JPH02247374A - Crucible for evaporation source and thin film formation using same - Google Patents

Crucible for evaporation source and thin film formation using same

Info

Publication number
JPH02247374A
JPH02247374A JP6610689A JP6610689A JPH02247374A JP H02247374 A JPH02247374 A JP H02247374A JP 6610689 A JP6610689 A JP 6610689A JP 6610689 A JP6610689 A JP 6610689A JP H02247374 A JPH02247374 A JP H02247374A
Authority
JP
Japan
Prior art keywords
crucible
vapor deposition
vapor
thin film
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6610689A
Other languages
Japanese (ja)
Inventor
Yasuo Iwabori
岩堀 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6610689A priority Critical patent/JPH02247374A/en
Publication of JPH02247374A publication Critical patent/JPH02247374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form a high pressure vapor of vapor deposition material free from contamination with impurities by fitting a secondary crucible composed of a material difficult to react with a vapor deposition material in a crucible body, placing the vapor deposition material in the above secondary crucible, and then heating an evaporated vapor. CONSTITUTION:A secondary crucible 4 consisting of a material difficult to react with a vapor deposition material, such as ceramics and BN, is fitted in the inside of a crucible body 1. The top of the crucible body 1 is covered with a lid 2 and a nozzle 3 is provided in this lid 2, and the crucible body 1 is constituted of a conductive material, such as carbon graphite, and efficiently heated by an electron impact method up to a sufficiently high temp. Further, an overhang 7 is peripherally provided to the upper end of the above secondary crucible 4 to prevent the bumping of the vapor deposition material 5. Moreover, the secondary crucible 4 is constituted so that its height is lower than that of the crucible body 1 to form a vapor heating part 6 in the upper space. Then, the vapor deposition material 5 is held in the above secondary crucible 4, evaporated, and further heated, by which a high pressure vapor with high purity is formed. This vapor is blown out in the form of clusters through the nozzle 3, by which a thin film with high quality can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸発源用るつぼと、それ1こよる薄膜成膜方法
に係り、特に高品質の薄膜を安定して成膜できるるつぼ
構造及び薄膜成膜方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crucible for an evaporation source and a method for forming a thin film using the crucible, and particularly to a crucible structure and thin film that can stably form a high-quality thin film. Regarding a film forming method.

〔従来の技術〕[Conventional technology]

従来、物質を加熱蒸発させて薄膜形成を行う真空蒸着、
クラスタイオンビーム蒸着法等においては、物質の容器
としてるつぼを用いるのが一般的であり、この代表的な
ものとしては、特開昭59−205644  に記載さ
れている。この方法は、るつぼ本体を、内部に収容する
蒸着物質と反応しにくい物質で形成し、本体の外表面を
導電性材料で被覆するもので、この場合の加熱方法とし
ては電子衝撃法が一般的である。
Conventionally, vacuum evaporation, which forms a thin film by heating and evaporating a substance,
In the cluster ion beam evaporation method, etc., a crucible is generally used as a container for the substance, and a typical crucible is described in Japanese Patent Laid-Open No. 59-205644. In this method, the crucible body is formed of a material that does not easily react with the vapor deposition substance contained inside, and the outer surface of the crucible body is coated with a conductive material.The heating method in this case is generally the electron impact method. It is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本方法は、るつぼ本体が蒸着物質と反応しにくい物質な
ので、蒸着物への不純物混入が少なく、又るつぼ本体の
破壊等もなく、品質の良い膜が比較的安定して成膜でき
る。他方、例えばセラミック系等の物質では、絶縁性で
ある為、加熱方法として電子衝撃法を用いることが出来
ないので、外表面を導電性材料で被へすることにより、
本被覆部分を電子衝撃法で加熱することにより、るつぼ
本体を間接的に加熱し、内部の蒸着物質を溶融。
In this method, since the crucible body is made of a material that does not easily react with the vapor deposition material, there is little impurity mixed into the vapor deposited material, there is no destruction of the crucible body, and a high-quality film can be formed relatively stably. On the other hand, for example, materials such as ceramics are insulating and cannot be heated using the electron impact method. Therefore, by covering the outer surface with a conductive material,
By heating the coated part using the electron impact method, the crucible body is indirectly heated and the deposited material inside is melted.

