response time for a change in acid partial pressure from 2 atm to 10 atm requires 9() minutes, but by carrying out the steam treatment and aging treatment of the present invention, the response time can be reduced to within 5 minutes. It has improved until now. Hereinafter, specific effects of the present invention will be illustrated by giving examples and comparison examples of the present invention.

実刑例1及び比較例1 固体電解質としてはLa Fsを用いたセンサー素子を
、11角のL aF s単結晶(厚さ1龍)の一方の面
に参照極としてSnとS nF2の混合物を融着し、リ
ード線を取シ出した後、外気との接触を避けるためにエ
ポキシ樹脂でコーティングし、他方の面に検知極として
白金を蒸着しリード線を取り出して構成した。また、固
体電解質としてBIF3を用いたセンサー素子を直径I
CrILの錠剤成型器を用いて、Bi金属粉末、BiF
3扮末、pt黒粉末の順に順次遺み重ねて加圧成型した
タブレットのBi心極(参照Δ)、pt屯愼(S知極)
の各々からリード線を取り出した後、旧電極を外気との
屡触を避けるためにエポキシ樹脂でコーティングして構
成した。更に、固体′也極質としてPbF2を用いたセ
ンサー素子を、アルミナ基板上にpb(参照極)、Pb
F2(固体電解質)、Pt(検知極)を順次蒸着により
積層させることによ)構成した。
Prison Case 1 and Comparative Example 1 A sensor element using LaFs as a solid electrolyte was prepared by melting a mixture of Sn and SnF2 as a reference electrode on one side of an 11-sided LaFs single crystal (1× thick). After the lead wires were removed, they were coated with epoxy resin to avoid contact with the outside air, platinum was deposited on the other side as a sensing electrode, and the lead wires were taken out. In addition, a sensor element using BIF3 as a solid electrolyte with a diameter of I
Using a CrIL tablet press, Bi metal powder, BiF
At the end of the third round, PT black powder was layered in order and pressure molded into a tablet Bi core (reference Δ), PT Tunxin (S Zhige).
After removing the lead wires from each, the old electrodes were coated with epoxy resin to prevent frequent contact with the outside air. Furthermore, a sensor element using PbF2 as a solid polar material was fabricated on an alumina substrate with PB (reference electrode), Pb
It was constructed by sequentially stacking F2 (solid electrolyte) and Pt (sensing electrode) by vapor deposition.

上記方法で得た3独のセンサー素子1個ずつを水蒸気処
理を行なうために電気炉中に据え付けた反応管中に固定
した。一方、恒温槽中に水をはったガラスビンを置き雰
囲気ガスとしてこれに100〜1011Ll/m l 
nの流量で乾燥空気を通過させ、露結防止のためすぜン
ヒーターを巻い/こガラス管を通して上記電気炉中の反
応管に流しだ。また上記恒温槽の温度を調節して水蒸気
分圧を0.05 a tm Ic A整した。
Each of the three sensor elements obtained by the above method was fixed in a reaction tube installed in an electric furnace for steam treatment. On the other hand, place a glass bottle filled with water in a thermostatic chamber and add 100 to 1011 Ll/ml as atmospheric gas.
Dry air was passed through the dry air at a flow rate of n, and was passed through a glass tube wrapped around a suction heater to prevent dew condensation, and then flowed into the reaction tube in the electric furnace. Further, the temperature of the constant temperature bath was adjusted to adjust the water vapor partial pressure to 0.05 atm IcA.

水蒸気処理の温度は反応管中にセンサー素子と一緒ンて
1斤いた熱電灯を用いて測定し、80℃において12時
間水蒸気処理を行なった。同様な方法で、60,100
,150,200.250及び300Cの各温度で新た
に3桟の素子?水蒸気処理し、341類の素子7個ずつ
を得た。
The temperature of the steam treatment was measured using a thermoelectric lamp placed together with a sensor element in the reaction tube, and the steam treatment was carried out at 80° C. for 12 hours. In a similar manner, 60,100
, 150, 200. Three new elements at each temperature of 250 and 300C? After steam treatment, 7 elements of class 341 were obtained.

