JPH0224574A - Measuring method of microscopic distribution of specific resistance of semiconductor - Google Patents
Measuring method of microscopic distribution of specific resistance of semiconductorInfo
- Publication number
- JPH0224574A JPH0224574A JP17585788A JP17585788A JPH0224574A JP H0224574 A JPH0224574 A JP H0224574A JP 17585788 A JP17585788 A JP 17585788A JP 17585788 A JP17585788 A JP 17585788A JP H0224574 A JPH0224574 A JP H0224574A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- electrode
- probes
- semiconductor
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 239000000523 sample Substances 0.000 claims abstract description 35
- 235000012431 wafers Nutrition 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は半導体比抵抗の微小分布測定法に係わるもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring minute distribution of semiconductor resistivity.
[従来技術]
半導体比抵抗の微小分布を測定するため3電極ガード法
と称する測定方法が用いられているが、その方法は次の
ようなものである。[Prior Art] A measurement method called the three-electrode guard method is used to measure the minute distribution of semiconductor resistivity, and the method is as follows.
第3図において、1は半導体ウェハを示し、2はその片
面に、大きさを定め(例えば、直径70μm)、縦横に
一定間隔(例えば100μm)をもって形成されたオー
ミック電極であり、3はこれらオーミック電極2を取り
囲むオーミブクガード電極である。又、4は反対面に一
様に形成されたオーミック電極である。In FIG. 3, 1 represents a semiconductor wafer, 2 represents ohmic electrodes formed on one side of the wafer with a fixed size (e.g., 70 μm in diameter) and regular intervals (e.g., 100 μm) in the vertical and horizontal directions, and 3 represents these ohmic electrodes. This is an ohmic guard electrode that surrounds the electrode 2. Further, 4 is an ohmic electrode uniformly formed on the opposite surface.
測定時には、オーミック電極4を直流電源5に接続し、
直流電源5の負側をアースし、プローブ7は電流計6を
介してアースし、プローブ8はそのままアースし、プロ
ーブ7を電極2と接触させ、またプローブ8をガード電
極3に接触させ、電極2とガード電極3とを同電位に保
持した状態で電流■を測定する。At the time of measurement, connect the ohmic electrode 4 to the DC power supply 5,
The negative side of the DC power source 5 is grounded, the probe 7 is grounded via the ammeter 6, the probe 8 is grounded, the probe 7 is brought into contact with the electrode 2, the probe 8 is brought into contact with the guard electrode 3, and the probe 7 is brought into contact with the electrode 2. 2 and the guard electrode 3 are held at the same potential, and the current ■ is measured.
この時、電極lの下の微小円筒体の比抵抗ρは次式で表
わされる。At this time, the specific resistance ρ of the microcylindrical body under the electrode l is expressed by the following equation.
但し、「は電極1の半径、tはウェハの厚さ、■は印加
電圧、■は電流である。However, " is the radius of the electrode 1, t is the thickness of the wafer, ■ is the applied voltage, and ■ is the current.
(なお上記方法は、Japanese Journal
of App目−ed Physlcs、 1lo1
.23.August 1984.PP、LGO2−L
GO5を参り、6)
従って、上記手法により、2木のプローブを使用し、オ
ートプローバーを用いて比抵抗の面内分布をとっていた
。(The above method is described in Japanese Journal
of App-ed Physlcs, 1lo1
.. 23. August 1984. PP, LGO2-L
Referring to GO5, 6) Therefore, according to the above method, two tree probes were used and an autoprober was used to obtain the in-plane distribution of resistivity.
[解決しようとする課題]
しかしながら、例えば40wm X 40mmの領域内
の面内分布を0.Im■ビフチで測定すると400X
400=IGO,000ポイントの一1定を行う必要が
あり、ウェハの移動も同回数必要であって、時間がかか
りすぎる。[Problem to be Solved] However, for example, if the in-plane distribution within a 40wm x 40mm area is 0. Im■ 400X when measured with Bifuchi
It is necessary to perform a constant determination of 400=IGO, 000 points, and the wafer must be moved the same number of times, which takes too much time.
[課題を解決するための手段]
本発明は上記課題を解決する目的でなされたものであっ
て、従来の3端子ガード法によることがi1’l tW
になるが、各n個のプローブを接続したnチャンネルア
ナログマルチプレクサm個からなるn×m個のプローブ
の組と1個のアースプローブを使用して半導体比抵抗の
微小分布を測定する方法にある。[Means for Solving the Problems] The present invention has been made for the purpose of solving the above problems, and the conventional three-terminal guard method can be used.
However, there is a method for measuring the minute distribution of semiconductor resistivity using a set of n×m probes consisting of m n-channel analog multiplexers each connected to n probes, and one earth probe. .
以下図面に示す実施例により本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.
