JPH0224808A - Magnetic head and magnetic recording and reproducing device - Google Patents

Magnetic head and magnetic recording and reproducing device

Info

Publication number
JPH0224808A
JPH0224808A JP17276388A JP17276388A JPH0224808A JP H0224808 A JPH0224808 A JP H0224808A JP 17276388 A JP17276388 A JP 17276388A JP 17276388 A JP17276388 A JP 17276388A JP H0224808 A JPH0224808 A JP H0224808A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic head
glass
less
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17276388A
Other languages
Japanese (ja)
Other versions
JP2543750B2 (en
Inventor
Takashi Naito
孝 内藤
Shinsuke Higuchi
晋介 樋口
Takashi Namekawa
孝 滑川
Seiichi Yamada
誠一 山田
Kunihiro Maeda
邦裕 前田
Takayuki Kumasaka
登行 熊坂
Kenkichi Inada
健吉 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63172763A priority Critical patent/JP2543750B2/en
Publication of JPH0224808A publication Critical patent/JPH0224808A/en
Application granted granted Critical
Publication of JP2543750B2 publication Critical patent/JP2543750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the high-frequency recording and reproducing characteristics, wear resistance, sliding property, and durability of a magnetic head by forming the nonmagnetic supporting bodies of the head of sintered bodies composed principally of cubic ZrO2 and the joining glass of glass having a specific coefficient of thermal expansion. CONSTITUTION:A pair of magnetic head cores 37 and 38 constituted of amorphous magnetic alloy films 1 and 1' (33) formed on nonmagnetic supporting bodies 2 and 2' are butted against each other with a nonmagnetic gap material 39 in between and joined with glass 36 (3 and 3'). The supporting bodies 2 and 2' are made of sintered bodies composed principally of cubic ZrO2 having an average crystal grain diameter of <=3mum and the joining glass is composed of glass having a coefficient of thermal expansion within a range of 75-90X10<-7>/ deg.C. Moreover, the nonmagnetic supporting body of a magnetic head 50 is made of a ceramic sintered body having micro-Vickers hardness of 1,000-1,500 and an average crystal grain diameter of <=3mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高保磁力の金属磁性材料′t−t−配気記録媒
体るテープ(いわゆるメタルテープ)と組合せて使用す
るのに適し次磁気ヘッドに係り、特に高周波配録再往特
性、耐摩耗性、摺動性、耐久性及び量産性に優れ次磁気
ヘッド及びそれを用いた磁気記録再生装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a magnetic head suitable for use in combination with a tape (so-called metal tape) made of a metal magnetic material with high coercivity. In particular, the present invention relates to a magnetic head having excellent high-frequency recording/reproducing characteristics, abrasion resistance, sliding properties, durability, and mass productivity, and a magnetic recording/reproducing apparatus using the same.

〔従来の技術〕[Conventional technology]

現在、高密度磁気記録再生装置には磁気記録媒体として
保磁力が10000e を超える金属磁性材料が使用さ
れるようになつ友。この磁気記録媒体に十分な情報全記
録する次めには、従来のフェライト磁気ヘッドではフェ
ライトの飽和磁束密度が低いため能力不足でろり、特開
昭60−606号、同58−155515号、同5B−
98824号各公報に記載のような非晶質磁性合金膜−
フェライト複合型磁気ヘッドが使用される。この磁気ヘ
ッドはフェライト磁性支持体に形成した非晶質磁性合金
膜からなる一対の磁気ヘッドコアを、非磁性ギャップ材
を介し低温軟化ガラスで接合した構造となっている。
Currently, metal magnetic materials with a coercive force exceeding 10,000 e are being used as magnetic recording media in high-density magnetic recording and reproducing devices. Next to recording sufficient information on this magnetic recording medium, conventional ferrite magnetic heads lack the ability due to the low saturation magnetic flux density of ferrite. 5B-
Amorphous magnetic alloy films as described in 98824 publications
A ferrite composite magnetic head is used. This magnetic head has a structure in which a pair of magnetic head cores made of an amorphous magnetic alloy film formed on a ferrite magnetic support are joined with low temperature softened glass via a nonmagnetic gap material.

この非晶質磁性合金は、フェライトより高飽和磁束密度
、かつ高磁率であるので、これを用いた磁気ヘッドは従
来のフェライト磁気ヘッドより記録再生特性が著しく優
れている。磁気ヘッド用非晶質磁性合金膜の材料として
はCo  f主成分とする非晶質合金が使用されている
。また、磁気ヘッドコアの接合は非晶質磁性合金が結晶
化を起こさない温度で行う必要があるので、従来のフェ
ライト磁気ヘッドに使用されるガラスよシ作業温度が著
しく低いPb0t−主成分とする低温軟化ガラスが用い
られている。しかし、この非晶質磁性合金膜−7千うイ
ト複合型磁気ヘッドに位、性能上次のような問題かめる
Since this amorphous magnetic alloy has a higher saturation magnetic flux density and higher magnetic constant than ferrite, a magnetic head using this alloy has significantly better recording and reproducing characteristics than conventional ferrite magnetic heads. As a material for an amorphous magnetic alloy film for a magnetic head, an amorphous alloy containing Cof as a main component is used. In addition, since it is necessary to bond the magnetic head core at a temperature at which the amorphous magnetic alloy does not crystallize, the working temperature of glass used in conventional ferrite magnetic heads is extremely low. Softened glass is used. However, this amorphous magnetic alloy film-7,000-layer composite magnetic head has the following problems in terms of performance.

(11高周波領域で大きな摺動雑音を生じる。(11 Generates large sliding noise in the high frequency range.

(2)  励磁用のコイルの巻線数を多くするとインダ
クタンスが大きくなる友め、巻線を多くできない0 (3)  非晶質磁性合金膜とフェライトの境界部が疑
似ギャップとして作動するおそれがある。
(2) Increasing the number of turns of the excitation coil increases the inductance, so it is not possible to increase the number of turns (3) The boundary between the amorphous magnetic alloy film and the ferrite may act as a pseudo gap. .

上記問題は磁気ヘッド材にフェライトを用いることに原
因があり、フェライトを使用している部分を非磁性材料
に置換えることによって解決できる。この種の磁気ヘッ
ドとして、特開昭59−142716号公報に記載のよ
うな非晶質磁性合金膜−非磁性材料複合型磁気ヘッドが
ある。更に、この種の磁気ヘッドは高周波領域において
好適な記録再生特性を得るために、非晶質磁性合金膜と
非母性絶縁体膜を交互に積層し、多層化している。
The above problem is caused by the use of ferrite in the magnetic head material, and can be solved by replacing the ferrite portion with a non-magnetic material. As this type of magnetic head, there is an amorphous magnetic alloy film-nonmagnetic material composite magnetic head as described in Japanese Patent Laid-Open No. 59-142716. Furthermore, in order to obtain suitable recording and reproducing characteristics in a high frequency range, this type of magnetic head is multilayered by alternately laminating amorphous magnetic alloy films and non-matrix insulating films.

非晶質破性合金膜を形成するための支持体である非磁性
材料には、メタルテープに対し耐摩耗性を有することが
必要であるので、フェライトと同等又はそれ以上の耐摩
耗性を有するセラミックス、硬質ガラス等の中から、非
晶質磁性合金の熱膨張係数に近いものが使用されている
。この熱膨張係数の差が著しいと、非晶質磁性合金膜が
はがれてしまう等の問題が発生する。
The non-magnetic material that is the support for forming the amorphous fracture alloy film must have wear resistance against the metal tape, so it must have wear resistance equal to or higher than that of ferrite. Among ceramics, hard glass, etc., those with a thermal expansion coefficient close to that of an amorphous magnetic alloy are used. If this difference in thermal expansion coefficient is significant, problems such as peeling of the amorphous magnetic alloy film will occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記非晶賞出性合金膜−非磁性材料複合型磁気ヘッドは
従来のフェライト磁気ヘッドより、更には上記非晶質磁
性合金膜−フェライト複合型磁気ヘッドより、広帯域に
おいて良好な記録再生特性を有し、摺動雑音が小さいと
いう特長をもつ。
The above-mentioned amorphous magnetic alloy film-nonmagnetic material composite magnetic head has better recording and reproducing characteristics in a wide band than the conventional ferrite magnetic head, and even better than the above-mentioned amorphous magnetic alloy film-ferrite composite magnetic head. It also has the feature of low sliding noise.