次に、上記センサー素子の一つを電気炉中に据え付けた
ガラス管中に固定し、2木のリード線を電気炉外部に取
り出し、両極間の起電力をエレクトロメータを用いて測
定し、記録するようにした後、まず、作@温度が室温に
てガラス管に被恢ガスとして100m137m1nO流
址で空気を流しておき、起電力が安定したところで被検
ガスを純酸累に切シ換えたときの起電力の変化を記録し
、起電力の変化がほぼ飽和したところで測定を中止した
。起電力の変化が始1りてから、変化しなくなるまでの
起1−αカの差の値を求め起電力の変化が始まってから
、この起電力の差の値の90%の値になるまでの時間を
90%応答時間として順次測定した。
Next, one of the above sensor elements was fixed in a glass tube installed in an electric furnace, the two lead wires were taken out of the electric furnace, and the electromotive force between the two poles was measured using an electrometer and recorded. After adjusting the temperature, first, air was flowed through the glass tube at room temperature with a flow rate of 100 m, 137 m, and 1 nO, and when the electromotive force became stable, the test gas was switched to pure acid. The change in electromotive force was recorded, and the measurement was stopped when the change in electromotive force reached almost saturation. Find the value of the difference between the electromotive force 1-α from when the electromotive force starts to change until it stops changing, and the value becomes 90% of the value of the difference in electromotive force from when the electromotive force starts to change. The time required for each test was measured sequentially with the time taken as 90% response time.

但し、PbF2を用いた素子については、室温では安定
な作動が得られなかった。
However, devices using PbF2 could not operate stably at room temperature.

次に同じ素子を用いて作動温度を100℃として同様な
測定を行った。
Next, similar measurements were carried out using the same device at an operating temperature of 100°C.

また、水蒸気処理をしない素子についても同様な測定を
行った。
Similar measurements were also performed on elements that were not subjected to water vapor treatment.

これらの結果を表1に示す。なおA1.7及び8は比較
例である。
These results are shown in Table 1. Note that A1.7 and 8 are comparative examples.

実施例2 水蒸気処理時の処理温度上100,150℃とし、水蒸
気分圧を0.005.0.01.0.05,0.5及び
l、Qatmとした以外は実施例1と同様にして3種類
のセンサー素子の90チ応答時間を6111定した。
Example 2 The same procedure as in Example 1 was carried out except that the treatment temperature during steam treatment was set at 100,150°C, and the steam partial pressure was set at 0.005, 0.01, 0.05, 0.5, 1, and Qatm. The 90-chi response times of three types of sensor elements were determined to be 6111.

その結果を表2に示す。The results are shown in Table 2.

なお、水蒸気分圧1.Qatmのときは空気に代えて沸
騰蒸気を送った・ 比較例2 水蒸気処理時の処理温度100℃の場合につき、水蒸気
分圧をほぼ零つまシ乾燥空気を流した以外は実施例2と
同様にして素子の90チ応答時間を測定した。
In addition, water vapor partial pressure 1. When using Qatm, boiling steam was sent instead of air. Comparative Example 2 The same procedure as Example 2 was carried out except that when the treatment temperature during steam treatment was 100°C, the steam partial pressure was reduced to almost zero and dry air was flowed. The 90-chi response time of the device was measured.

また、水蒸気処理時の処理温度150℃の場合につき、
素子をオートクレーブ中で1500゜2atmの条件で
12時間処理した以外は実施例2と同様にして測定した
In addition, in the case of a treatment temperature of 150°C during steam treatment,
Measurement was carried out in the same manner as in Example 2, except that the device was treated in an autoclave at 1500° and 2 atm for 12 hours.

その結果を表3に示す。The results are shown in Table 3.

