JP2012150033A - Resistance measuring device and resistance measuring method - Google Patents

Resistance measuring device and resistance measuring method Download PDF

Info

Publication number
JP2012150033A
JP2012150033A JP2011009602A JP2011009602A JP2012150033A JP 2012150033 A JP2012150033 A JP 2012150033A JP 2011009602 A JP2011009602 A JP 2011009602A JP 2011009602 A JP2011009602 A JP 2011009602A JP 2012150033 A JP2012150033 A JP 2012150033A
Authority
JP
Japan
Prior art keywords
current
resistance
voltage
applying
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009602A
Other languages
Japanese (ja)
Other versions
JP5625941B2 (en
Inventor
Kenji Miyamoto
健史 宮本
Takaaki Abe
孝昭 安部
Yoshio Shimoida
良雄 下井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011009602A priority Critical patent/JP5625941B2/en
Publication of JP2012150033A publication Critical patent/JP2012150033A/en
Application granted granted Critical
Publication of JP5625941B2 publication Critical patent/JP5625941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a resistance measuring device and a resistance measuring method for accurately detecting resistance along a vertical direction to a surface of a resistance detection body.SOLUTION: A resistance measuring device 1 comprises: first current applying means 5 for applying a first current to first portions where resistance along a vertical direction to a surface of a resistance detection body 2 is to be measured; second current applying means 6 for applying a second current to second portions each set to surround the first portion and closer to an outer periphery than the first portion so as to make a potential difference between the first portions and the second portions along an in-plane direction of the resistance detection body 2 substantially zero; and first voltage detecting means 7 for detecting a first voltage obtained between the first portions in applying the first current and the second current.

Description

本発明は抵抗測定装置および抵抗測定方法に関するものである。   The present invention relates to a resistance measuring device and a resistance measuring method.

集電体の面内方向の抵抗が高い電池、例えば樹脂集電体を用いた電池においては、集電体に積層される電極層の面内方向における抵抗にばらつきがあると、そのまま電極層に電圧分布が生じてしまう。そこで、集電体の面内方向の抵抗が高い電池では、電極層の面内抵抗を低減させる必要がある。そのためには、電極層の抵抗分布(局所的な抵抗)を把握することが重要となる。   In a battery having a high resistance in the in-plane direction of the current collector, such as a battery using a resin current collector, if the resistance in the in-plane direction of the electrode layer laminated on the current collector varies, Voltage distribution will occur. Therefore, in a battery having a high resistance in the in-plane direction of the current collector, it is necessary to reduce the in-plane resistance of the electrode layer. For that purpose, it is important to grasp the resistance distribution (local resistance) of the electrode layer.

従来、電池特性を検出する装置としては、特許文献1に開示されているものがある。特許文献1では、電池に交流電流を印加し、電池の端子間に発生する交流電圧信号によって内部抵抗を検出している。   Conventionally, as an apparatus for detecting battery characteristics, there is one disclosed in Patent Document 1. In Patent Document 1, an alternating current is applied to a battery, and an internal resistance is detected by an alternating voltage signal generated between the terminals of the battery.

特開平9−281202号公報JP-A-9-281202

しかし、上記発明の装置では、全体の抵抗、つまり抵抗の平均値を測定することはできるが、局所的な抵抗を測定することができない、といった問題点がある。   However, the apparatus according to the present invention has a problem that the total resistance, that is, the average value of the resistance can be measured, but the local resistance cannot be measured.

本発明はこのような問題点を解決するために発明されたもので、測定点の局所的な抵抗を正確に測定することを目的とする。   The present invention has been invented to solve such problems, and aims to accurately measure the local resistance of a measurement point.

本発明のある態様に係る抵抗測定装置は、抵抗検出体の面直方向の抵抗を測定する第1部位に第1電流を印加する第1電流印加手段と、第1部位よりも外周側であり、第1部位を取り囲むように設けた第2部位に、抵抗検出体の面内方向における第1部位と第2部位との電位差が略ゼロとなる第2電流を印加する第2電流印加手段とを備える。さらに抵抗測定装置は、第1電流と第2電流とが印加された時の第1部位間の第1電圧を検出する第1電圧検出手段を備える。   A resistance measuring device according to an aspect of the present invention includes a first current applying unit that applies a first current to a first part that measures resistance in a direction perpendicular to a resistance detector, and an outer peripheral side of the first part. A second current applying means for applying a second current at which the potential difference between the first part and the second part in the in-plane direction of the resistance detector is substantially zero to a second part provided so as to surround the first part; Is provided. The resistance measuring device further includes first voltage detecting means for detecting a first voltage between the first portions when the first current and the second current are applied.