蒸発させるものである。しかしながら、本方法では、る
つぼ本体は外側の被覆材からの熱を受けての加熱であり
、内部の蒸着物質を加熱、溶融し必要な圧力の蒸気、あ
るいは所定の膜形成速度を得る目的に鑑みて必ずしも効
率の良い方法ではない。
It evaporates. However, in this method, the crucible body is heated by receiving heat from the outer coating material, and the purpose of heating and melting the vapor deposition substance inside to obtain steam at the necessary pressure or a predetermined film formation rate is considered. This is not necessarily an efficient method.

例えば、クラスタイオンビーム法では、高温すなわち高
圧の蒸気をるつぼ内に効率良(作り出す必要があり、従
来の方法では安定した成膜は期特出米ない。本発明の目
的は、かかる欠点を解消し、蒸着物への不純物混入のな
い、高圧の蒸気をるつぼ内に効率良く作り出するつぼ構
造を提供することにある。
For example, in the cluster ion beam method, it is necessary to efficiently create high-temperature, high-pressure steam in a crucible, and stable film formation is not particularly possible with conventional methods.The purpose of the present invention is to eliminate such drawbacks. Another object of the present invention is to provide a crucible structure that efficiently produces high-pressure steam in the crucible without contaminating the deposited material with impurities.

本発明の他の目的は、るつぼを用いて、高品質の薄膜を
安定して成膜出来る、薄膜成膜方法を提供することにあ
る。
Another object of the present invention is to provide a thin film forming method that can stably form a high quality thin film using a crucible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は、効率良く加熱されるイ)つば本体中に
、蒸着物と反応しに(い物質から成v′)溶融部を形成
する容器をはめ込み、その上方に蒸気加熱部を設けるこ
とにより達成される。
The purpose of the present invention is to heat efficiently (a) a container that reacts with the vapor deposits to form a melting part (made of a substance) is fitted into the collar body, and a steam heating part is provided above the container. This is achieved by

本発明の他の目的は、上記構造のるつぼと、薄膜を形成
すべき基板を真空槽内に配置し、前記イ)つぼを加熱し
蒸着物質を蒸気化す−ることによって達成される。
Another object of the present invention is achieved by arranging the crucible having the above structure and the substrate on which the thin film is to be formed in a vacuum chamber, and performing (a) heating the crucible to vaporize the deposition material.

〔作用〕[Effect]

るつぼ内部にはめ込まれた容器は、るつぼ本体からの熱
を受けて蒸着物を溶融し、蒸気加熱部においてはるつぼ
本体番こより蒸着物の蒸気がirt接加熱加熱るので、
高圧の蒸気が効率良く生成される。
The container fitted inside the crucible melts the deposit by receiving heat from the crucible body, and in the steam heating section, the steam of the deposit is heated by IRT heating from the crucible body.
High-pressure steam is efficiently generated.

したがって、本るつぼを用いた薄膜成膜方法番こより高
品質の薄膜が安定して成膜できる。
Therefore, a thin film of higher quality can be stably deposited using the thin film deposition method using the present crucible.