しかし、この磁気ヘッドに適合し几非磁性支持体材料及
び接合ガラスが見出されていない。
However, a non-magnetic support material and a bonding glass suitable for this magnetic head have not been found.

現状では支持体として、非出性7エライト、A40B 
、高温軟化ガラスなど、接合ガラスとしてpbo ’1
1成分とする低温軟化ガラスが使用されているが、この
組合せでは磁気ヘッドの製造歩留りが悪く、また磁気ヘ
ッドの信頼性に欠けるという問題がめった。今後、記録
再生装置の高性能化を図る友めに、メタルテープが使用
され、磁気ヘッドに対し著しく高速走行することになる
と、磁気ヘッドの信頼性、すなわち耐久性を著しく向上
させる必要が出てぐる。上記非晶質磁性合金膜−非磁性
材料複合型磁気ヘッドに使用されている非磁性材料は耐
摩耗性と熱膨張係数しか考慮されていないが、加工性、
メタルテープとの摺動性等にも配慮する必要がある。
Currently, non-extractable 7-elite, A40B is used as a support.
, high temperature softened glass, etc., as bonding glass PBO '1
Although low-temperature softening glass as one component has been used, this combination often has problems in that the manufacturing yield of the magnetic head is poor and the reliability of the magnetic head is lacking. In the future, metal tapes will be used to improve the performance of recording and reproducing devices, and as they will run at extremely high speeds relative to magnetic heads, it will be necessary to significantly improve the reliability, or durability, of magnetic heads. Around. The non-magnetic material used in the above-mentioned amorphous magnetic alloy film-non-magnetic material composite magnetic head is designed with only wear resistance and coefficient of thermal expansion in mind;
It is also necessary to consider sliding properties with the metal tape.

例えば、 At、O,は硬すぎるためにメタルテープを
傷付け、高温軟化ガラスはもろい九めに加工性が悪いと
いう問題がbつ次。非磁性フェライトはメタルテープの
低速走行に関しては問題にないが、高速走行に対しては
摩耗しやすいという問題があった。接合ガラスにはPb
0t主成分とする低温軟化ガラスが使用されているが、
熱膨張係数が大きい、強度及び硬度が低い、耐水性が悪
いなどの問題が8つ食。
For example, At, O, is too hard and will damage the metal tape, and high-temperature softened glass is brittle and has poor workability. Non-magnetic ferrite poses no problem when the metal tape runs at low speeds, but it has the problem of being easily worn when running at high speeds. Bonded glass contains Pb
Low-temperature softening glass with 0t as the main component is used,
Eight problems included high coefficient of thermal expansion, low strength and hardness, and poor water resistance.

本発明の目的は、上記問題tS決するに好適な非磁性材
料と接合ガラスを使用し、高周波記録再生特性、耐摩耗
、摺動性、耐久性及び量産性に優れ次磁気ヘッド全提供
することにある。
The purpose of the present invention is to solve the above problems by using suitable non-magnetic materials and bonded glass, and to provide a complete magnetic head with excellent high-frequency recording and reproducing characteristics, wear resistance, sliding properties, durability, and mass productivity. be.

〔課題を解決する次めの手段〕[Next means to solve the problem]

本発明を#1説すれば、本発明の第1の発明は山気ヘッ
ドに関する発明でろって、非出性支持体に形成し次非晶
質磁性合金膜からなる一対の磁気ヘッドコアが、非磁性
ギャップ材を介して互いに突合されてガラスで接合され
ている8気ヘツドにおいて、該非磁性支持体が、立方晶
のZr(ht”主材とする平均結晶粒径Sμm以下の焼
結体からなり、かつ該接合ガラスが、熱膨張係数75〜
95X10−’ / Cの範囲内のガラスからなること
を特徴とする〇 そして、本発明の第2の発明は山気記録再生装置に関す
る発明であって、磁気テープを、回転磁気ヘッドを内蔵
するドラム外周部に斜めに巻回し、磁気テープ長手方向
に対して所定の傾き角を有する磁気記録パターンを形成
し、信号の記録・再生を行う磁気記録再生装置において
、前記山気ヘッドは、非磁性支持体に形成した非晶質磁
性合金膜からなる一対の磁気ヘッドコアが、非出性ギャ
ップ材を介して互いに突合されてガラスで接合され、該
非磁性支持体が、マイクロビッカース硬さが1000〜
1500であり、平均結晶粒径3μm以下のセラミック
ス焼結体からなり、かつ該接合ガラスが、熱膨張係数7
5〜95x l O−1/Cの範囲内のガラスからなる
ことt−特徴とする。
If we explain the present invention #1, the first invention of the present invention relates to a mountain head, in which a pair of magnetic head cores formed on a non-crystalline support and made of an amorphous magnetic alloy film are formed on a non-crystalline support. In the 8-magnetic heads which are butted against each other and joined by glass through a magnetic gap material, the non-magnetic support is made of a sintered body mainly composed of cubic Zr (ht) and has an average crystal grain size of S μm or less. , and the bonded glass has a coefficient of thermal expansion of 75 to
It is characterized by being made of glass within the range of 95 x 10-' / C.The second invention of the present invention is an invention relating to a mountain recording and reproducing device, in which a magnetic tape is transferred to a drum having a built-in rotating magnetic head. In a magnetic recording and reproducing device that records and reproduces signals by winding diagonally around the outer circumference of the magnetic tape to form a magnetic recording pattern having a predetermined inclination angle with respect to the longitudinal direction of the magnetic tape, the mountain head has a non-magnetic support. A pair of magnetic head cores made of an amorphous magnetic alloy film formed on the body are butted against each other with a non-magnetic gap material and bonded with glass, and the non-magnetic support has a micro-Vickers hardness of 1000 to 1000.
1500, is made of a ceramic sintered body with an average crystal grain size of 3 μm or less, and the bonded glass has a thermal expansion coefficient of 7
Characterized by being made of glass within the range of 5 to 95 x l O-1/C.

非出性支持体として用いる上記焼結体は、酸化物に換算
して10モルチ以下のY、03.20モルチ以下のCa
O%Mgo及び8r0,50モルチ以下のCO0:及び
55モルチ以下のLa1O1のうち少なくとも1種以上
と、更にCを(LOI〜1重量−を含むことにより、安
易に得られる高ち密化焼結体が好適である。
The above-mentioned sintered body used as a non-extractable support contains Y of 10 molti or less and Ca of 0.320 molti or less in terms of oxide.
A highly dense sintered body that can be easily obtained by containing at least one of O% Mgo and 8r0, CO0 of 50 molt or less and La1O1 of 55 molt or less, and further C (LOI ~ 1 wt.) is suitable.

接合ガラスとして用いる上記ガラスには、酸化物に換算
して1墳でV、Osの55〜70チ、p、o、、の17
〜25%及びsb、osの5〜20%を必須成分とする
低温軟化ガラスが最も適している。特に。
The above-mentioned glass used as bonding glass contains 55 to 70 inches of V, Os, 17 of p, o, etc. in terms of oxides.
Low-temperature softening glass having essential components of ~25% and 5 to 20% of sb and os is most suitable. especially.

V、Osの55〜65%h P2O1の18〜22%及
びsb、olの5〜12qbが好ましく、更にpboの
20チ以下、 Tt鵞0 の15%以下%Nb2O5の
5%以下、好ましくは、pboの5〜10%、Too 
の3〜10% s Nb*Osの1lL5〜2%を含む
ことができる。
55-65% of V, Os, 18-22% of P2O1, and 5-12qb of sb, ol are preferred, and furthermore, 20 qb or less of pbo, 15% or less of Tt, 5% or less of Nb2O5, preferably, 5-10% of pbo, Too
3-10% of s Nb*Os.

