JPH0315704A - Scanning tunnelling microscope - Google Patents

Scanning tunnelling microscope

Info

Publication number
JPH0315704A
JPH0315704A JP15019989A JP15019989A JPH0315704A JP H0315704 A JPH0315704 A JP H0315704A JP 15019989 A JP15019989 A JP 15019989A JP 15019989 A JP15019989 A JP 15019989A JP H0315704 A JPH0315704 A JP H0315704A
Authority
JP
Japan
Prior art keywords
probe
sample
actuator
current
tunnel current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15019989A
Other languages
Japanese (ja)
Inventor
Hisano Shimazu
島津 久乃
Hideo Adachi
日出夫 安達
Takao Okada
孝夫 岡田
Tsugiko Takase
つぎ子 高瀬
Hideo Tomabechi
苫米地 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15019989A priority Critical patent/JPH0315704A/en
Publication of JPH0315704A publication Critical patent/JPH0315704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the measurement precision by providing a subtractor which outputs the difference between first and second tunnelling currents flowing between first and second probes and a sample. CONSTITUTION:A prescribed voltage is applied to a Z-direction driving piezoelectric body of an actuator 7 from a scanning circuit 8 to approximate a probe 1 to a position about 1nm distant from the face to be examined of the sample 3. When a voltage is applied between the probe 1 and the sample 3 from a power source 5, a first tunnelling current it1 flows between the probe 1 and the sample 3. This current it1 is inputted to the positive input terminal of a subtractor 13 after being amplified by an amplifier 11. A prescribed voltage is applied to an actuator 9 from a (z) position control circuit 10 to support a probe 2 about 1nm apart from the sample 3. Then, a voltage is applied between the probe 2 and the sample 3 from a power source 6, and a second tunnel current it2 flows between them and is amplified by an amplifier 12 and is inputted to the negative input terminal of the subtractor 13. The subtractor 13 outputs the difference signal as the result of subtraction between currents it1 and it2.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、走査型トンネル顕微鏡に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a scanning tunneling microscope.

C従来の技術] 走査型トンネル顕微鏡(STM)は、原子単位で試料表
面を観察できる装置である。鋭い先端を有する金属探針
を、導伝性の試料表面にlnm程度まで近づけて配置し
、探針と試料との間に所定の電圧を印加すると、両者の
間にトンネル電流が流れる。このトンネル電流は、探針
・試料間の距離の変化に敏感に反応し、大きく変化する
。トンネル電流のこの性質を利用し、探針を3次元方向
に移動できるアクチュエーターに取り付け、トンネル電
流が一定になるように探針を走査させると、探針は一定
の間隔をおいて試料表面の凹凸をなぞる。STMは、こ
のときの探針の位置を3次元画像として出力すれことに
より、試料表面における原子単位での形状の変化を画像
表示する。
C. Prior Art] A scanning tunneling microscope (STM) is a device that can observe the surface of a sample in units of atoms. When a metal probe with a sharp tip is placed as close as 1 nm to the surface of a conductive sample and a predetermined voltage is applied between the probe and the sample, a tunnel current flows between the probe and the sample. This tunneling current sensitively responds to changes in the distance between the probe and the sample and changes significantly. Taking advantage of this property of tunneling current, the probe is attached to an actuator that can move in three dimensions, and the probe is scanned so that the tunneling current remains constant. Trace. The STM outputs the position of the probe at this time as a three-dimensional image, thereby displaying an image of changes in shape on the sample surface in units of atoms.

通常、近くに振動源のない実験室でも、lo011z以
下の周波数成分を主体とする、振幅1μm程度の床振動
が存在する。また、機械の振動、人の声、足音など空気
中を伝わる音響振動は常に存在する。
Normally, even in a laboratory where there is no vibration source nearby, there is floor vibration with an amplitude of about 1 μm, mainly consisting of frequency components below lo011z. In addition, there are always acoustic vibrations that travel through the air, such as machine vibrations, human voices, and footsteps.

STMの探針・試料間距離は、これらの床振動や音響振
動の影響を受けて容易に変動する。特に、STMは測定
精度が高く、原子単位での形状変化を検出するので、探
針・試料間距離の変化は測定結果に大きく影響する。従
って、STMにおいて、装置の除振は重要である。
The distance between the STM probe and the sample easily changes due to the influence of these floor vibrations and acoustic vibrations. In particular, since STM has high measurement accuracy and detects changes in shape on an atomic basis, changes in the distance between the tip and sample greatly affect the measurement results. Therefore, vibration isolation of the device is important in STM.

STMでは、通常使用される空気バネ式除振台にSTM
ユニットを載置するだけでは不十分である。このため、
通常はSTMユニットと床置きの空気バネ式除振台との
間に、さらに小型の除振機構が設けられている。この除
振機構としては、超伝導体と永久磁石とを使った磁気浮
上に渦電流制動を併用した方式や、渦電流制動利用の2
段バネ懸架方式や、数枚の金属板の間にゴムをはさんで
積み重ねたスタック方式などがある。
In STM, STM is attached to the normally used air spring type vibration isolation table.
Merely placing the unit is not enough. For this reason,
Usually, a smaller vibration isolating mechanism is provided between the STM unit and the floor-standing air spring type vibration isolating table. This vibration isolation mechanism includes a method that combines magnetic levitation using a superconductor and a permanent magnet with eddy current braking, and a method that uses eddy current damping.
There are a tiered spring suspension method and a stack method in which several metal plates are stacked with rubber sandwiched between them.