〔実施例〕〔Example〕

以下、本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例たるクラスタイオンビーム
蒸着用るつぼの代表的な構造を示す縦断面図である。1
はるつぼ本体、2はるつぼ本体と共にるつぼを構成する
ふ5た、5はノズル、4はるつぼ本体内部にはめ込まれ
た副るつぼ、5は蒸着物質、6は蒸気加熱部、7は副る
つぼ上部に設けられた張出し部である。るつぼ本体1は
、例えばカーボングラファイト等の導電性物質から成っ
ており、電子衝撃法によって、効率良く充分高温に加熱
される。副るつぼ4は、蒸着物と反応しに(い物質、例
えばセラミック、ボロンナイトライドなどから成り、高
さはるつぼ本体1より小さく、その外壁はるつぼ本体1
の内壁ζこ密着する形状9寸法になっており、る、つぼ
本体1の内部着こ図の如くはめ込まれる。したかって、
るつぼ本体1の内部には、副るつぼ4の部分とその上方
に空間すなわち蒸気加熱部6が出来る。副るつぼ4は、
外側に密着しているるつぼ本体1により加熱さ1′16
蒸窮物質5が溶融し、上方の蒸気加熱部6に蒸着物質の
蒸気が満たされる。蒸気加熱部6は、導電材質であるる
つぼ本体1の内壁に直接接しているので、蒸気は副るつ
ぼ4内よりも更に高温に熱千5らεL高圧の蒸気となり
、ノズル3よりクラスタ(塊状原子集団)となって噴出
される。以上の説明で明らかなように、本構造によれば
、蒸着物質5への不純物混入がなくなり、又、副るつぼ
4の温度がそれほど上がらない場合でも充分高圧の蒸気
が生成されることになる。尚、副るつぼ4の上部の張出
し部7は蒸着物質5の突沸による、るつぼ本体1の上部
への蒸着物付着を防ぐためのものであり、成膜を安定し
て行う上で効果が大きい。
FIG. 1 is a longitudinal sectional view showing a typical structure of a crucible for cluster ion beam evaporation, which is an embodiment of the present invention. 1
A crucible main body, 2 a lid 5 which constitutes the crucible together with the crucible main body, 5 a nozzle, 4 a sub-crucible fitted inside the crucible main body, 5 a vapor deposition substance, 6 a steam heating section, 7 an upper part of the sub-crucible This is an overhang provided. The crucible body 1 is made of a conductive material such as carbon graphite, and is efficiently heated to a sufficiently high temperature by an electron impact method. The sub-crucible 4 is made of a material that does not react with the deposit, such as ceramic or boron nitride, has a height smaller than the crucible main body 1, and has an outer wall that is smaller than the crucible main body 1.
It has a shape of 9 dimensions that fits tightly against the inner wall ζ of the vase body 1, and is fitted into the inside of the vase body 1 as shown in the figure. I wanted to,
Inside the crucible body 1, a space, that is, a steam heating section 6, is formed in the sub-crucible 4 portion and above it. Sub-crucible 4 is
Heated by the crucible body 1 that is in close contact with the outside 1'16
The vaporized material 5 is melted, and the upper steam heating section 6 is filled with the vapor of the vaporized material. Since the steam heating section 6 is in direct contact with the inner wall of the crucible body 1 which is made of a conductive material, the steam is heated to a higher temperature than the inside of the sub-crucible 4 and becomes high-pressure steam. It is ejected in groups. As is clear from the above description, according to this structure, impurities are not mixed into the vapor deposition material 5, and even if the temperature of the sub-crucible 4 does not rise significantly, sufficiently high-pressure steam is generated. The projecting portion 7 at the upper part of the sub-crucible 4 is for preventing deposition material from adhering to the upper part of the crucible body 1 due to bumping of the deposition material 5, and is highly effective in stably forming a film.