上記非晶質磁性合金膜としては高飽和磁束密度かつ高透
al率であるCOを主成分とする非晶質合金が適してお
シ、更には、この非磁性絶縁体膜を介し、多層化されて
いることが好ましい。
As the amorphous magnetic alloy film, an amorphous alloy mainly composed of CO, which has high saturation magnetic flux density and high permeability, is suitable. It is preferable that the

本発明の磁気ヘッドは、テープ特にメタルテープに十分
対厄できるテープ接触型の磁気ヘッドとして好適に用い
られるものでめる。
The magnetic head of the present invention is suitably used as a tape contact type magnetic head that can sufficiently withstand tapes, particularly metal tapes.

本発明による磁気ヘッドは、耐摩耗性、摺動性、耐久性
及び量産性を著しく向上又は改善され九ものである。
The magnetic head according to the present invention has significantly improved wear resistance, sliding properties, durability, and mass productivity.

上記非磁性支持体用焼結体は、加工性、耐摩耗性及び摺
動性が非常に優れている。これは平均結晶粒径t−5μ
m以下とすることにより加工性が良く、立方晶の高ち密
化焼結体にすることによりメタルテープに対しての耐摩
耗性と摺動性が良くなる几めである。この焼結体は% 
ZrO2を室温で立方晶にするための安定化剤として%
 Y2O3% CaO%MgO、5rO1CIO,及び
La1O1のうち少なくとも一檜類以上を含む。この安
定化剤の量が少ないと、難加工性である正方晶Z r0
2が混入し、加工性と摺動性が悪化する。しかし、正方
晶Z r02の量が少なければ、あまり問題とはならな
い。したがって、立方晶の割合は、90〜tonsが好
ましく、特に100%がよい。また、この焼結体の平均
結晶粒径を5μm以下とする友めに、この焼結体は粒成
長抑制剤として、Cを101〜tO重it%含む。
The above-mentioned sintered body for a nonmagnetic support has excellent workability, wear resistance, and slidability. This is the average grain size t-5μ
By making it less than m, the workability is good, and by making it a highly dense cubic crystal sintered body, the abrasion resistance and sliding property against the metal tape are improved. This sintered body is %
% as a stabilizer to make ZrO2 cubic at room temperature
Y2O3% CaO% Contains at least one of MgO, 5rO1CIO, and La1O1. If the amount of this stabilizer is small, the tetragonal crystal Zr0, which is difficult to process,
2 is mixed in, resulting in poor workability and sliding properties. However, if the amount of tetragonal Zr02 is small, this will not be much of a problem. Therefore, the proportion of cubic crystals is preferably 90 to tons, particularly preferably 100%. Further, in order to make the average crystal grain size of this sintered body 5 μm or less, this sintered body contains 101 to tO weight % of C as a grain growth inhibitor.

このC含有量は101重麓チ未満では効果がなく、1.
01揄%を超えると、気孔率が大きくなり、高ち密化焼
結体が得られない。焼結体の平均的結晶粒径が3μ?P
Iヲ超えると、加工時のデツピングが大きくなり、支持
体の加工歩留りが著しく低下するO 更に、上記非磁性支持体用焼結体は熱膨張係数が85〜
100xlO−?/℃程度であり、Coを主成分とする
非晶質磁性合金のそれより小さいが、非晶質磁性合金膜
はスパッタにより、はがれることなく強固に形成でき、
しかもこの膜の磁気特性を劣化させることはほとんどな
い。
If the C content is less than 101 cm, there is no effect; 1.
If it exceeds 0.01%, the porosity increases and a highly densified sintered body cannot be obtained. Is the average grain size of the sintered body 3μ? P
If it exceeds I, the depping during processing will increase and the processing yield of the support will be significantly reduced.
100xlO-? /°C, which is smaller than that of an amorphous magnetic alloy mainly composed of Co, but an amorphous magnetic alloy film can be formed firmly by sputtering without peeling.
Moreover, the magnetic properties of this film are hardly deteriorated.

上記接合用の低温軟化ガラス扛クラックの発生を防止す
る九め、上記非出性支持体用焼結体の熱膨張係数より若
干小さ目の75〜95X10−77℃のものを使用しt
方が良い。この点、本発明による低温軟化ガラスは従来
使用しているpboを主成分とする低温軟化ガラスより
、熱膨張係数が小さく、要求に合つ九ガラスが得られる
。更に本発明による低温軟化ガラスは従来知られている
低温軟化ガラスよシ強度及び硬度が高く、シかも加工性
及び耐水性が優れている。
To prevent the occurrence of cracks in the low-temperature softened glass for bonding, use a glass with a thermal expansion coefficient of 75 to 95 x 10-77°C, which is slightly smaller than the thermal expansion coefficient of the sintered body for the non-extrusive support.
It's better. In this respect, the low-temperature softening glass according to the present invention has a smaller coefficient of thermal expansion than the conventionally used low-temperature softening glass containing pbo as a main component, and a glass that meets the requirements can be obtained. Furthermore, the low-temperature softening glass according to the present invention has higher strength and hardness than conventional low-temperature softening glasses, and has excellent workability and water resistance.

1次、本発明の磁気ヘッドは、コア材にCo  t−主
成分とする高飽和磁束密度かつ高透磁率非晶質合金膜を
用い、更にこの非晶質合金膜を非磁性絶縁体膜を介し多
層化することにより、広帯域において好適な記録再生特
性を示す。
First, the magnetic head of the present invention uses a high saturation magnetic flux density and high permeability amorphous alloy film mainly composed of Cot as a core material, and further includes a nonmagnetic insulating film on this amorphous alloy film. By multi-layering the material, it exhibits suitable recording and reproducing characteristics in a wide band.

すなわち、cot−主成分とする高飽和磁束密度かつ高
透磁率非晶質合金膜、その非出性支持体用の平均結晶粒
径57Jtts以下の立方晶のZr0ze主材とする高
ち密化焼結体、及び磁気ヘッドコア接合用の熱膨張係数
が75〜95x1o−7/’cの範囲にあるVjOI 
s pros及びsb、o、 2主成分とする低温軟化
ガラスの3材料を組合せることによって、メタルテープ
との摺動性及び磁気ヘッドの耐摩耗性が従来より著しく
優れ友高性能磁気ヘッドを高い歩留シで製造することが
できる。
That is, a high saturation magnetic flux density and high magnetic permeability amorphous alloy film mainly composed of cot, and a highly densified sintered film mainly composed of cubic Zr0ze with an average crystal grain size of 57 Jtts or less for its non-extractable support. VjOI with a thermal expansion coefficient in the range of 75 to 95x1o-7/'c for bonding the body and magnetic head core.
By combining three materials: low-temperature softening glass, which is the main component of spros and sb, o, and 2, the sliding properties with metal tape and the abrasion resistance of the magnetic head are significantly better than conventional ones, resulting in a high performance magnetic head. It can be manufactured with low yield.

本発明の磁気ヘッドは、コア材に非晶質磁性合金を用い
次場合に特に有効であるが、センダスト、パーマロイ、
アルパームなどの結晶質磁性合金全コア材に使用し、相
当する熱膨張係数を持つガラスで接合してもよい。
The magnetic head of the present invention uses an amorphous magnetic alloy for the core material and is particularly effective in the following cases, including Sendust, Permalloy,
A crystalline magnetic alloy such as Alperm may be used for the entire core material and bonded with glass having a corresponding coefficient of thermal expansion.

本発明に係る装置はビデオテープレコーダに好適でめる
。このビデオテープレコーダは記録媒体として金属が用
いられ、高速走行に好適である。
The device according to the invention is suitable for video tape recorders. This video tape recorder uses metal as the recording medium and is suitable for high-speed running.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

第1図に代表的な磁気ヘッドの斜視図を示す。FIG. 1 shows a perspective view of a typical magnetic head.