第1図は本発明で使用するプローブの組の佼式各n個の
プローブPがm個のnチャンネルアナログマルチプレク
サに接続されていて、n×m個のプローブの組を形成す
る。それとアースプロー181本を含めて計n×m+1
個のプローブよりなる。FIG. 1 shows the structure of a probe set used in the present invention, in which each n probe P is connected to m n-channel analog multiplexers, forming an n×m probe set. Including that and 181 earth blowers, total n×m+1
It consists of several probes.
電極を囲むガード電極(アース電極)のパターンは第3
図かられかるように全面連続であるので、アースプロー
ブEは1個でよい。n×m個のプローブPは、第3図の
電極円形パターンに丁度合うように形成されている。又
、複数のプローブPはシート、又は板面表裏に突出する
電極として形成される。The pattern of the guard electrode (ground electrode) surrounding the electrode is the third
As shown in the figure, since the entire surface is continuous, only one earth probe E is required. The n×m probes P are formed to exactly fit the electrode circular pattern shown in FIG. Further, the plurality of probes P are formed as a sheet or as electrodes protruding from both sides of the plate surface.
第2図は一例として8チヤンネルのアナログマルチプレ
クサを示している。■、2.・・・・・8のインプレッ
ト端子とこれと対応する8個のプローブ7(第3図)と
が接続され、ガード電極3はアースプローブEと接続さ
れ、また裏側の電極4は電源5を接続して接地接続され
る。FIG. 2 shows an 8-channel analog multiplexer as an example. ■、2. ...8 inlet terminals and the corresponding eight probes 7 (Fig. 3) are connected, the guard electrode 3 is connected to the earth probe E, and the electrode 4 on the back side is connected to the power source 5. Connected to ground.
この状態で、コンピュータよりチャンネル選択入力を与
えれば、1〜8チヤンネルのうち一つのチャンネルが付
勢されて、一つのプローブ7に通電を生じ、電流計6で
半導体ウェハ上の一つの位置における抵抗を測定するこ
とができ、チャンネルを切換えることによって対応位置
の抵抗を測定することができ、nチャンネルのアナログ
マルチプレクサをm個使用すれば、n X m個の半導
体上の位置で抵抗を測定することができ、比抵抗の分布
が明確になる。In this state, if a channel selection input is given from the computer, one of channels 1 to 8 will be energized, one probe 7 will be energized, and the ammeter 6 will measure the resistance at one position on the semiconductor wafer. By switching channels, the resistance at the corresponding position can be measured. If m n-channel analog multiplexers are used, the resistance can be measured at n x m positions on the semiconductor. , and the distribution of resistivity becomes clear.
nチャンネルのアナログマルチプレクサを用いる場合、
第2図に示すように、電流計6手前で各アナログマルチ
プレクサよりの出力を合流するように接続するので、電
流計は1個で済む。When using an n-channel analog multiplexer,
As shown in FIG. 2, the outputs from each analog multiplexer are connected to join before the ammeter 6, so only one ammeter is required.
本発明によれば、n×m個のポイントをウェハの移動な
しで測定できるので、測定時間が大幅に短縮される。1
flll定に堡する時間は実際に電圧を印加して電流を
測定している時間とウェハが移動している時間の合計で
あるが、この移動時間が大幅に短縮される。According to the present invention, since n×m points can be measured without moving the wafer, the measurement time is significantly shortened. 1
The time required to maintain the wafer constant is the sum of the time actually applying a voltage and measuring the current and the time the wafer is moving, but this moving time is significantly reduced.
[実施例]
n=8 m=8のG411Jのプローブとアースプロ
ーブ1体の計65個のプローブの組を作成し、ウェハ上
81m X 3snの領域を測定した。[Example] A total of 65 probe sets including a G411J probe with n=8 and m=8 and one earth probe were created, and an area of 81 m x 3 sn on the wafer was measured.
従来法である2本のプローブの場合は約65分測定に要
したが、本発明の場合、約17分と大幅に測定時間が短
縮された。In the case of the conventional method using two probes, it took about 65 minutes to measure, but in the case of the present invention, the measurement time was significantly shortened to about 17 minutes.
[発明の効果コ
以上説明したように、第1図のような(n×m+1)個
のプローブの組とこれに対応数備えるアナログマルチプ
レクサを使用することにより測定時間を大幅を大幅に短
縮できる。[Effects of the Invention] As explained above, by using a set of (n×m+1) probes and a corresponding number of analog multiplexers as shown in FIG. 1, the measurement time can be significantly reduced.
第1図は、本発明のプローブ配置の模式図である。
第2図は、アナログマルチプレクサを用いた測定説明図
である。
第3図は3端子ガード法の説明と従来法のプローブ配置
の説明図である。
1・・・半導体ウェハ、2・・・オーミック電極、3・
・・ガード心極、4・・・オーミック電極(ベタ電極)
、5・・・直流電源、
6・・・電流計、
7.8・・・プローブ。
夷
図
mコのnギイ/名ル
アを口2マルナブレクサヘ
耳
同
半インネル呈ぶ入力FIG. 1 is a schematic diagram of the probe arrangement of the present invention. FIG. 2 is an explanatory diagram of measurement using an analog multiplexer. FIG. 3 is an explanatory diagram of the three-terminal guard method and the probe arrangement of the conventional method. 1... Semiconductor wafer, 2... Ohmic electrode, 3...