第2図は、本発明の他の実施例たるクラスクイオンビー
ム蒸着方法を示すものである。真空槽8内にるつぼ1′
を置き、排気孔9こより真空槽8内ヲ10′″4〜10
−5Torr の高真空に排気する。るつぼ1′は、前
述の如(、導電性物質からなるるつぼ本体に副るつぼを
はめ込み、その上方に蒸気加熱部を有する構造になって
いる。るつぼ内には蒸着物質58入れ、蒸気圧が数To
rr に相当する温度に加熱する。本実施例ではフィラ
メント10により電子衝撃法で加熱する。すなわち、フ
ィラメント10番こ対して正電位を有するるつぼ1′に
、フィラメント10より、フィラメントに通電すること
により発生する熱電子が飛来し高温に加熱されるもので
ある(尚、加熱方法としては、他に高周波加熱法。
FIG. 2 shows a Clask ion beam deposition method according to another embodiment of the present invention. Crucible 1' in vacuum chamber 8
from the exhaust hole 9 to the inside of the vacuum chamber 8.
Evacuate to a high vacuum of -5 Torr. As described above, the crucible 1' has a structure in which a sub-crucible is fitted into the crucible main body made of a conductive material and has a steam heating section above the crucible. To
Heat to a temperature corresponding to rr. In this embodiment, the filament 10 is heated by an electron impact method. That is, thermoelectrons generated by energizing the filament 10 fly into the crucible 1', which has a positive potential with respect to filament No. 10, and are heated to a high temperature (the heating method is as follows: Another method is high-frequency heating.

ヒータ一方式等がある)。すると、実施例1において詳
述した如(、るつぼ1′内には高温、すなわち高圧の蒸
着物質の蒸気が効率良(安定−して生成され、るつぼ外
との圧力差によりノズル3から噴出されるが、この際に
断熱膨張による過冷却状態によって蒸着物質は塊状原子
集団(いわゆるクラスター)になる。本タラスターの生
成機構は、特公昭54−9592  に詳述されている
。このクラスターを何らかの手段によってイオン化して
基板に射突、付着させるのがクラスターイオンビーム法
であるが、本実施例ではマイクロ波プラズマによってク
ラスタのイオン化を図る(クラスターのイオン化方法と
しては、熱電子放射用フィラメントよりクラスターに電
子流を照射してイオン化する方法もある)0すなわち、
マイクロ波発振源11で発生した数G)lz(通常は2
.45 G tlz )のマイクロ波が導波管12によ
り、真空保持用の密閉板13を介して真空槽8内lこ導
入される。密閉板15は、マイクロe、を通過させる為
に、例えば石英板などの誘電体を用いる。マイクロ波発
振源11と密閉板15の関lこは、インピーダンス整合
用のチューナ14.入射及び反射波検出用のパワーモニ
タ151反射波吸収用のアイソレータ168・設置する
。尚、17はマイクロ波発振源用電源である。真空槽8
内に導入されたマイクロ波は、電aコイル゛i8.18
’(を源は19)により規定される磁界条件lこより成
子サイクロトロン共鳴を起し、高密度、晶ユネルギーの
プラズマが発生する。すなわち、相(昇が力)か゛つて
いる場合、電子は磁力線の回りを導旋運動(いわゆるサ
イクロトロン運動)シ、この時の周波数feはfe=e
B/meから一義的に定まる。ここで、e=電子の素電
荷、B=磁界の強さ、n1e=電子の質量である。この
feと、導入されるマイクロ波の周波数を一致させると
上記の成子サイクロトロン共鳴(ECR)が起り、電子
が激しく動きまわって大きな運動エネルギーを有するよ
うになる。この結果、プラズマの電離が促進され、プラ
ズマ密度も大きくなる。工業用のマイクロ波の周波数は
通常2.45Qkizであり、したがって、上式より磁
界強さは875ガウスとして設定される。このECRの
効果Iこより、第2図の真空槽内には高密度のプラズマ
が発生し、その中に存在する多数の電子は大きなエネル
ギーを有している。したがって、前述のクラスターが、
このプラズマ領域を通過する際、高エネルギーを有する
電子と衝突し、クラスター中の原子がイオン化される確
率が大となり、いわゆるクラスターイオンが出来やすく
なる。このようにして出来たクラスターイオンは、るつ
ぼ1′に対して負電位を有する加速電極20により加速
されて基板21に射突し所定の成膜が実現することにな
る0尚、クラスターイオンの加速方法としては、本図の
如(加速電極20(−特に設けず、基板側負電位のみで
加速する方法、あるいは、基板*IJ(こ加速電極20
以上の負電位を印加してクラスターイオンを再加速する
方法もある。
(There are heater types, etc.) Then, as described in detail in Example 1, high-temperature, high-pressure vapor of the deposition material is generated efficiently (and stably) inside the crucible 1', and is ejected from the nozzle 3 due to the pressure difference with the outside of the crucible. However, at this time, the deposited material becomes a lumpy atomic group (so-called cluster) due to the supercooled state caused by adiabatic expansion.The generation mechanism of this Tarastar is detailed in Japanese Patent Publication No. 54-9592. In the cluster ion beam method, the clusters are ionized by a thermoelectron emission filament and attached to the substrate, but in this example, the clusters are ionized by microwave plasma. There is also a method of ionizing by irradiating the electron stream) 0, that is,
The number of G)lz generated by the microwave oscillation source 11 (usually 2
.. Microwaves of 45 G tlz ) are introduced into the vacuum chamber 8 through a waveguide 12 and a sealing plate 13 for maintaining vacuum. The sealing plate 15 uses a dielectric material such as a quartz plate to allow the micro e to pass through. The connection between the microwave oscillation source 11 and the sealing plate 15 is a tuner 14 for impedance matching. A power monitor 151 for detecting incident and reflected waves and an isolator 168 for absorbing reflected waves are installed. Note that 17 is a power source for a microwave oscillation source. Vacuum chamber 8
The microwave introduced into the
' (The source is 19) Due to the magnetic field conditions defined by 19, a Seiko cyclotron resonance occurs, and a plasma with high density and crystal energy is generated. In other words, when there is a phase (rising force), the electrons move in a circular motion (so-called cyclotron motion) around the magnetic field lines, and the frequency fe at this time is fe=e
It is uniquely determined from B/me. Here, e=elementary charge of the electron, B=strength of the magnetic field, and n1e=the mass of the electron. When this fe and the frequency of the introduced microwave are matched, the above-described cyclotron resonance (ECR) occurs, and electrons move around violently and have large kinetic energy. As a result, ionization of the plasma is promoted and the plasma density also increases. The frequency of industrial microwaves is usually 2.45Qkiz, so the magnetic field strength is set as 875 Gauss from the above equation. Due to this effect of ECR, a high-density plasma is generated in the vacuum chamber shown in FIG. 2, and a large number of electrons present in the plasma have high energy. Therefore, the aforementioned cluster is
When passing through this plasma region, there is a high probability that atoms in the cluster will be ionized by colliding with high-energy electrons, making it easier to form so-called cluster ions. The cluster ions thus formed are accelerated by an accelerating electrode 20 having a negative potential with respect to the crucible 1' and impinge on the substrate 21 to form a predetermined film. As a method, as shown in this figure (acceleration electrode 20 (-) is not provided, and acceleration is performed only with a negative potential on the substrate side, or substrate *IJ (this acceleration electrode 20
There is also a method of re-accelerating cluster ions by applying the above negative potential.