符号1.1′は非晶質磁性合金膜であり、実施例には高
飽和磁束密度かつ高透出率非晶質合金であるCon −
Nbts −Zr4 t”用いた。2.2′はこの非晶
質磁性合金膜を形成するための非母性支持体である。5
.3′は磁気ヘッドコアの接合に用いられる低温軟化ガ
ラスである。4.4′は低温軟化ガラスが非晶質磁性合
金膜を侵食しないための保護膜と低温軟化ガラスが十分
にぬれるようなぬれ性向上膜の21i1からなる。5は
ギャップ突き合せ部で、非磁性絶縁体膜を介し、作動ギ
ャップを形成している。6はコイル巻線窓である。
Reference numeral 1.1' is an amorphous magnetic alloy film, and in the example, Con-- which is an amorphous alloy with high saturation magnetic flux density and high permeability.
2.2' is a non-maternal support for forming this amorphous magnetic alloy film.
.. 3' is a low temperature softened glass used for joining the magnetic head core. 4.4' consists of a protective film for preventing the low temperature softened glass from corroding the amorphous magnetic alloy film and a wettability improving film 21i1 for sufficiently wetting the low temperature softened glass. Reference numeral 5 denotes a gap abutting portion, which forms an operating gap via a nonmagnetic insulating film. 6 is a coil winding window.

上記非晶質磁性合金膜は、好ましくは第2図に示すよう
に非磁性絶縁体膜20.20.21.21′、22.2
2′を介し、多層化し次男が良い0すなわち第2図は第
1図の磁気ヘッドの摺動面の平面図である。
The amorphous magnetic alloy film preferably includes non-magnetic insulating films 20, 20, 21, 21' and 22.2 as shown in FIG.
FIG. 2 is a plan view of the sliding surface of the magnetic head shown in FIG. 1.

次に第1図で示した磁気ヘッドの作製方法について説明
する。第3図〜第6図は第1図の磁気ヘッドの製造方法
における一連の各工程の説明図である。各図において、
符号50は非磁性支持体用基板、51はコイル巻線窓用
溝、32はトラック溝、35は非晶質磁性合金膜%54
は保護膜、35はぬれ性向上膜、56は低温軟化ガラス
、37及び58は磁気ヘッドコアブロック、59は非磁
性ギャップ材を意味する。
Next, a method for manufacturing the magnetic head shown in FIG. 1 will be described. 3 to 6 are explanatory diagrams of a series of steps in the method of manufacturing the magnetic head shown in FIG. 1. In each figure,
50 is a non-magnetic support substrate, 51 is a coil winding window groove, 32 is a track groove, 35 is an amorphous magnetic alloy film%54
35 is a protective film, 35 is a wettability improving film, 56 is low-temperature softened glass, 37 and 58 are magnetic head core blocks, and 59 is a nonmagnetic gap material.

第3図に示すように、非出性支持体として用いる基板3
0にコイル巻線窓用の溝51とトラック溝32t−設け
、ギャップ突合せ面を形成した。次に、第4図に示すよ
うに、ギャップ突合せ面に、Co11−Nbta −Z
rs  非晶質合金膜33、保護膜54、ぬれ性向上膜
35の項にスパッタし、トラック溝S2に低温軟化ガラ
ス56を充てんし7toここで、COH2−Nt)14
−Zrs  非晶質合金の耐熱温度が480℃なので、
ガラス充てんは460℃で行った。この非晶質合金膜は
先に述べ友ように単層ではなく、非磁性絶縁体膜を介し
、多層化させ次男が良い。
As shown in FIG. 3, a substrate 3 used as a non-extractable support
A groove 51 for a coil winding window and a track groove 32t were provided in the groove 0 to form a gap abutting surface. Next, as shown in FIG. 4, Co11-Nbta-Z
rs sputtering on the amorphous alloy film 33, protective film 54, and wettability improvement film 35, and fill the track groove S2 with low temperature softened glass 56.
-Zrs The heat resistance temperature of the amorphous alloy is 480℃, so
Glass filling was performed at 460°C. This amorphous alloy film is not a single layer as mentioned earlier, but is preferably multilayered with a nonmagnetic insulating film interposed therebetween.

次に、第5図に示すように、不要な低温軟化ガラスと非
晶質磁性合金膜を除去することにより、コイル巻線窓用
の溝と所要のトラック幅tt″ギャップ突合せ面に形成
し、−点鎖線Aで切断し、一対の8気ヘツドコアブロツ
ク57.5B’i作製した。
Next, as shown in FIG. 5, by removing unnecessary low-temperature softened glass and amorphous magnetic alloy film, grooves for the coil winding window and the required track width tt'' gap are formed on the abutting surfaces, - A pair of 8-air head core blocks 57.5B'i were prepared by cutting along the dotted chain line A.

なお、第5図以降においては、保護膜34とぬれ性向上
膜55を省略して示した。両コアブロック57.58の
ギャップ突合せ面にそれぞれ非破性ギャップ材39を所
4!量スパッタし、第6図に示すように突合せ、460
℃で接合した。次に、−点鎖線B及びBで順次切断し、
第1図で示した磁気ヘッドを作製し友。
In addition, from FIG. 5 onwards, the protective film 34 and the wettability improving film 55 are omitted. Place non-destructive gap material 39 on the gap abutting surfaces of both core blocks 57 and 58, respectively! amount sputtered and butted as shown in FIG. 6, 460
Bonding was carried out at ℃. Next, cut sequentially along the - dotted chain lines B and B,
A friend who made the magnetic head shown in Figure 1.

上記非磁性支持体として適している代表例を第1表、適
していない代表例を第2表に示す。なお第3表には、第
1表及び第2表で示し危支持体の予備検討結果を示す。
Representative examples that are suitable as the above-mentioned non-magnetic support are shown in Table 1, and representative examples that are not suitable are shown in Table 2. Furthermore, Table 3 shows the results of a preliminary study of the vulnerable support bodies shown in Tables 1 and 2.

なお、Zr01の結晶系及びその結晶相の割合は、X線
回折により調べた。平均結晶粒径は、支持体用基板の研
磨面金エツチングし、その拡大写真からインターセプト
法(コード法)によって、研磨面における約200個の
結晶粒の平均結晶粒径を求め、これに統計的係数1.5
6を乗じて得た立体的な平均結晶粒径である。平均欠は
大きさは、第3図で示し几溝加工を施したときの欠けの
大きさの平均値である。加工歩留りは、磁気ヘッドの形
状及び大きさに加工し次支持体を100個作製しようと
したときのものであり、5μm以上の欠けがある場合を
不良とした。摩耗量は、磁気ヘッドの形状及び大きさに
加工し次支持体t−V’I’ Hのシリンダーに取付け
、メクルテープを相対速度5.8 m / secで5
00時間時間式せて、支持体の摩耗量を測定した。摺動
性は、摩耗量の測定に用いた支持体のテープ走行面を観
察し、メタルテープ走行による汚れ、すなわち、磁気記
録媒体又はそれをテープに付着させるための有機バイン
ダーが認められるかどうかで評価した。認められない場
合にμ、メタルテープとの相性が良く、摺動性が良好で
あると判断した。
Note that the crystal system of Zr01 and the proportion of its crystal phase were investigated by X-ray diffraction. The average crystal grain size is determined by gold-etching the polished surface of the support substrate, using the intercept method (code method) from the enlarged photo, and calculating the average crystal grain size of about 200 crystal grains on the polished surface, and then statistically calculating the average crystal grain size. Coefficient 1.5
It is the three-dimensional average crystal grain size obtained by multiplying by 6. The average chipping size is shown in FIG. 3 and is the average chipping size when the groove processing is performed. The processing yield was obtained when 100 supports were processed into the shape and size of the magnetic head, and cases where there were chips of 5 μm or more were judged as defective. The amount of wear was determined by processing the magnetic head into the shape and size, attaching it to the cylinder of the support t-V'I'H, and rolling the Meckle tape at a relative speed of 5.8 m/sec.
The wear amount of the support was measured for 00 hours. Slidability is determined by observing the tape running surface of the support used to measure the amount of wear, and determining whether stains from running the metal tape, that is, the magnetic recording medium or the organic binder used to attach it to the tape, are observed. evaluated. If no μ was observed, it was judged that the tape had good compatibility with the metal tape and had good sliding properties.