...Guard core pole, 4...Ohmic electrode (solid electrode)
, 5... DC power supply, 6... Ammeter, 7.8... Probe. Input of the nguy/name Lua of the 夷子 mko to the mouth 2 maruna brexa to the ear and half innel
Claims (1)
極ガード法において、各n個のプローブを接続したnチ
ャンネルアナログマルチプレクサm個からなるn×m個
のプローブの組とアースプローブ1個を使用することを
特徴とする半導体比抵抗の微小分布測定法。(1) In the three-electrode guard method for measuring the minute distribution of specific resistance of semiconductor wafers, a set of n×m probes consisting of m n-channel analog multiplexers each connected to n probes and one earth probe are used. A method for measuring minute distribution of semiconductor resistivity, characterized in that it is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17585788A JPH0224574A (en) | 1988-07-13 | 1988-07-13 | Measuring method of microscopic distribution of specific resistance of semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17585788A JPH0224574A (en) | 1988-07-13 | 1988-07-13 | Measuring method of microscopic distribution of specific resistance of semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0224574A true JPH0224574A (en) | 1990-01-26 |
Family
ID=16003410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17585788A Pending JPH0224574A (en) | 1988-07-13 | 1988-07-13 | Measuring method of microscopic distribution of specific resistance of semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0224574A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5333016A (en) * | 1991-06-07 | 1994-07-26 | Rohm Co., Ltd. | Image display apparatus |
KR100495873B1 (en) * | 2002-08-19 | 2005-06-21 | 주식회사 나우테크 | Apparatus for measuring sheet resistance |
JP2012150033A (en) * | 2011-01-20 | 2012-08-09 | Nissan Motor Co Ltd | Resistance measuring device and resistance measuring method |
-
1988
- 1988-07-13 JP JP17585788A patent/JPH0224574A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5333016A (en) * | 1991-06-07 | 1994-07-26 | Rohm Co., Ltd. | Image display apparatus |
KR100495873B1 (en) * | 2002-08-19 | 2005-06-21 | 주식회사 나우테크 | Apparatus for measuring sheet resistance |
JP2012150033A (en) * | 2011-01-20 | 2012-08-09 | Nissan Motor Co Ltd | Resistance measuring device and resistance measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wise et al. | An integrated-circuit approach to extracellular microelectrodes | |
US8004278B2 (en) | Techniques for electrically characterizing tunnel junction film stacks with little or no processing | |
JP5651469B2 (en) | Method and system for determining electrical characteristics of test samples | |
DK505489D0 (en) | APPARATUS AND PROCEDURE FOR INDICATING ACCESSIBILITY FOR THE CREATION OF THE NON-RESTRICTION AND FOR DEHYDRATION, IN PARTICULAR HUMANS | |
KR890002674A (en) | Resistivity measurement method and apparatus | |
Starr et al. | An evaluation of photoengraved microelectrodes for extracellular single-unit recording | |
JPH0224574A (en) | Measuring method of microscopic distribution of specific resistance of semiconductor | |
CN106370932A (en) | Thin silicon wafer resistivity test method and thin silicon wafer resistivity test system based on pseudo measurement method | |
CN103837809B (en) | The IC layout of test MOSFET matching and method of testing | |
Willey et al. | Computer graphics in three dimensions for perspective reconstruction of brain ultrastructure | |
Demarest et al. | Segregation of gastric Na and Cl transport: a vibrating probe and microelectrode study | |
Woltjen et al. | Bladder motility detection using the Hall effect | |
SU1237209A1 (en) | Apparatus for recording points of acupuncture | |
JPS62204168A (en) | Method for inspecting uniformity of sheet resistance of semiconductor wafer | |
JPH046844A (en) | Spreading-resistance measuring apparatus | |
JPS61104633A (en) | Measurement of electrified charge of semiconductor surface | |
Greene et al. | A comparison of probe geometries for neuronal localization | |
Kass et al. | Microelectrode voltage clamp: The cardiac Purkinje fiber | |
JPH0315704A (en) | Scanning tunnelling microscope | |
James et al. | Modelling eddy currents in unbounded structures using the impedance method | |
JPH01191069A (en) | Surface charge measuring instrument | |
Leivo | Teaching Transistor Physics | |
JPS6447960A (en) | Method and apparatus for measuring resistivity | |
JPH01316979A (en) | Hall effect measuring device | |
DE102016110613B4 (en) | Device and method for controlling a Hall structure with increased signal amplitude |