以上述べた如く、本方法ζこよれば、導電性物質からな
るるつぼ本体に副るつぼをはめ込み、その上方に蒸気加
熱部を有する構造のるつぼを用いることにより不純物の
少ない高品質のクラスタが効率良く安定して生成され1
、更にζ、のクラスターをECRプラズマによってイオ
ン化することtこより所定の成膜が実現される。
As mentioned above, according to the present method, high-quality clusters with few impurities can be efficiently produced by using a crucible having a structure in which a sub-crucible is fitted into a crucible main body made of a conductive material and has a steam heating section above the crucible. Stably generated 1
, and further ionize the clusters of ζ by ECR plasma, thereby achieving a predetermined film formation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、るつぼから蒸着物質への不純物混入が
なく、又、加熱効率良く高圧の蒸着物蒸気を生成できる
効果があり、特にクラスターイオンビーム蒸着において
高品質の薄膜を安定、して成膜出来る効果がある。
According to the present invention, there is no impurity mixed into the vapor deposited material from the crucible, and high pressure vapor of the vapor can be generated with high heating efficiency. Particularly in cluster ion beam vapor deposition, high quality thin films can be stably produced. It has the effect of forming a film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の−・実施例たるクラスタイオタイオ
ンビーム蒸着方法を示す一部断面図である。 1・・・るつぼ本体   1′・・・るつぼ2・・・ふ
た      3・・・ノズル4・・・副るつぼ   
 5・・・蒸着物質6・・・蒸気加熱部   7・・・
張出し部8・・・真空槽     9・・・排気孔10
・・・フィラメント  11・・・マイクロ波発振源1
2・・・導波管     15・・・密閉板14・・・
チュウナ    15・・・パワーモニタ16・・・ア
イソレータ 17・・・マイクロ波発振源用電源
FIG. 1 is a partial sectional view showing a cluster ion beam evaporation method according to an embodiment of the present invention. 1... Crucible body 1'... Crucible 2... Lid 3... Nozzle 4... Sub-crucible
5... Vapor deposition substance 6... Steam heating section 7...
Overhang part 8... Vacuum chamber 9... Exhaust hole 10
...Filament 11...Microwave oscillation source 1
2... Waveguide 15... Sealing plate 14...
Tuner 15... Power monitor 16... Isolator 17... Power supply for microwave oscillation source