A〜Jの支持体及び(K)〜(Q)の支持体の熱膨張係
数はある程度大きく、coam −Nb14−Zr3 
 非晶質合金をスパッタしてもはがれることはなかつt
oA−、Tの支持体及び(K)〜(M)の支持体はZr
01を主材とする焼結体である。A−Jの支持体は平均
結晶粒径5μm以下の立方晶ZrOs ?:主材とする
高ち密化焼結体であり、加工性、耐摩耗性及び摺動性に
優れている。特にBの支持体が優れている。
The thermal expansion coefficients of the supports A to J and the supports (K) to (Q) are relatively large, and the coam -Nb14-Zr3
Even when sputtering an amorphous alloy, it will not peel off.
The supports of oA- and T and the supports of (K) to (M) are Zr.
This is a sintered body whose main material is 01. The support of A-J is cubic ZrOs with an average crystal grain size of 5 μm or less? : The main material is a highly dense sintered body, which has excellent workability, wear resistance, and sliding properties. Particularly, support B is excellent.

それに対し、(K)の支持体は平均結晶粒径が大きい九
めに、加工時の欠けも大きく、加工性が悪い。
On the other hand, the support of (K) has a large average crystal grain size, has large chipping during processing, and has poor workability.

(L)の支持体は気孔率が高く、すなわち高ち密化され
ておらず、気孔部に磁気記録媒体が引掛かり。
The support (L) has a high porosity, that is, it is not highly dense, and the magnetic recording medium is caught in the pores.

摺動性が悪い。(M)の支持体は難加工性である正方晶
Zr01t−25重量%も含むために、加工性が悪い。
Poor sliding properties. The support (M) also contains 25% by weight of tetragonal Zr01t, which is difficult to process, and therefore has poor processability.

(N)〜(Q)の支持体はZr01を主材とする焼結体
ではない。(N)と(0)の支持体は硬すぎるため、メ
タルテープを傷付ける。(P)と(Q)の支持体は柔ら
かい次め、耐摩耗性が悪い。(Q)の支持体は従来のフ
エライ)EB気ヘッド及び非晶質磁性合金−フェライト
複合型磁気ヘッドに使用されている磁性材料である次め
、本発明においては本質的に適していないが、加工性、
耐摩耗性及び摺動性?比較する上では有効なものである
。これとA−Jの支持体を比較すると、AS−Jの支持
体はマイクロビッカース硬さが1000〜1500であ
り、耐摩耗性が著しく優れ、磁気ヘッドの長寿命化に貢
献する。
The supports (N) to (Q) are not sintered bodies mainly made of Zr01. The supports (N) and (0) are too hard and will damage the metal tape. The supports (P) and (Q) are soft and have poor abrasion resistance. The support (Q) is a magnetic material used in conventional ferrite EB heads and amorphous magnetic alloy-ferrite composite magnetic heads, but is essentially not suitable for the present invention. processability,
Abrasion resistance and sliding properties? This is useful for comparison. Comparing this support with the A-J support, the AS-J support has a micro-Vickers hardness of 1000 to 1500, has extremely excellent wear resistance, and contributes to extending the life of the magnetic head.

第4表に代表的な接合ガラスの組成と特性を示す0 a〜eの接合ガラスはv2o、 tl−主成分とする低
温軟化ガラスであり、(f)の接合ガラスは従来のpb
o’l主成分とする一般的な低温軟化ガラスで、比較の
ために用いた◎これら接合ガラスはDTAから測定した
特性点が低く546rJ℃でガラス充てん及びガラス接
合が可能である。a〜eの接合ガラスは(f)の接合ガ
ラスよシ熱膨張係数が小さく、先に示し次第1表の支持
体の熱膨張係数に合せることができる。一般に、接合ガ
ラスの熱膨張係数は支持体のそれより小さ目が良い。特
に(f)の接合ガラスのように接合ガラスの方が支持体
よシ熱膨張係数が大きいと、ガラスに引張り応力がかか
り、ガラスが破損しやすく、磁気ヘッドの製造歩留りが
悪い。また、aM+ 9の接合ガラスは4点曲げ強度が
4.5に9f/m”以上、硬さが500以上でろ5、(
f)の接合ガラスより強度と硬度が高い。磁気ヘッドの
チップ強度は接合ガラスの強度に依存するところが大き
い。一般にガラスは粒界がない友め、摺動性が良く、ガ
ラスの耐摩耗性は硬度に依存するところが大きい。し次
がって、a〜eの接合ガラスは磁気ヘッドの耐久性を向
上又は改善できる。耐水性は、5 x 5 x 5−の
立方体に加工したガラス片を40仁の蒸留水中に入れ%
70℃、2時間加熱したときの単位重蓋当りの重置域(
■/j)であり、a〜eの接合ガラスは1■勺以下で、
(f)の接合ガラスより耐水性が著しく優れ、磁気ヘッ
ドの信頼性全向上又は改善できる。
Table 4 shows the composition and characteristics of typical bonding glasses. Bonding glasses 0a to 0e are low temperature softening glasses with v2o, tl- as the main components, and bonding glass (f) is a conventional PB glass.
These are common low-temperature softening glasses containing o'l as the main component. These bonding glasses used for comparison have low characteristic points measured by DTA, and glass filling and glass bonding are possible at 546 rJ°C. The bonded glasses a to e have a smaller thermal expansion coefficient than the bonded glass (f), and can be adjusted to the thermal expansion coefficient of the support shown in Table 1 as shown above. Generally, it is preferable that the coefficient of thermal expansion of the bonded glass is smaller than that of the support. In particular, when the bonded glass has a larger coefficient of thermal expansion than the support, such as the bonded glass shown in (f), tensile stress is applied to the glass, making it easy to break, resulting in a poor manufacturing yield of magnetic heads. In addition, aM+ 9 bonded glass has a four-point bending strength of 4.5 to 9 f/m or more and a hardness of 500 or more.
It has higher strength and hardness than f) bonded glass. The chip strength of a magnetic head largely depends on the strength of the bonded glass. Generally, glass has no grain boundaries and has good sliding properties, and the wear resistance of glass largely depends on its hardness. Next, the bonded glasses a to e can enhance or improve the durability of the magnetic head. Water resistance was determined by placing a glass piece cut into a 5 x 5 x 5 cube in 40 cubes of distilled water.
Overlapping area per unit overlapping lid when heated at 70℃ for 2 hours (
■/j), and the bonded glass of a to e is less than 1■,
It has significantly better water resistance than the bonded glass (f), and can completely improve or improve the reliability of the magnetic head.

〔実施例〕〔Example〕

以下蔦本発明を実施1+lJにより更に具体的に説明す
るが、本発明はこれら実施例に限定されない。
The present invention will be explained in more detail below using Examples 1+1J, but the present invention is not limited to these Examples.

第1表又は第2表の支持体と第4表の接合ガラスを用い
て第1図で示した磁気ヘッドを作製し、評価した。
The magnetic head shown in FIG. 1 was manufactured using the support shown in Table 1 or 2 and the bonded glass shown in Table 4, and evaluated.

実施f!I l 第5表で示す支持体と接合ガラスの組合せで第1図の磁
気ヘッドを作製した。なお、得られた磁気ヘッドの評価
も第5表に合せて示す。ここで、ヘッド製造歩留りは山
気ヘッドを製造する際の加工歩留りである。平均ヘッド
チップ強度は、得られ7′P:、all気ヘッドチップ
がどの程度の荷重により、壊れるのかを測定したもので
おる。摩耗量は得られた磁気ヘッドt−VTRのシリン
ダーに取付はメタルテープを相対速度5.8m/sec
で500時間走行させて、山気ヘッドの摩耗量を測定し
た。
Implementation f! I l The magnetic head shown in FIG. 1 was manufactured using the combinations of supports and bonding glasses shown in Table 5. Note that the evaluation of the obtained magnetic head is also shown in Table 5. Here, the head manufacturing yield is the processing yield when manufacturing the mountain head. The average head chip strength is obtained by measuring the load under which all the head chips are broken. The amount of wear was determined by attaching the metal tape to the cylinder of the obtained magnetic head t-VTR at a relative speed of 5.8 m/sec.
After running for 500 hours, the amount of wear on the Yamaki head was measured.