この態様によると、抵抗検出体の面内方向へ電流が流れていない状態で、抵抗検出体の面直方向の電圧が検出されるので、抵抗検出体の面直方向の局所的な抵抗を正確に算出することができる。   According to this aspect, since the voltage in the direction perpendicular to the surface of the resistance detector is detected in a state where no current flows in the in-plane direction of the resistance detector, the local resistance in the direction perpendicular to the surface of the resistance detector is accurately determined. Can be calculated.

第1実施形態の抵抗測定装置を示す概略構成図である。It is a schematic block diagram which shows the resistance measuring apparatus of 1st Embodiment. 第1実施形態のプローブの配置を示す図である。It is a figure which shows arrangement | positioning of the probe of 1st Embodiment. 第1実施形態を用いない場合の電流の流れを説明する図である。It is a figure explaining the flow of an electric current when not using a 1st embodiment. 第1実施形態を用いた場合の電流の流れを説明する図である。It is a figure explaining the flow of the electric current at the time of using 1st Embodiment. 第1実施形態の内部抵抗の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the internal resistance of 1st Embodiment. 第1実施形態で使用する電池モデルを示す図である。It is a figure which shows the battery model used in 1st Embodiment. 第1実施形態で使用する電池モデルにおける印加電流と電圧との関係を示す図である。It is a figure which shows the relationship between the applied current and voltage in the battery model used in 1st Embodiment. 第2実施形態の抵抗測定装置を示す概略構成図である。It is a schematic block diagram which shows the resistance measuring apparatus of 2nd Embodiment. 第2実施形態の内部抵抗の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the internal resistance of 2nd Embodiment. 第3実施形態の抵抗測定装置を示す概略構成図である。It is a schematic block diagram which shows the resistance measuring apparatus of 3rd Embodiment. 第3実施形態の内部抵抗の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the internal resistance of 3rd Embodiment. 本実施形態におけるプローブの変形例を示す図である。It is a figure which shows the modification of the probe in this embodiment.

本発明の第1実施形態における抵抗測定装置1について図1を用いて説明する。図1は本実施形態の抵抗測定装置1の概略構成図である。抵抗測定装置1は、抵抗検出体の面直方向における内部抵抗を測定する装置である。ここでは、抵抗検出体として樹脂集電体を用いた電池2について説明するが、これに限られることはなく、抵抗検出体の面内方向における抵抗値のばらつきが大きいものであればよい。   A resistance measuring apparatus 1 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a resistance measuring apparatus 1 of the present embodiment. The resistance measuring device 1 is a device that measures the internal resistance in the direction perpendicular to the surface of the resistance detector. Here, the battery 2 using a resin current collector as a resistance detector will be described. However, the present invention is not limited to this, and any battery having a large variation in resistance value in the in-plane direction of the resistance detector may be used.

樹脂集電体3は、例えば固体電解質型の二次電池(以下、電池とする)2の集電体であり、導電性高分子材料で構成される集電体、または導電性高分子材料や非導電性高分子材料に導電性フィラーを添加した樹脂で構成される集電体である。導電性高分子材料は、例えばポリアニリン、ポリピロールなどである。非導電性高分子材料は、例えばポリエチレン、ポリプロピレンなどである。また、導電性フィラーは、例えば金属、導電性カーボンなどである。   The resin current collector 3 is, for example, a current collector of a solid electrolyte type secondary battery (hereinafter referred to as a battery) 2, and is a current collector made of a conductive polymer material, or a conductive polymer material, It is a current collector composed of a resin obtained by adding a conductive filler to a non-conductive polymer material. Examples of the conductive polymer material include polyaniline and polypyrrole. Examples of the non-conductive polymer material include polyethylene and polypropylene. The conductive filler is, for example, a metal, conductive carbon, or the like.

抵抗測定装置1は、一対のプローブ4と、第1電流源5と、第2電流源6と、第1電圧計7とを備える。   The resistance measuring device 1 includes a pair of probes 4, a first current source 5, a second current source 6, and a first voltmeter 7.

プローブ4について図2を用いて説明する。図2は電池2におけるプローブ4の配置を示す図である。図2においては説明のために一部の隠れ線を破線で示す。   The probe 4 will be described with reference to FIG. FIG. 2 is a diagram showing the arrangement of the probes 4 in the battery 2. In FIG. 2, some hidden lines are shown by broken lines for the sake of explanation.

プローブ4は、第1電極8と第2電極9とを備える。   The probe 4 includes a first electrode 8 and a second electrode 9.

第1電極8は円柱状に形成されており、第2電極9は円筒状に形成されている。第2電極9は、第1電極8と同軸であり、第2電極9の内周壁と第1電極8の外周壁とが向かい合うように設けられる。また、第2電極9の内周壁と第1電極8の外周壁との間には、空間が形成されている。   The first electrode 8 is formed in a columnar shape, and the second electrode 9 is formed in a cylindrical shape. The second electrode 9 is coaxial with the first electrode 8 and is provided so that the inner peripheral wall of the second electrode 9 and the outer peripheral wall of the first electrode 8 face each other. A space is formed between the inner peripheral wall of the second electrode 9 and the outer peripheral wall of the first electrode 8.