Claims (1)

【特許請求の範囲】 1、るつぼ本体の内部に、蒸着物質と反応しにくい物質
から成る副るつぼをはめ込み、副るつぼ内には蒸着物質
を収容し、副るつぼの上方に蒸気加熱部を設けたことを
特徴とする蒸発源用るつぼ。 2、るつぼ本体が導電性物質から成ることを特徴とする
請求項1記載の蒸発源用るつぼ。3、ノズルを有するふ
たを備えたことを特徴とする請求項1又は2記載の蒸発
源用るつぼ。 4、副るつぼ上部に張出し部を設けたことを特徴とする
請求項3記載の蒸発源用るつぼ。5、所定の真空度にな
つている真空槽内に、蒸着物質を収容している請求項1
又は2又は3又は4記載のるつぼと、所定の薄膜を成膜
すべき基板を配置し、前記るつぼを加熱し、蒸着物質を
蒸気化することによつて基板上に所定の薄膜を形成する
ことを特徴とする薄膜成膜方法。 6、るつぼのノズルから噴射される蒸着物質のクラスタ
をイオン化し、これを別途具備するイオン引出し電極の
負電位により加速することを特徴とする請求項5記載の
薄膜成膜方法。
[Claims] 1. A sub-crucible made of a substance that does not easily react with the vapor deposition substance is fitted inside the crucible body, the vapor deposition substance is housed in the sub-crucible, and a steam heating section is provided above the sub-crucible. A crucible for evaporation source characterized by the following. 2. The crucible for evaporation source according to claim 1, wherein the crucible body is made of a conductive material. 3. The crucible for evaporation source according to claim 1 or 2, further comprising a lid having a nozzle. 4. The crucible for evaporation source according to claim 3, characterized in that an overhang is provided on the upper part of the sub-crucible. 5. Claim 1, wherein the vapor deposition substance is housed in a vacuum chamber that has a predetermined degree of vacuum.
or arranging the crucible according to 2, 3, or 4 and a substrate on which a predetermined thin film is to be deposited, heating the crucible, and vaporizing the deposition substance to form a predetermined thin film on the substrate. A thin film deposition method characterized by: 6. The thin film forming method according to claim 5, characterized in that the clusters of the vapor deposition material injected from the nozzle of the crucible are ionized and accelerated by a negative potential of an ion extraction electrode separately provided.
JP6610689A 1989-03-20 1989-03-20 Crucible for evaporation source and thin film formation using same Pending JPH02247374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6610689A JPH02247374A (en) 1989-03-20 1989-03-20 Crucible for evaporation source and thin film formation using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6610689A JPH02247374A (en) 1989-03-20 1989-03-20 Crucible for evaporation source and thin film formation using same