支持体Bと接合ガラス(f)との組合せでは、ヘッド製
造歩留り及び平均ヘッドチップ強度が著しく低い。これ
は接合ガラス(f)の熱膨張係数が支持体Bのそれよシ
非常に大きい九め、接合ガラス(f)にクラックがはい
シやすいことが原因である。
In the combination of support B and bonded glass (f), the head manufacturing yield and average head chip strength are extremely low. This is because the coefficient of thermal expansion of the bonded glass (f) is much larger than that of the support B, and cracks are likely to occur in the bonded glass (f).

支持体(P)と接合ガラス(f)、及び支持体(Q)と
接合ガラス(f)との組合せでは、平均ヘッドチップ強
度が低ぐ%摩耗量が非常に大きい。これは接合ガラス(
f)の強度が低く、シかも支持体(P)及び(Q)の摩
耗量が大きいことが原因である。接合ガラス(f)より
高強度かつ高硬度の接合ガラス(Li用いて、支持体(
Q)と組合せると、ヘッド製造歩留り、平均ヘッドチッ
プ強度及び耐摩耗性が著しく向上する。
In the combinations of support (P) and bonded glass (f) and support (Q) and bonded glass (f), the average head chip strength is low and the % wear loss is extremely large. This is bonded glass (
This is because the strength of f) is low and the amount of wear of the supports (P) and (Q) is large. Using a bonded glass (Li) with higher strength and hardness than the bonded glass (f), the support (
When combined with Q), head manufacturing yield, average head chip strength and wear resistance are significantly improved.

上記比較例に対し、実施例では支持体Bと接合ガラスa
Sekそれぞれ組合せることにより、ヘッド製造歩留シ
、平均へラドテップ強度及び耐摩耗性が非常に優れる。
In contrast to the above comparative example, in the example, support B and bonding glass a
By combining each of the Seks, the head manufacturing yield, average hard tip strength, and abrasion resistance are extremely excellent.

その中でも特に、接合ガラスeとの組合せで、優れ友結
果が得られる。
Among them, especially in combination with bonded glass e, excellent results can be obtained.

更に、第5表の組合せで作製し友磁気ヘッドの摺動性は
、摺動性が良い支持体Bs(p)及び(Q)を用いるた
めに、良好な結果が得られた。しかし、接合ガラス(f
) を用いた場合には、このガラスの摩耗量が著しく、
接合ガラス部のへこみが大きい。
Furthermore, good results were obtained in the sliding properties of the magnetic head produced using the combinations shown in Table 5 because the supports Bs(p) and (Q) having good sliding properties were used. However, bonded glass (f
), the amount of wear on this glass is significant;
There is a large dent in the bonded glass part.

性能に関しては、接合ガラスによらず、非磁性支持体B
%(P)t−用いた場合には広帯域において良好な記録
再生特性を示したが、磁性支持体(Q)を用い次場合に
は高周波領域で摺動雑音を発生する。
Regarding performance, regardless of the bonded glass, non-magnetic support B
%(P)t- exhibited good recording and reproducing characteristics in a wide band, but when a magnetic support (Q) was used, sliding noise was generated in a high frequency region.

以上よシ、第5表における実施例の磁気ヘッドは高周波
記録再生特性、耐摩耗性、摺動性、耐久性及び量産性に
ついて、これら全特性を満足する。
As described above, the magnetic heads of the examples shown in Table 5 satisfy all of these characteristics in terms of high frequency recording and reproducing characteristics, wear resistance, sliding properties, durability, and mass productivity.

実施例2 第1表で示した支持体人及びC〜Jと、接合ガラスet
−組合せて、第1図の磁気ヘッドを作製した。それぞれ
の評価結果全第6表に示す。なお、評価法は実施例1と
同様でろる。
Example 2 Supports shown in Table 1 and C to J, bonded glass et
- The magnetic head shown in FIG. 1 was produced by combining the above. All evaluation results are shown in Table 6. Note that the evaluation method is the same as in Example 1.

第  6  表 得られfc9fl類の磁気ヘッドは、ヘッド製造歩留シ
及び平均ヘッドチップ強度が高く、シかも摩耗量が少な
く、耐摩耗性に優れている01次、摺動性が良い支持体
を用いている次め、良好な摺動結果が得られる。性能に
関しても、問題はなかつ次O 実施91J 5 第7図は磁気記録再生装置の回転部の斜視図でらる。
Table 6 The obtained fc9fl class magnetic heads have a high head production yield and average head chip strength, have a small amount of wear, and have excellent wear resistance. After using it, good sliding results can be obtained. As for performance, there were no problems. Figure 7 is a perspective view of the rotating part of the magnetic recording/reproducing apparatus.

すなわち、ビデオテープレコーダに用いられる回転磁気
ヘッド装置41は、第7図に示すように矢印入方向に回
転する回転ディスク42を有しており、この回転ディス
ク42の上下位置には、ビデオテープレコーダのシャー
シ等に対して固定され友上、下ドラム45.44が配置
されている。
That is, a rotating magnetic head device 41 used in a video tape recorder has a rotating disk 42 that rotates in the direction of the arrow as shown in FIG. The upper and lower drums 45 and 44 are fixed to the chassis, etc. of the machine.

モータ45は、上記回転ディスク42を回転駆動せしめ
る。磁気テープ46は、これら上、下ドラム45.44
等の周囲に約1600の角度範囲で斜めに巻付けられ、
矢印B方向に走行操作される。
The motor 45 rotates the rotating disk 42 . The magnetic tape 46 is attached to these upper and lower drums 45 and 44.
It is wrapped diagonally around an angle range of about 1600 degrees,
The vehicle is operated to travel in the direction of arrow B.

この磁気テープ46の回転ヘッド装置41に対する位置
を一定に保つため、ガイドボール47.48及び下ドラ
ム440段部49等が設けられている。
In order to maintain a constant position of the magnetic tape 46 with respect to the rotary head device 41, guide balls 47, 48, a stepped portion 49 of the lower drum 440, etc. are provided.

ま九、磁気ヘッド50は、例えば2個設けられており、
これらは互いに180°の角度をなして上記回転ディス
ク42上に取付けられている。そして、上記磁気ヘッド
50のヘッドチップの光漏は上、下ドラム45.44等
の外周面かられずかに突出し、磁気テープ46と摺接接
触することによってビデオ信号の記録再生が行われる。
Nine, for example, two magnetic heads 50 are provided,
These are mounted on the rotating disk 42 at an angle of 180° to each other. The light leakage of the head chip of the magnetic head 50 slightly protrudes from the outer peripheral surfaces of the upper and lower drums 45, 44, etc., and comes into sliding contact with the magnetic tape 46, thereby recording and reproducing video signals.

このように回転する磁気ヘッドによシ、磁気テープ46
上には、第8図に示すように記録トラックTが順次斜め
に形成されていく。これらの記録トラックでは、磁気テ
ープ46が定常速度voで矢印B方向に走行駆動される
ときに形成されるものであって、通常の再生(ノーマル
再生)時には。
Due to the magnetic head rotating in this way, the magnetic tape 46
On the top, recording tracks T are sequentially formed diagonally as shown in FIG. These recording tracks are formed when the magnetic tape 46 is driven to run at a steady speed vo in the direction of arrow B, during normal playback.

ヘッドチップ11が直線1.上を移鉤することによって
正常なビデオ信号の再生が行われる。
The head chip 11 is straight 1. Normal video signal reproduction is achieved by moving the top of the screen.