第1電極8は電池2の面直方向に配置された抵抗測定部位30a、30bに接触する。第2電極9は抵抗測定部位30a、30bよりも外周側であり、抵抗測定部位30a、30bを取り囲むように設けた周囲部位(第2部位)31a、31bに接触する。一対のプローブ4は、電池2を挟んで、第1電極8同士が向かい合い、第2電極9同士が向かい合うように配置される。   The first electrode 8 is in contact with the resistance measurement portions 30 a and 30 b arranged in the direction perpendicular to the surface of the battery 2. The second electrode 9 is on the outer peripheral side of the resistance measurement parts 30a, 30b, and comes into contact with surrounding parts (second parts) 31a, 31b provided so as to surround the resistance measurement parts 30a, 30b. The pair of probes 4 are arranged so that the first electrodes 8 face each other and the second electrodes 9 face each other across the battery 2.

第1電流源5は、第1電極8に接続しており、第1電極8を介して抵抗測定部位30a、30bに電流を印加する。第2電流源6は、第2電極9に接続しており、第2電極9を介して周囲部位31a、31bに電流を印加する。第1電流源5および第2電流源6は、直流電源でも交流電源でもよい。   The first current source 5 is connected to the first electrode 8, and applies a current to the resistance measurement portions 30 a and 30 b via the first electrode 8. The second current source 6 is connected to the second electrode 9 and applies a current to the surrounding portions 31 a and 31 b via the second electrode 9. The first current source 5 and the second current source 6 may be a DC power source or an AC power source.

第1電圧計7は、第1電極8を介して抵抗測定部位30a、30b間の電圧を測定する。   The first voltmeter 7 measures the voltage between the resistance measurement portions 30 a and 30 b via the first electrode 8.

次に本実施形態の抵抗測定装置1を用いて、電池2の内部抵抗を検出する場合の電流の流れについて図3、4を用いて説明する。ここでは、電池2を複数の抵抗を接続して表したモデルを用いて説明する。図3は、本実施形態の抵抗測定装置1を用いない場合の電流の流れを説明する図である。図4は、本実施形態の抵抗測定装置1を用いた場合の電流の流れを説明する図である。   Next, the current flow when the internal resistance of the battery 2 is detected using the resistance measuring apparatus 1 of the present embodiment will be described with reference to FIGS. Here, the battery 2 will be described using a model in which a plurality of resistors are connected. FIG. 3 is a diagram for explaining the flow of current when the resistance measurement apparatus 1 of the present embodiment is not used. FIG. 4 is a diagram for explaining a current flow when the resistance measuring apparatus 1 of the present embodiment is used.

本実施形態の抵抗測定装置1を用いない場合には、プローブの電極が電池の抵抗測定部位30a、30bに接続し、電流が印加されると樹脂集電体の面直方向および面内方向へ電流が流れる。そのため、抵抗測定部位30a、30b間の電圧を検出し、検出した電圧に基づいて内部抵抗を算出した場合には、抵抗測定部位30a、30bの周りの抵抗を含んだ内部抵抗が算出される。   When the resistance measuring apparatus 1 of the present embodiment is not used, the electrode of the probe is connected to the resistance measuring portions 30a and 30b of the battery, and when a current is applied, the resin current collector is directed in the direction perpendicular to the surface and in the in-plane direction. Current flows. Therefore, when the voltage between the resistance measurement parts 30a and 30b is detected and the internal resistance is calculated based on the detected voltage, the internal resistance including the resistance around the resistance measurement parts 30a and 30b is calculated.

一方、本実施形態の抵抗測定装置1を用いた場合には、第1電極8を介して第1電流源5から抵抗測定部位30a、30bに電流が印加され、第2電極9を介して第2電流源6から周囲部位31a、31bに電流が印加される。第2電流源6によって印加される電流値が、或る所定の値となった場合には、抵抗測定部位30a、30bと周囲部位31a、31bとの電位差がゼロとなる。つまり、面内方向における電位差がゼロとなる。このような場合には、図4に示すように抵抗測定部位30a、30bと周囲部位31a、31bとの間では、電流が遮断された状態となっており、第1電流源5によって印加される電流は、樹脂集電体3の面直方向にのみ流れることとなる。そして、この状態で、第1電圧計7によって抵抗測定部位30a、30b間の電圧を検出し、検出した電圧と第1電流源5による印加電流とを用いて抵抗を算出することで、抵抗測定部位30a、30b間の内部抵抗を正確に算出することができる。   On the other hand, when the resistance measuring apparatus 1 of the present embodiment is used, a current is applied from the first current source 5 to the resistance measuring portions 30 a and 30 b through the first electrode 8, and the second electrode 9 is used as the second electrode 9. 2 Current is applied from the current source 6 to the surrounding parts 31a and 31b. When the current value applied by the second current source 6 becomes a predetermined value, the potential difference between the resistance measurement parts 30a, 30b and the surrounding parts 31a, 31b becomes zero. That is, the potential difference in the in-plane direction becomes zero. In such a case, as shown in FIG. 4, the current is cut off between the resistance measurement parts 30 a and 30 b and the surrounding parts 31 a and 31 b and is applied by the first current source 5. The current flows only in the direction perpendicular to the surface of the resin current collector 3. In this state, the first voltmeter 7 detects the voltage between the resistance measurement portions 30a and 30b, and calculates the resistance using the detected voltage and the current applied by the first current source 5, thereby measuring the resistance. The internal resistance between the parts 30a and 30b can be accurately calculated.