実施例3 固体電解質としてLaF sを用いたセンサー素子につ
いて、水蒸気処理時間を3.6及び24時間とした以外
は実施例1と同様にして90チ応答時間を測定した。
Example 3 Regarding a sensor element using LaF s as a solid electrolyte, the 90-chi response time was measured in the same manner as in Example 1, except that the water vapor treatment time was changed to 3.6 hours and 24 hours.

その結果を表4に示す。The results are shown in Table 4.

比較例3 固体粗解としてL a Fsを用いたセンサー素子につ
いて、水蒸気処理時間を3,6及び24時間とした以外
は、比較例1と同様にして90%応答時間を測定した。
Comparative Example 3 The 90% response time was measured in the same manner as in Comparative Example 1, except that the water vapor treatment time was changed to 3, 6, and 24 hours for a sensor element using L a Fs as the solid crude solution.

その結果を表5に示す。The results are shown in Table 5.

実施例4 固体寛解質としてL a F 5を用いたセンサー素子
について、水蒸気処理時間を3.6及び24時間とした
以外は実施例2と同様にして90%応答時間を測定した
Example 4 The 90% response time of a sensor element using L a F 5 as the solid solute was measured in the same manner as in Example 2, except that the steam treatment time was 3.6 and 24 hours.

その結果を表6に示す。The results are shown in Table 6.

比較例4 固体電解質としてLa F sを用いたセンサー素子に
ついて、水蒸気処理時間を3,6及び24時間とした以
外は比較例2と同様にして90俤応答時間を測定した。
Comparative Example 4 The 90-hour response time of a sensor element using LaFs as the solid electrolyte was measured in the same manner as Comparative Example 2, except that the steam treatment time was 3, 6, and 24 hours.

その結果を表7に示す。The results are shown in Table 7.

実施例5 固体電解質としてLaF sを用いたセンサー素子につ
いて、水蒸気処理温度を150℃とした以外は実施例1
と同条件で水蒸気処理した素子について、更にエイジン
グ処理として空気と純酸素を交互に起電力の変化が飽和
するまで夫々流すことを10回ずつ繰り返した。このエ
イジング処理後のセンサー素子について、作動温度を室
温及び100℃として実施例1と同様にして応答時間の
測定を行った。その結果は、90%応答時間が室温で2
分50秒、100℃で1分20秒であった。
Example 5 Example 1 except that the water vapor treatment temperature was 150° C. for the sensor element using LaF s as the solid electrolyte.
For the elements treated with water vapor under the same conditions as above, as an aging treatment, air and pure oxygen were alternately flowed 10 times each until the change in electromotive force was saturated. Regarding the sensor element after this aging treatment, the response time was measured in the same manner as in Example 1, with the operating temperature being room temperature and 100°C. The results show that the 90% response time is 2 at room temperature.
The temperature was 1 minute and 20 seconds at 100°C.

実施例6 固体電解質としてLa F sを用いたセン叶−素子に
ついて、エイジング処理の際のガスを純酸素に代えて純
窒素を用いた以外は実施例5と同様にして応答時間の測
定を行った。その結果は、90%応答時間が室温で2分
30秒、ioo℃で1分15秒であった。
Example 6 Regarding a sensor element using LaFs as a solid electrolyte, the response time was measured in the same manner as in Example 5 except that pure nitrogen was used instead of pure oxygen as the gas during the aging treatment. Ta. The results showed that the 90% response time was 2 minutes and 30 seconds at room temperature and 1 minute and 15 seconds at IOO°C.

実施例7 固体電解質としてLa F sを用いたセンサー素子に
について、エイジング処理として振幅40mV、周期2
0分の方形波をセンサー素子の両極に10時間印加した
以外は実施例5と同様にして応答時間の測定“を行った
。その結果は、90%応答時間が室温で3分、100℃
で1分40秒であった。
Example 7 A sensor element using LaFs as a solid electrolyte was subjected to aging treatment at an amplitude of 40 mV and a period of 2.
The response time was measured in the same manner as in Example 5 except that a 0 minute square wave was applied to both poles of the sensor element for 10 hours.The results showed that the 90% response time was 3 minutes at room temperature and 100 degrees Celsius.
It took 1 minute and 40 seconds.