このような磁気記録再生装置において、磁気ヘッド50
として第1図に示す構造のものt炸裂し次。磁気ヘッド
支持体に第1表のNo、 Aの組成、前述のCO基合金
非晶質磁性膜及び接合ガラスとして第4表のNo、 a
のものを用いた。この磁気ヘッドをVTRシリンダーに
取付け、メタルチーブを相対速度5.8m1secで5
00時間走行させた結果、摩耗敢はa5μm以下、摺動
性は良好でろり、平均欠は大きさが5 am以下であつ
九。
In such a magnetic recording/reproducing device, the magnetic head 50
The structure shown in Figure 1 explodes as follows. Compositions No. and A in Table 1 were used for the magnetic head support, and No. and a in Table 4 were used as the aforementioned CO-based alloy amorphous magnetic film and bonding glass.
I used the one from This magnetic head was attached to the VTR cylinder, and the metal tube was moved at a relative speed of 5.8 m1sec.
As a result of running for 00 hours, the wear resistance was less than 5 μm, the sliding property was good and smooth, and the average size of chips was less than 5 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高保磁力を有する記録媒体にも十分に
記録再生が可能な高飽和磁束密度かつ高透a軍の非晶質
合金膜からなる磁気ヘッドコアと、この非晶質合金を形
成する非磁性支持体に立方晶のZr0g1主材とする平
均結晶粒径5μm以下の高ち密化焼結体、また磁気ヘッ
ドコアの接合ガラスに熱膨張係数が75〜95xlO″
″?/Cの範囲にある低温軟化ガラスを組合せて用いる
ことにより、高周波記録再生特性、耐摩耗性、摺動性、
耐久性及び量産性に優れ友高信頼性、高性能山気ヘッド
を提供することができる。
According to the present invention, a magnetic head core made of an amorphous alloy film with a high saturation magnetic flux density and high permeability that can sufficiently record and reproduce information on a recording medium having a high coercive force, and this amorphous alloy are formed. The non-magnetic support is a highly densified sintered body mainly composed of cubic Zr0g1 with an average grain size of 5 μm or less, and the bonding glass of the magnetic head core has a coefficient of thermal expansion of 75 to 95xlO''.
By using a combination of low-temperature softening glasses in the range of ``?/C, high-frequency recording and reproducing characteristics, abrasion resistance, sliding properties,
We can provide highly reliable and high-performance Yamaki heads with excellent durability and mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気ヘッドの斜視図
、第2図は第1図の磁気ヘッドの摺動面の平面図、第3
図〜第6図は第1図の磁気ヘッドの製造方法における各
工程の説明図、第7図は磁気記録再生装置の回転部の斜
視図、第8図は磁気テープ上の記録トラックを示す平面
図である。 1、l’、  55 :非晶fjK破性合金膜、2,2
:非磁性支持体、S、5’、36:低温軟化ガラス、6
:コイル巻線窓% 20,20,21,21.22%2
2:非磁性絶縁体膜、30:非磁性支持体用基板、51
 :コイル巻線窓用溝、52:)ランク溝、4.4.5
4:保護膜、55:ぬれ性向上膜、57.58:a気ヘ
ッドコアブロック、59:非磁性カップ材、41:回転
磁気ヘッド装置、42:回転ディスク、45:上ドラム
、44:下ドラム、45:モータ、46:磁気テープ%
 47.48ニガイドボール、49:下ドラムの段部、
50:磁気ヘッド、11:ヘッドチップ 秦 / 図 特許出願人 株式会社日立製作所
FIG. 1 is a perspective view of a magnetic head in an embodiment of the present invention, FIG. 2 is a plan view of the sliding surface of the magnetic head in FIG. 1, and FIG.
6 to 6 are explanatory diagrams of each step in the method for manufacturing the magnetic head shown in FIG. 1, FIG. 7 is a perspective view of the rotating part of the magnetic recording and reproducing device, and FIG. 8 is a plane showing recording tracks on the magnetic tape. It is a diagram. 1, l', 55: amorphous fjK fractured alloy film, 2,2
: Non-magnetic support, S, 5', 36: Low temperature softened glass, 6
: Coil winding window% 20, 20, 21, 21.22%2
2: Nonmagnetic insulator film, 30: Nonmagnetic support substrate, 51
: Coil winding window groove, 52:) Rank groove, 4.4.5
4: protective film, 55: wettability improving film, 57.58: a-head core block, 59: non-magnetic cup material, 41: rotating magnetic head device, 42: rotating disk, 45: upper drum, 44: lower drum , 45: Motor, 46: Magnetic tape%
47.48 Ni guide ball, 49: Step part of lower drum,
50: Magnetic head, 11: Head chip Hata / Figure Patent applicant: Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、非磁性支持体に形成した非晶質磁性合金膜からなる
一対の磁気ヘッドコアが、非磁性ギャップ材を介して互
いに突合されてガラスで接合されている磁気ヘッドにお
いて、該非磁性支持体が、立方晶のZrO_2を主材と
する平均結晶粒径3μm以下の焼結体からなり、かつ該
接合ガラスが、熱膨張係数75〜95×10^−^7/
℃の範囲内のガラスからなることを特徴とする磁気ヘッ
ド。 2、該焼結体が、各々酸化物に換算して10モル%以下
のY_2O_3、20モル%以下のCaO、MgO及び
SrO、30モル%以下のCeO_2及び35モル%以
下のLa_2O_3よりなる群から選択した酸化物に相
当する金属の少なくとも1種を含むものである請求項1
記載の磁気ヘッド。 3、該焼結体が、Cを0.01〜1.0重量%含むもの
である請求項1又は2記載の磁気ヘッド。 4、該接合ガラスが、各々酸化物に換算して重量でV_
2O_5の55〜70%、P_2O_5の17〜25%
及びSb_2O_3の3〜20%を必須成分とするガラ
スである請求項1〜3のいずれか1項に記載の磁気ヘッ
ド。 5、該非晶質磁性合金膜が、Coを主成分とする非晶質
合金膜である請求項1〜4のいずれか1項に記載の磁気
ヘッド。 6、該非晶質磁性合金膜が、非磁性絶縁膜を介して多層
化されている請求項1〜5のいずれか1項に記載の磁気
ヘッド。 7、該磁気ヘッドが、高保磁力の金属磁性材料を磁気記
録媒体とするテープに使用するテープ接触型磁気ヘッド
である請求項1〜6のいずれか1項に記載の磁気ヘッド
。 8、非磁性支持体に形成した非晶質磁性合金膜からなる
一対の磁気ヘッドコアが、非磁性ギャップ材を介して互
いに突合されてガラスで接合されている磁気ヘッドにお
いて、該非磁性支持体が、マイクロビッカース硬さが1
000〜 1500であり、平均結晶粒径3μm以下のセラミック
ス焼結体からなり、かつ該接合ガラスが、熱膨張係数7
5〜95×10^−^7/℃の範囲内のガラスからなる
ことを特徴とする磁気ヘッド。 9、磁気テープを、回転磁気ヘッドを内蔵するドラム外
周部に斜めに巻回し、磁気テープ長手方向に対して所定
の傾き角を有する磁気記録パターンを形成し、信号の記
録・再生を行う磁気記録再生装置において、前記磁気ヘ
ッドは、非磁性支持体に形成した非晶質磁性合金膜から
なる一対の磁気ヘッドコアが、非磁性ギャップ材を介し
て互いに突合されてガラスで接合され、該非磁性支持体
が、マイクロビッカース硬さが1000〜1500であ
り、平均結晶粒径3μm以下のセラミックス焼結体から
なり、かつ該接合ガラスが、熱膨張係数75〜95×1
0^−^7/℃の範囲内のガラスからなることを特徴と
する磁気記録再生装置。 10、磁気テープを、回転磁気ヘッドを内蔵するドラム
外周部に斜めに巻回し、磁気テープ長手方向に対して所
定の傾き角を有する磁気記録パターンを形成し、信号の
記録・再生を行う磁気記録再生装置において、前記磁気
ヘッドは、非磁性支持体に形成した非晶質磁性合金膜か
らなる一対の磁気ヘッドコアが、非磁性ギヤップ材を介
して互いに突合されてガラスで接合され、該非磁性支持
体が、ほとんどが立方晶のZrO_2を主成分とし、Y
_2O_3、CaO、MgO、SrO、CeO_2、L
a_2O_3の少なくとも1種を含む平均結晶粒径3μ
m以下のセラミックス焼結体からなり、かつ該接合ガラ
スが、V_2O_5に換算して主成分とするバナジウム
とP_2O_5及びSb_2O_3に換算するりん及び
アンチモンを含む酸化物からなることを特徴とする磁気
記録再生装置。 11、該焼結体は、モル比でZrO_2に換算して55
〜70%のジルコニウムに、Y_2O_3に換算して1
0%以下のイットリウム、CaO、MgO及びSrOに
換算して各々20%以下のカルシウム、マグネシウム及
びストロンチウム、CeO_2に換算して30%以下の
セリウム、La_2O_3に換算して35%以下のラン
タンの少なくとも1種を含む請求項10に記載の磁気記
録再生装置。
[Claims] 1. A magnetic head in which a pair of magnetic head cores made of an amorphous magnetic alloy film formed on a non-magnetic support are butted against each other with a non-magnetic gap material and joined with glass, The non-magnetic support is made of a sintered body mainly composed of cubic ZrO_2 and has an average grain size of 3 μm or less, and the bonded glass has a thermal expansion coefficient of 75 to 95×10^-^7/
A magnetic head characterized in that it is made of glass within a temperature range of °C. 2. The sintered body is from the group consisting of 10 mol% or less of Y_2O_3, 20 mol% or less of CaO, MgO and SrO, 30 mol% or less of CeO_2, and 35 mol% or less of La_2O_3, respectively, in terms of oxides. Claim 1 containing at least one metal corresponding to the selected oxide.
The magnetic head described. 3. The magnetic head according to claim 1 or 2, wherein the sintered body contains 0.01 to 1.0% by weight of C. 4. The bonded glass has a weight of V_ in terms of oxide, respectively.
55-70% of 2O_5, 17-25% of P_2O_5
The magnetic head according to any one of claims 1 to 3, wherein the magnetic head is a glass containing 3 to 20% of Sb_2O_3 as essential components. 5. The magnetic head according to claim 1, wherein the amorphous magnetic alloy film is an amorphous alloy film containing Co as a main component. 6. The magnetic head according to claim 1, wherein the amorphous magnetic alloy film is multilayered with a nonmagnetic insulating film interposed therebetween. 7. The magnetic head according to any one of claims 1 to 6, wherein the magnetic head is a tape contact type magnetic head used for a tape whose magnetic recording medium is a metal magnetic material with high coercive force. 8. A magnetic head in which a pair of magnetic head cores made of an amorphous magnetic alloy film formed on a non-magnetic support are butted against each other with a non-magnetic gap material and joined with glass, in which the non-magnetic support is Micro Vickers hardness is 1
000 to 1500 and is made of a ceramic sintered body with an average crystal grain size of 3 μm or less, and the bonded glass has a thermal expansion coefficient of 7
A magnetic head characterized in that it is made of glass having a temperature within the range of 5 to 95 x 10^-^7/°C. 9. Magnetic recording that records and reproduces signals by winding a magnetic tape diagonally around the outer circumference of a drum containing a rotating magnetic head to form a magnetic recording pattern having a predetermined inclination angle with respect to the longitudinal direction of the magnetic tape. In the reproducing device, the magnetic head includes a pair of magnetic head cores made of an amorphous magnetic alloy film formed on a non-magnetic support, which are butted against each other with a non-magnetic gap material and bonded with glass. is made of a ceramic sintered body with a micro-Vickers hardness of 1000 to 1500 and an average crystal grain size of 3 μm or less, and the bonded glass has a thermal expansion coefficient of 75 to 95 × 1
A magnetic recording/reproducing device characterized in that it is made of glass with a temperature within the range of 0^-^7/°C. 10. Magnetic recording that records and reproduces signals by winding a magnetic tape diagonally around the outer circumference of a drum containing a rotating magnetic head to form a magnetic recording pattern having a predetermined inclination angle with respect to the longitudinal direction of the magnetic tape. In the reproducing device, the magnetic head includes a pair of magnetic head cores made of an amorphous magnetic alloy film formed on a non-magnetic support, which are butted against each other through a non-magnetic gap material and bonded with glass. However, most of the main components are cubic ZrO_2, and Y
_2O_3, CaO, MgO, SrO, CeO_2, L
Average crystal grain size 3μ containing at least one kind of a_2O_3
A magnetic recording/reproducing device comprising a ceramic sintered body having a size of 1.0 m or less, and the bonded glass comprising an oxide containing vanadium as a main component in terms of V_2O_5 and phosphorus and antimony in terms of P_2O_5 and Sb_2O_3. Device. 11. The sintered body has a molar ratio of 55 in terms of ZrO_2.
~70% zirconium, converted to Y_2O_3 1
At least one of the following: 0% or less of yttrium, 20% or less of each of calcium, magnesium, and strontium in terms of CaO, MgO, and SrO, 30% or less of cerium in terms of CeO_2, and 35% or less of lanthanum in terms of La_2O_3. 11. The magnetic recording and reproducing device according to claim 10, comprising seeds.
JP63172763A 1988-07-13 1988-07-13 Magnetic head and magnetic recording / reproducing apparatus Expired - Lifetime JP2543750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172763A JP2543750B2 (en) 1988-07-13 1988-07-13 Magnetic head and magnetic recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172763A JP2543750B2 (en) 1988-07-13 1988-07-13 Magnetic head and magnetic recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JPH0224808A true JPH0224808A (en) 1990-01-26
JP2543750B2 JP2543750B2 (en) 1996-10-16