次に本実施形態の抵抗測定装置1における抵抗測定部位30a、30b間の内部抵抗の算出方法について図5のフローチャートを用いて説明する。   Next, a method for calculating the internal resistance between the resistance measurement portions 30a and 30b in the resistance measurement apparatus 1 of the present embodiment will be described with reference to the flowchart of FIG.

ステップS100では、予め用意したマップから第1電流源5によって印加する電流(第1電流)I1に対する電流(第2電流)I2を算出する。本実施形態では、電流Iは20(mA)である。   In step S100, a current (second current) I2 with respect to the current (first current) I1 applied by the first current source 5 is calculated from a map prepared in advance. In the present embodiment, the current I is 20 (mA).

ここで、電流I2の算出方法について説明する。電流I2は、面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差が略ゼロとなる電流であり、図6の電池モデルを用いて算出される。略ゼロとは、抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差がない、と判定できる値であり、ゼロを含むものである。   Here, a method of calculating the current I2 will be described. The current I2 is a current at which the potential difference between the resistance measurement portions 30a and 30b and the surrounding portions 31a and 31b in the in-plane direction becomes substantially zero, and is calculated using the battery model of FIG. Substantially zero is a value that can be determined that there is no potential difference between the resistance measurement portions 30a, 30b and the surrounding portions 31a, 31b, and includes zero.

図6の電池モデルは、電池2の内部抵抗を20(Ω・cm2)、樹脂集電体3の体積抵抗を0.5(Ω・cm)、樹脂集電体3の厚さを100(μm)、抵抗測定装置1のプローブ4の第1電極8と第2電極9との間の距離を0.5(cm)とした電池モデルである。また、第1電流源5によって印加する電流I1を20(mA)としている。これらの条件における電流と、面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電圧との関係を図7のマップに示す。 The battery model of FIG. 6 has an internal resistance of the battery 2 of 20 (Ω · cm 2 ), a volume resistance of the resin current collector 3 of 0.5 (Ω · cm), and a thickness of the resin current collector 3 of 100 ( μm), a battery model in which the distance between the first electrode 8 and the second electrode 9 of the probe 4 of the resistance measuring device 1 is 0.5 (cm). Further, the current I1 applied by the first current source 5 is set to 20 (mA). The map of FIG. 7 shows the relationship between the current under these conditions and the voltage between the resistance measurement portions 30a and 30b and the surrounding portions 31a and 31b in the in-plane direction.

図7に示すように、上記条件においては、電流I1に対して面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差がゼロとなる電流I2が存在する。   As shown in FIG. 7, under the above conditions, there is a current I2 at which the potential difference between the resistance measurement portions 30a and 30b and the surrounding portions 31a and 31b in the in-plane direction with respect to the current I1 becomes zero.

このように電流I1に対する電流I2を算出し、マップとして予め用意する。そして、ステップS100では、第1電流源5によって印加する電流I1に対する電流I2をマップから算出する。   In this way, the current I2 with respect to the current I1 is calculated and prepared in advance as a map. In step S100, the current I2 with respect to the current I1 applied by the first current source 5 is calculated from the map.

第1電流源5によって電流I1を印加し、第2電流源6によって電流I1に対応する電流I2を印加することで、面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差がゼロとなり、第1電流源5によって印加された電流の全てが抵抗測定部位30a、30b間で面直方向に流れることとなる。   The current I1 is applied by the first current source 5, and the current I2 corresponding to the current I1 is applied by the second current source 6, so that the resistance measurement parts 30a, 30b and the surrounding parts 31a, 31b in the in-plane direction are between Is zero, and all of the current applied by the first current source 5 flows between the resistance measurement portions 30a and 30b in the direction perpendicular to the surface.

ステップS101では、第1電流源5および第2電流源6から電流を印加せずに開回路とした場合の電池2の電圧V0を、第1電圧計7によって検出する。   In step S <b> 101, the first voltmeter 7 detects the voltage V <b> 0 of the battery 2 when an open circuit is applied without applying current from the first current source 5 and the second current source 6.