Publications (1)

Publication Number Publication Date
JPH02247374A true JPH02247374A (en) 1990-10-03

Family

ID=13306308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6610689A Pending JPH02247374A (en) 1989-03-20 1989-03-20 Crucible for evaporation source and thin film formation using same

Country Status (1)

Country Link
JP (1) JPH02247374A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315898A (en) * 2003-04-16 2004-11-11 Tokki Corp Evaporation source in vapor deposition system
JP2006193761A (en) * 2005-01-11 2006-07-27 Ideal Star Inc Vaporizer, and plasma treatment device having vaporizer
US8025733B2 (en) * 2002-07-23 2011-09-27 Samsung Mobile Display Co., Ltd. Heating crucible and deposition apparatus using the same
CN104357797A (en) * 2014-11-14 2015-02-18 京东方科技集团股份有限公司 Heater for crucible, crucible and evaporation source
CN104593730A (en) * 2014-12-24 2015-05-06 深圳市华星光电技术有限公司 Crucible capable of preventing splitting decomposition of organic light emitting diode (OLED) material
CN106967952A (en) * 2016-01-13 2017-07-21 张家港康得新光电材料有限公司 Heater
JP2018104804A (en) * 2016-12-28 2018-07-05 株式会社半導体エネルギー研究所 Manufacturing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025733B2 (en) * 2002-07-23 2011-09-27 Samsung Mobile Display Co., Ltd. Heating crucible and deposition apparatus using the same
JP2004315898A (en) * 2003-04-16 2004-11-11 Tokki Corp Evaporation source in vapor deposition system
JP2006193761A (en) * 2005-01-11 2006-07-27 Ideal Star Inc Vaporizer, and plasma treatment device having vaporizer
CN104357797A (en) * 2014-11-14 2015-02-18 京东方科技集团股份有限公司 Heater for crucible, crucible and evaporation source
CN104593730A (en) * 2014-12-24 2015-05-06 深圳市华星光电技术有限公司 Crucible capable of preventing splitting decomposition of organic light emitting diode (OLED) material
CN104593730B (en) * 2014-12-24 2017-02-22 深圳市华星光电技术有限公司 Crucible capable of preventing splitting decomposition of organic light emitting diode (OLED) material
CN106967952A (en) * 2016-01-13 2017-07-21 张家港康得新光电材料有限公司 Heater
JP2018104804A (en) * 2016-12-28 2018-07-05 株式会社半導体エネルギー研究所 Manufacturing apparatus

Similar Documents

Publication Publication Date Title
US5656141A (en) Apparatus for coating substrates
JPH02247374A (en) Crucible for evaporation source and thin film formation using same
US5180477A (en) Thin film deposition apparatus
JP2552701B2 (en) Ion source
JP2710670B2 (en) Crucible for steam source
JP2000144392A (en) Thin film forming device and formation of thin film
JPS63307261A (en) Thin film forming device
JPS61207572A (en) Thin film forming device
JPH01119663A (en) Thin film-forming apparatus
JPH03287761A (en) Thin film forming device
KR940004099B1 (en) Ionising vapour cluster and appartus for forming thin film
JPH01309957A (en) Thin film-forming device
JPH0293060A (en) Thin compound film formation
JPH03158458A (en) Cluster ion beam device
JPS63213338A (en) Device for forming compound thin film
JPS6329925A (en) Forming device for compound thin-film
JPH01290758A (en) Production of oxide thin film
JPH09263933A (en) Mechanism of crucible part in vapor deposition device
JPH04173964A (en) Thin film forming device
JPH0541698B2 (en)
JPH02197566A (en) Thin film forming device
JPH05106030A (en) Thin film forming apparatus
JPH0510423B2 (en)
JPS60124924A (en) Device for vapor deposition of thin film
JPH0192363A (en) Molecular flow generator