Family

ID=15947886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172763A Expired - Lifetime JP2543750B2 (en) 1988-07-13 1988-07-13 Magnetic head and magnetic recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP2543750B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190703A (en) * 1985-02-19 1986-08-25 Matsushita Electric Ind Co Ltd Magnetic head
JPS6320705A (en) * 1986-07-14 1988-01-28 Hitachi Ltd Magnetic erasion head
JPS6325824A (en) * 1986-07-18 1988-02-03 Hitachi Ltd Production of magnetic head
JPS63134562A (en) * 1986-11-21 1988-06-07 住友特殊金属株式会社 Material for magnetic head slider

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190703A (en) * 1985-02-19 1986-08-25 Matsushita Electric Ind Co Ltd Magnetic head
JPS6320705A (en) * 1986-07-14 1988-01-28 Hitachi Ltd Magnetic erasion head
JPS6325824A (en) * 1986-07-18 1988-02-03 Hitachi Ltd Production of magnetic head
JPS63134562A (en) * 1986-11-21 1988-06-07 住友特殊金属株式会社 Material for magnetic head slider

Also Published As

Publication number Publication date
JP2543750B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JPH03126662A (en) Nonmagnetic mn-zn ferrite for magnetic head
JPS60177420A (en) Composite type thin film magnetic head and its production
JPH0686309B2 (en) Magnetic head, manufacturing method thereof, and magnetic recording / reproducing apparatus
JPH0224808A (en) Magnetic head and magnetic recording and reproducing device
JPS62219217A (en) Magnetic head
KR100690460B1 (en) Non-magnetic substrate for a magnetic head and magnetic head
US6136459A (en) Nonmagnetic substrate and magnetic head using the same
JP2628962B2 (en) Magnetic head and magnetic recording / reproducing apparatus using the same
JPS6337819A (en) Floating type magnetic head for magnetic disk device
JPS62295207A (en) Floating type magnetic head for magnetic disk
JPS6129415A (en) Magnetic recording medium
JPS6267712A (en) Production of alloy magnetic head
JPH03109235A (en) Glass and magnetic head
JPH03275555A (en) Floating magnetic head
JPS62295208A (en) Floating type magnetic head for magnetic disk device
JPS59218615A (en) Magnetic head and its manufacture
JPS61110302A (en) Magnetic recording system
JPH0522283B2 (en)
KR20020097256A (en) Magnetic head-use sealing glass, magnetic head and magnetic recording/reproducing device
JPH03257038A (en) Glass and magnetic head
JPH077491B2 (en) Flying magnetic head
JPS63217515A (en) Magnetic head
JPH11171642A (en) Nonmagnetic substrate and magnetic head by using the same
JPH11353612A (en) Nonmagnetic substrate and magnetic head using the same
JPH05274639A (en) Nonmagnetic substrate material and floating magnetic head