ステップS102では、第1電流源5によって第1電極8を介して電池2に20(mA)の電流I1を印加する。また、第2電流源6によって第2電極9を介して電池2にステップS100で算出した電流I2を印加する。   In step S <b> 102, a current I <b> 1 of 20 (mA) is applied to the battery 2 through the first electrode 8 by the first current source 5. Further, the current I2 calculated in step S100 is applied to the battery 2 through the second electrode 9 by the second current source 6.

ステップS103では、第1電圧計7によって抵抗測定部間の電圧(第1電圧)V1を検出する。   In step S103, the first voltmeter 7 detects the voltage (first voltage) V1 between the resistance measuring units.

ステップS104では、第1電流源5及び第2電流源6による電流I1、I2の印加を終了する。   In step S104, the application of the currents I1 and I2 by the first current source 5 and the second current source 6 is finished.

ステップS105では、抵抗測定部位間における電池2の内部抵抗を算出する。ステップS101によって検出した電圧V0と、ステップS103によって検出した電圧V1と、第1電流源5によって印加された電流I1とを用いて、内部抵抗(R=(V0−V1)/I1)は算出される。   In step S105, the internal resistance of the battery 2 between the resistance measurement sites is calculated. The internal resistance (R = (V0−V1) / I1) is calculated using the voltage V0 detected in step S101, the voltage V1 detected in step S103, and the current I1 applied by the first current source 5. The

本発明の第1実施形態の効果について説明する。   The effect of 1st Embodiment of this invention is demonstrated.

第2電流源6によって、面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差がゼロとなる電流I2を印加することで、第1電流源5によって印加する電流I1が面直方向にのみ流れるようになる。そして、その時の抵抗測定部位30a、30b間の電圧を第1電圧計7によって検出する。これによって、抵抗測定部位30a、30b間の内部抵抗を正確に算出することができる。   A current I1 applied by the first current source 5 is applied by applying a current I2 at which the potential difference between the resistance measurement portions 30a, 30b and the surrounding portions 31a, 31b in the in-plane direction is zero by the second current source 6. Will flow only in the perpendicular direction. Then, the voltage between the resistance measurement parts 30 a and 30 b at that time is detected by the first voltmeter 7. As a result, the internal resistance between the resistance measurement portions 30a and 30b can be accurately calculated.

第2電流源6によって印加する電流I2を予め用意したマップを用いて算出することで、抵抗測定装置の構成を簡易にすることができ、内部抵抗の測定時間を短くすることができる。   By calculating the current I2 applied by the second current source 6 using a map prepared in advance, the configuration of the resistance measuring device can be simplified, and the measurement time of the internal resistance can be shortened.

次に本発明の第2実施形態について図8を用いて説明する。図8は本実施形態の抵抗測定装置の概略構成図である。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic configuration diagram of the resistance measuring apparatus of the present embodiment.

第2実施形態については第1実施形態と異なる部分を中心に説明する。   The second embodiment will be described with a focus on differences from the first embodiment.

本実施形態の抵抗測定装置10は、第1電流源5と第2電流源6との間の電圧を検出する第2電圧計11と、第1電流源5、第2電流源6、第1電圧計7および第2電圧計11と接続し、第1電流源5、第2電流源6における電流を制御し、内部抵抗を算出する制御部12とを備える。   The resistance measuring apparatus 10 of the present embodiment includes a second voltmeter 11 that detects a voltage between the first current source 5 and the second current source 6, the first current source 5, the second current source 6, and the first current source 5. The control unit 12 is connected to the voltmeter 7 and the second voltmeter 11, controls the current in the first current source 5 and the second current source 6, and calculates an internal resistance.

制御部12は、CPU、ROM、RAMなどから構成されており、CPUがROMに格納されたプログラムを読み出し、実行することで、制御部12はその機能を発揮する。   The control unit 12 includes a CPU, a ROM, a RAM, and the like, and the control unit 12 exhibits its functions when the CPU reads and executes a program stored in the ROM.

次に本実施形態の抵抗測定装置10における抵抗測定部位30a、30b間の内部抵抗の算出方法について図9のフローチャートを用いて説明する   Next, a method for calculating the internal resistance between the resistance measurement portions 30a and 30b in the resistance measurement apparatus 10 of the present embodiment will be described with reference to the flowchart of FIG.

ステップS200では、第1電流源5および第2電流源6から電流を印加せずに開回路とした場合の電池2の電圧V0を、第1電圧計7によって検出する。   In step S <b> 200, the first voltmeter 7 detects the voltage V <b> 0 of the battery 2 when an open circuit is applied without applying current from the first current source 5 and the second current source 6.