Claims (7)

【特許請求の範囲】[Claims] (1)フッ化物イオン導電体からなる固体電解質層の一
側面に参照極、他側面に検知極が配されて構成される酸
素センサー素子を80〜250℃の温度において、0.
005〜1atmの水蒸気分圧を有するガス気流中にさ
らすことによって水蒸気処理を行なうことを特徴とする
酸素センサー素子の特性改善方法
(1) An oxygen sensor element composed of a reference electrode on one side of a solid electrolyte layer made of a fluoride ion conductor and a detection electrode on the other side was heated at a temperature of 80 to 250°C for 0.
A method for improving the characteristics of an oxygen sensor element, characterized by performing water vapor treatment by exposing it to a gas stream having a water vapor partial pressure of 0.005 to 1 atm.
(2)フッ化物イオン導電体が、LaF_3、BiF_
3、PbF_2及びPbSnF_4のうちから選ばれた
一以上の単結晶、多結晶、圧粉体またはその焼結体ある
いは蒸着膜である特許請求の範囲第1項記載の酸素セン
サー素子の特性改善方法
(2) The fluoride ion conductor is LaF_3, BiF_
3. The method for improving the characteristics of an oxygen sensor element according to claim 1, which is one or more single crystals, polycrystals, green compacts, or sintered bodies or vapor deposited films thereof selected from PbF_2 and PbSnF_4.
(3)フッ化物イオン導電体からなる固体電解質層の一
側面に参照極、他側面に検知極が配されて構成される酸
素センサー素子を80〜250℃の温度において、0.
005〜1atmの水蒸気分圧を有するガス気流中にさ
らすことによって水蒸気処理を行ない、次いでエイジン
グ処理を行なうことを特徴とする酸素センサー素子の特
性改善方法
(3) An oxygen sensor element composed of a reference electrode on one side of a solid electrolyte layer made of a fluoride ion conductor and a detection electrode on the other side was heated at a temperature of 80 to 250°C at 0.
A method for improving the characteristics of an oxygen sensor element, comprising performing a water vapor treatment by exposing it to a gas stream having a water vapor partial pressure of 0.005 to 1 atm, and then performing an aging treatment.
(4)エイジング処理として、酸素分圧の比が2以上あ
る酸素分圧の高い雰囲気と低い雰囲気に交互にさらすこ
とを行なう特許請求の範囲第3項記載の酸素センサー素
子の特性改善方法
(4) A method for improving the characteristics of an oxygen sensor element according to claim 3, wherein the aging treatment is performed by alternately exposing the oxygen sensor element to an atmosphere with a high oxygen partial pressure and an atmosphere with a low oxygen partial pressure in which the ratio of oxygen partial pressures is 2 or more.
(5)エイジング処理として、純窒素雰囲気と空気中に
交互にさらすことを行なう特許請求の範囲第3項記載の
酸素センサー素子の特性改善方法
(5) A method for improving the characteristics of an oxygen sensor element according to claim 3, wherein the aging treatment is performed by exposing the element to a pure nitrogen atmosphere and to air alternately.
(6)エイジング処理として、外部から変動電圧の印加
を行なう特許請求の範囲第3項記載の酸素センサー素子
の特性改善方法
(6) A method for improving the characteristics of an oxygen sensor element according to claim 3, wherein a varying voltage is applied externally as the aging treatment.
(7)フッ化物イオン導電体が、LaF_3、BiF_
3、PbF_2及びPbSnF_4のうちから選ばれた
一以上の単結晶、多結晶、圧粉体またはその焼結体ある
いは蒸着膜である特許請求の範囲第1項記載の酸素セン
サー素子の特性改善方法
(7) The fluoride ion conductor is LaF_3, BiF_
3. The method for improving the characteristics of an oxygen sensor element according to claim 1, which is one or more single crystals, polycrystals, green compacts, or sintered bodies or vapor deposited films thereof selected from PbF_2 and PbSnF_4.
JP60212648A 1985-09-27 1985-09-27 Characteristic improving method of oxygen sensor Pending JPS6273155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212648A JPS6273155A (en) 1985-09-27 1985-09-27 Characteristic improving method of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212648A JPS6273155A (en) 1985-09-27 1985-09-27 Characteristic improving method of oxygen sensor