ステップS201では、第1電流源5によって第1電極8を介して電池2に電流I1を印加する。電流I1は、予め設定された電流であり、例えば、第1実施形態と同様の20mAである。   In step S <b> 201, the current I <b> 1 is applied to the battery 2 through the first electrode 8 by the first current source 5. The current I1 is a preset current and is, for example, 20 mA as in the first embodiment.

ステップS202では、第2電流源6によって第2電極9を介して電池2に電流を印加する。ここでは、第2電流源6によって印加される電流は、ゼロから徐々に増加させる。   In step S <b> 202, a current is applied to the battery 2 through the second electrode 9 by the second current source 6. Here, the current applied by the second current source 6 is gradually increased from zero.

ステップS203では、第2電圧計11によって第1電流源5と第2電流源6との間の電圧、つまり抵抗測定部位30a、30bと周囲部位31a、31bとの間の電圧(第2電圧)V2を検出する。そして、電圧V2が略ゼロとなったかどうか判定する。そして、電圧V2が所定電圧となった場合には、ステップS204へ進む。   In step S203, the voltage between the first current source 5 and the second current source 6 by the second voltmeter 11, that is, the voltage between the resistance measurement parts 30a, 30b and the surrounding parts 31a, 31b (second voltage). V2 is detected. Then, it is determined whether the voltage V2 has become substantially zero. When the voltage V2 becomes a predetermined voltage, the process proceeds to step S204.

ステップS204では、電圧V2が所定電圧となった時の電圧V1を第1電圧計7によって検出する。   In step S204, the first voltmeter 7 detects the voltage V1 when the voltage V2 becomes a predetermined voltage.

ステップS205では、第1電流源5および第2電流源6による電流の印加を終了する。   In step S205, application of current by the first current source 5 and the second current source 6 is terminated.

ステップS206では、抵抗測定部位30a、30b間における内部抵抗(R=(V0−V1)/I1)を算出する。   In step S206, the internal resistance (R = (V0−V1) / I1) between the resistance measurement parts 30a and 30b is calculated.

本発明の第2実施形態の効果について説明する。   The effect of 2nd Embodiment of this invention is demonstrated.

第2電流源6によって印加される電流を変更して、面内方向における抵抗測定部位30a、30bと周囲部位31a、31bとの間の電位差が略ゼロとなる電流を検出することで、抵抗測定部位30a、30b間の内部抵抗を正確に算出することができる。また、制御部12によって第1電流源5、第2電流源6の電流を制御することで、内部抵抗を自動で算出することができる。   Resistance measurement is performed by changing the current applied by the second current source 6 and detecting a current at which the potential difference between the resistance measurement parts 30a, 30b and the surrounding parts 31a, 31b in the in-plane direction becomes substantially zero. The internal resistance between the parts 30a and 30b can be accurately calculated. Further, the internal resistance can be automatically calculated by controlling the currents of the first current source 5 and the second current source 6 by the control unit 12.

次に本発明の第3実施形態について図10を用いて説明する。図10は本実施形態の抵抗測定装置15の概略構成図である。   Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a schematic configuration diagram of the resistance measuring device 15 of the present embodiment.

第3実施形態については第2実施形態と異なる部分を中心に説明する。   The third embodiment will be described with a focus on differences from the second embodiment.

本実施形態の抵抗測定装置15は、樹脂集電体16における内部抵抗を検出する。   The resistance measuring device 15 of this embodiment detects the internal resistance in the resin current collector 16.

次に本実施形態の抵抗測定装置15における抵抗測定部位30a、30b間の内部抵抗の算出方法について図11のフローチャートを用いて説明する。   Next, a method for calculating the internal resistance between the resistance measurement portions 30a and 30b in the resistance measurement device 15 of the present embodiment will be described with reference to the flowchart of FIG.

ステップS300からステップS304までは、第2実施形態のステップS201からステップS205までと同じ内容なので、ここでの説明は省略する。なお、本実施形態では、電池ではなく、樹脂集電体3における内部抵抗を検出するものである。   Steps S300 to S304 are the same as steps S201 to S205 of the second embodiment, and thus description thereof is omitted here. In this embodiment, not the battery but the internal resistance in the resin current collector 3 is detected.

ステップS305では、抵抗測定部位30a、30b間における内部抵抗(R=V1/I1)を算出する。   In step S305, the internal resistance (R = V1 / I1) between the resistance measurement parts 30a and 30b is calculated.

本発明の第3実施形態の効果について説明する。   The effect of the third embodiment of the present invention will be described.

樹脂集電体16の抵抗測定部位30a、30b間の内部抵抗を正確に算出することができる。また、樹脂集電体16の抵抗測定部位30a、30b間の内部抵抗を自動で算出することができる。   The internal resistance between the resistance measurement portions 30a and 30b of the resin current collector 16 can be accurately calculated. Further, the internal resistance between the resistance measurement portions 30a and 30b of the resin current collector 16 can be automatically calculated.

上記実施形態においては第2電極9を円筒状としたが、図12に示すように第2電極17を周方向に沿って分割した構成としても良い。これによって、第2電極17と樹脂集電体16とを確実に接触させることができ、第2電極17と樹脂集電体16との接触抵抗が不均一になることを抑制し、内部抵抗を正確に算出することができる。   In the above embodiment, the second electrode 9 is cylindrical, but the second electrode 17 may be divided along the circumferential direction as shown in FIG. As a result, the second electrode 17 and the resin current collector 16 can be reliably brought into contact with each other, the contact resistance between the second electrode 17 and the resin current collector 16 is prevented from becoming non-uniform, and the internal resistance is reduced. It can be calculated accurately.

第2実施形態、第3実施形態では、制御部12によって電流を制御し、内部抵抗を算出したが、その一部を手動で行っても良い。   In the second embodiment and the third embodiment, the current is controlled by the control unit 12 and the internal resistance is calculated, but a part thereof may be performed manually.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

1、10、15 抵抗測定装置
2 二次電池(抵抗検出体)
5 第1電流源(第1電流印加手段)
6 第2電流源(第2電流印加手段)
7 第1電圧計(第1電圧検出手段)
11 第2電圧計(第2電圧検出手段)
16 樹脂集電体(抵抗検出体)
12 制御部(電流制御手段、抵抗算出手段)
30a、30b 抵抗測定部位(第1部位)
31a、31b 周囲部位(第2部位)
1, 10, 15 Resistance measuring device 2 Secondary battery (resistance detector)
5 First current source (first current applying means)
6 Second current source (second current applying means)
7 First voltmeter (first voltage detection means)
11 Second voltmeter (second voltage detection means)
16 Resin current collector (resistance detector)
12 Control unit (current control means, resistance calculation means)
30a, 30b Resistance measurement part (first part)
31a, 31b Surrounding part (second part)

Claims (5)

抵抗検出体の面直方向の抵抗を測定する第1部位に第1電流を印加する第1電流印加手段と、
前記第1部位よりも外周側であり、前記第1部位を取り囲むように設けた第2部位に、前記抵抗検出体の面内方向における前記第1部位と前記第2部位との電位差が略ゼロとなる第2電流を印加する第2電流印加手段と、
前記第1電流と前記第2電流とが印加された時の前記第1部位間の第1電圧を検出する第1電圧検出手段とを備えることを特徴とする抵抗測定装置。
First current applying means for applying a first current to a first portion for measuring a resistance in a direction perpendicular to the surface of the resistance detector;
The potential difference between the first part and the second part in the in-plane direction of the resistance detector is substantially zero in a second part that is provided on the outer peripheral side of the first part and that surrounds the first part. Second current applying means for applying a second current to be
A resistance measuring apparatus comprising: a first voltage detecting unit configured to detect a first voltage between the first parts when the first current and the second current are applied.
前記第2電流は、前記第1電流に対して設定されたマップに基づいて設定されることを特徴とする請求項1に記載の抵抗測定装置。   The resistance measuring apparatus according to claim 1, wherein the second current is set based on a map set for the first current. 前記第1電流印加手段と前記第2電流印加手段との間の電位差である第2電圧を検出する第2電圧検出手段と、
前記第1電流を印加した場合に、前記第2電圧が前記略ゼロとなるように前記第2電流を制御する電流制御手段と、
前記第1電流を流す前の前記第1電圧と、前記第2電圧が前記略ゼロとなった時の前記第1電圧とに基づいて前記第1部位間の抵抗を算出する抵抗算出手段とを備えることを特徴とする請求項1に記載の抵抗測定装置。
Second voltage detection means for detecting a second voltage that is a potential difference between the first current application means and the second current application means;
Current control means for controlling the second current so that the second voltage becomes substantially zero when the first current is applied;
Resistance calculation means for calculating a resistance between the first portions based on the first voltage before flowing the first current and the first voltage when the second voltage becomes substantially zero; The resistance measuring apparatus according to claim 1, further comprising:
前記第1電流印加手段と前記第2電流印加手段との間の電位差である第2電圧を検出する第2電圧検出手段と、
前記第1電流を印加した場合に、前記第2電圧が前記略ゼロとなるように前記第2電流を制御する電流制御手段と、
前記第2電圧が前記略ゼロとなった時の前記第1電圧に基づいて前記第1部位間の抵抗を算出する抵抗算出手段とを備えることを特徴とする請求項1に記載の抵抗測定装置。
Second voltage detection means for detecting a second voltage that is a potential difference between the first current application means and the second current application means;
Current control means for controlling the second current so that the second voltage becomes substantially zero when the first current is applied;
The resistance measuring device according to claim 1, further comprising: a resistance calculating unit that calculates a resistance between the first portions based on the first voltage when the second voltage becomes substantially zero. .
抵抗検出体の面直方向の抵抗を測定する第1部位に第1電流を印加し、
前記第1部位よりも外周側であり、前記第1部位を取り囲むように設けた第2部位に第2電流を印加し、
前記第1電流と前記第2電流とが印加され、前記第1部位と前記第2部位との電位差が略ゼロとなった時の前記第1電圧を検出し、
前記第1電流と前記第1電圧とに基づいて、前記第1部位間の抵抗を算出することを特徴とする抵抗測定方法。
Applying a first current to a first part for measuring a resistance in a direction perpendicular to the resistance detector;
Applying a second current to the second part that is provided on the outer peripheral side of the first part and surrounding the first part;
Detecting the first voltage when the first current and the second current are applied, and the potential difference between the first part and the second part is substantially zero;
A resistance measurement method comprising calculating a resistance between the first portions based on the first current and the first voltage.
JP2011009602A 2011-01-20 2011-01-20 Resistance measuring device and resistance measuring method Expired - Fee Related JP5625941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009602A JP5625941B2 (en) 2011-01-20 2011-01-20 Resistance measuring device and resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009602A JP5625941B2 (en) 2011-01-20 2011-01-20 Resistance measuring device and resistance measuring method