Publications (1)

Publication Number Publication Date
JPS6273155A true JPS6273155A (en) 1987-04-03

Family

ID=16626109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212648A Pending JPS6273155A (en) 1985-09-27 1985-09-27 Characteristic improving method of oxygen sensor

Country Status (1)

Country Link
JP (1) JPS6273155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011739A2 (en) * 1988-05-20 1989-11-30 Sri International Solid compositions for fuel cell electrolytes
JPH02190759A (en) * 1989-01-19 1990-07-26 Jun Kuwano Solid electrolyte type oxygen sensor
CN100400681C (en) * 2005-11-28 2008-07-09 中国科学院金属研究所 Electric ageing treatment process of high temperature monocrystalline alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011739A2 (en) * 1988-05-20 1989-11-30 Sri International Solid compositions for fuel cell electrolytes
WO1989011739A3 (en) * 1988-05-20 1990-04-05 Stanford Res Inst Int Solid compositions for fuel cell electrolytes
JPH02190759A (en) * 1989-01-19 1990-07-26 Jun Kuwano Solid electrolyte type oxygen sensor
CN100400681C (en) * 2005-11-28 2008-07-09 中国科学院金属研究所 Electric ageing treatment process of high temperature monocrystalline alloy

Similar Documents

Publication Publication Date Title
JP3452569B2 (en) Composition, method and apparatus for separating oxygen from a gas mixture
US4040929A (en) Oxygen sensor having thin film electrolyte
JPH05502060A (en) Ceramic solid electrolyte based electrochemical oxygen concentrator
JPS6273155A (en) Characteristic improving method of oxygen sensor
US5320917A (en) Fluoride ionic conductor
US3698955A (en) Oxygen-responsive electrical current supply
Miyoshi et al. Electrical Conductivity of Hydrogen-Bonded Polymers
US5130691A (en) Superconductive apparatus having a superconductive device in a airtight package
US3657016A (en) Solid state battery having a rare earth fluoride electrolyte
Joseph et al. Preparation of La0. 9Sr0. 1Ga0. 85Mg0. 15O2. 875 thin films by pulsed-laser deposition and conductivity studies
JP3018925B2 (en) Electrochemical element
FR2626409A1 (en) SUPERCONDUCTING MATERIAL DEVICE AND METHOD OF MAKING SAME
Ratkje et al. The Transported Entropy of Oxygen Ion in Yttria‐Stabilized Zirconia
JP2815382B2 (en) Conductive oxide laminate
JPH06111862A (en) Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture
JP3527807B2 (en) Method for producing bismuth tellurium compound thermoelectric semiconductor
JPH02269948A (en) Sensor for combustion control
JP2583209B2 (en) Solid electrolyte type oxygen sensor
Green et al. Fabrication of Oxocuprate Superconductor Microelectrodes for Sub‐T c Use
JPS63222252A (en) Manufacture of gas sensor
JPH02248301A (en) Production of oxide superconductor
Donaghey et al. Oxygen Transfer Kinetics Between Ga‐Ga2 O 3 Electrodes and the Solid Electrolyte Calcia‐Stabilized Zirconia
JPS603533A (en) Element for measuring vacuum degree
JPH03277959A (en) Gas-concentration sensor
Karpachov et al. Electrocapillary phenomena for liquid metals in contact with the solid electrolyte