Publications (2)

Publication Number Publication Date
JP2012150033A true JP2012150033A (en) 2012-08-09
JP5625941B2 JP5625941B2 (en) 2014-11-19

Family

ID=46792406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009602A Expired - Fee Related JP5625941B2 (en) 2011-01-20 2011-01-20 Resistance measuring device and resistance measuring method

Country Status (1)

Country Link
JP (1) JP5625941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131948A (en) * 1984-07-25 1986-02-14 Toshiba Corp Instrument for measuring impedance of coated film
JPH0224574A (en) * 1988-07-13 1990-01-26 Sumitomo Electric Ind Ltd Measuring method of microscopic distribution of specific resistance of semiconductor
JP2003346919A (en) * 2002-05-24 2003-12-05 Nissan Motor Co Ltd Storage system
JP2008027712A (en) * 2006-07-20 2008-02-07 Toyota Motor Corp Fuel cell membrane evaluation device, manufacturing method of fuel cell membrane evaluation device, and control device of fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131948A (en) * 1984-07-25 1986-02-14 Toshiba Corp Instrument for measuring impedance of coated film
JPH0224574A (en) * 1988-07-13 1990-01-26 Sumitomo Electric Ind Ltd Measuring method of microscopic distribution of specific resistance of semiconductor
JP2003346919A (en) * 2002-05-24 2003-12-05 Nissan Motor Co Ltd Storage system
JP2008027712A (en) * 2006-07-20 2008-02-07 Toyota Motor Corp Fuel cell membrane evaluation device, manufacturing method of fuel cell membrane evaluation device, and control device of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig

Also Published As

Publication number Publication date
JP5625941B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5744957B2 (en) Battery status judgment device
CN103941141B (en) A kind of leakage current detection circuit, direct-current high-voltage system, detection method and device
JP5723298B2 (en) Method for confirming stability of electrical system and method for controlling electrical system
US8581598B2 (en) Method for inspecting electrostatic chuck, and electrostatic chuck apparatus
JP2016166880A (en) Charging amount detection device
KR20200005290A (en) Method of detecting electrode damage in pouch type secondary battery and apparatus for detecting electrode damage in pouch type secondary battery
JP2011158444A (en) Method and device for detecting remaining capacity of secondary battery
CN103858271A (en) Apparatus and method for evaluating sheet-like battery
JP6369407B2 (en) Failure detection system
KR101189582B1 (en) Voltage sensing system for detecting disconnection of voltage sensing line of battery
CN106997026B (en) Method and device for determining the residual capacity of a lead-acid battery
CN105548908A (en) Internal resistance consistency detection method for power battery pack
CN105092976A (en) Contact resistance measuring method and structure
JP2015191878A (en) Lithium ion secondary battery system and method for diagnosing state of lithium ion secondary battery
JP5625941B2 (en) Resistance measuring device and resistance measuring method
JP2010071945A (en) Ae measuring device and ae measuring method
JP5454928B2 (en) Battery inspection method and battery inspection apparatus
JP2017150838A (en) Storage battery measurement method and measurement device
JP5156867B1 (en) Method and apparatus for measuring electrical resistivity of concrete
EP3229032B1 (en) Water tree testing method and water tree testing device
CN102809699B (en) Dynamic measurement method for distributed capacitance of electrode concerned in measurement of conductivity of solution
JP6694462B2 (en) How to test semi-finished battery cells
JP2014202696A (en) Electrical leak detection method
JP2005044715A (en) Inspection instrument and inspection method of fuel cell
CN207689575U (en) A kind of surface resistivity measuring device of GIS disc insulators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

LAPS Cancellation because of no payment of annual fees