[発明が解決しようとする課題] しかし、空気バネ式除振台及び除振機構によってSTM
ユニットの振動が完全に取り除かれるわけではない。こ
のため、Jl定結果には振動の影響による誤差を含んで
いる。しかも、除振の性能を向上させると、測定装置が
大がかりな構或になるという欠点がある。
[Problem to be solved by the invention] However, the air spring type vibration isolation table and vibration isolation mechanism prevent STM
The vibration of the unit is not completely eliminated. Therefore, the Jl determination result includes an error due to the influence of vibration. Moreover, improving the vibration isolation performance has the disadvantage that the measuring device becomes bulky.

この発明は、振動の影響を除去し、安定した測定結果が
得られるSTM装置を提供することを目的とする。
An object of the present invention is to provide an STM device that can eliminate the influence of vibration and provide stable measurement results.

[課題を解決するための手段] この発明の走査型トンネル顕微鏡は、鋭い先端を有する
第1及び第2の探針と、前記第1の探針を、試料の検査
面に近づけて支持するとともに、3次元方向に移動させ
る第1のアクチュエーターと、前記第2の探針を、前記
検査面に近づけて支持するとともに、少なくとも前記検
査面に垂直方向に移動させる第2のアクチュエーターと
、前記第1の探針と前記試料をバイアスする第1の電源
と、前記第2の探針と前記試料をバイアスする第2の電
源と、前記第1の探針と前記試料との間に流れる第1の
トンネル電流と、前記第2の探針と前記試料との間に流
れる第2のトンネル電流との差を出力する減算器とを備
える。
[Means for Solving the Problems] The scanning tunneling microscope of the present invention supports first and second probes having sharp tips and the first probe close to the inspection surface of the sample. , a first actuator that moves in a three-dimensional direction; a second actuator that supports the second probe close to the inspection surface and moves it at least in a direction perpendicular to the inspection surface; a first power supply that biases the probe and the sample, a second power supply that biases the second probe and the sample, and a first power supply that flows between the first probe and the sample. A subtracter is provided that outputs a difference between a tunnel current and a second tunnel current flowing between the second probe and the sample.

[作用] 第1の探針は試料の検査面からトンネル電流が流れる距
離(゛トンネル距M)まで接近されて支持され、第1の
電源から第1の探針と試料との間に所定の電圧が印加さ
れ、両者の間にトンネル電流が流される。第1の探針は
、測定時に第1のアクチュエーターにより位置制御され
ながら走査される。一方、第2の探針は第2のアクチュ
エーターにより検査面にトンネル距離まで近づけて支持
され、第2の探針と試料がバイアスされてトンネル電流
が流される。第1の探針が走査される際、第2の探針は
検査面の上方の所定位置に支持されたまま移動されない
。城算器において、第1の探針と試料との間に流れる第
1のトンネル電流から、第2の探針と試料との間に流れ
る第2のトンネル電流が減算されて出力される。
[Function] The first probe is supported close to the inspection surface of the sample to a distance where tunnel current flows ('tunnel distance M), and a predetermined distance between the first probe and the sample is supplied from the first power source. A voltage is applied and a tunnel current is caused to flow between the two. The first probe is scanned while its position is controlled by the first actuator during measurement. On the other hand, the second probe is supported by a second actuator so as to be close to the inspection surface within a tunneling distance, and the second probe and the sample are biased to cause a tunneling current to flow. When the first probe is scanned, the second probe remains supported at a predetermined position above the inspection surface and is not moved. In the calculator, a second tunnel current flowing between the second probe and the sample is subtracted from a first tunnel current flowing between the first probe and the sample and output.

第1のトンネル電流は、試料の振動による影響を含んで
いる。第2のトンネル電流の変化は、試料の振動による
探針・試料間距離の変化を反映している。従って、減算
器から出力される信号は、第1のトンネル電流から試料
の振動による影讐が除去された信号である。この信号が
、第1のアクチュエーターにより一定に保たれながら、
探針が検査面に沿って走査される。これにより、第1の
探針の位置に基づいて画像表示される曲面は、検査面の
振動による探針・試料間距離の変動が除去された、検査
面の凹凸を正確に表現する。
The first tunneling current includes the influence of sample vibration. The change in the second tunneling current reflects the change in the probe-sample distance due to sample vibration. Therefore, the signal output from the subtracter is a signal obtained by removing the influence of sample vibration from the first tunnel current. While this signal is kept constant by the first actuator,
A probe is scanned along the inspection surface. As a result, the curved surface displayed as an image based on the position of the first probe accurately represents the unevenness of the inspection surface, with fluctuations in the distance between the probe and the sample due to vibrations of the inspection surface being removed.

[実施例] この発明の実施例に係る走査型トンネル顕微鏡の構成を
示すブロック図が第1図に示される。第1の探針1及び
第2の探針2は、曲率半径が0.1μ程度の先端を有す
る同一サイズの金属製の探針であって、例えば、電解研
磨によりタングステンを加工して形成される。第1の探
針1は、3軸(x,y,z軸)方向に移動可能な第1の
アクチュエータ−7に固定され、試料台4にa置された
試料3の上方に所定距MMれて支持される。第1のアク
チュエータ−7は、例えば数一■角で長さ数+1の3本
の角柱圧電体が互いに直交し、各角柱圧電体の平行な2
側面に対向する電極を備える、いわゆるトライボッドで
構成される。第1のアクチュエータ−7は、角柱圧電体
の各対向電極に所定の電圧を独立に印加する走査回路8
に接続される。角柱圧電体の対向電極に電圧が印加され
ると、各角柱圧電体はそれぞれの長手方向(X+Y+ 
 z方向)に伸び縮みする。この結果、第1のアクチュ
エータ−7に固定された第1の探針1は3次元方向に走
査される。
[Example] FIG. 1 is a block diagram showing the configuration of a scanning tunneling microscope according to an example of the present invention. The first probe 1 and the second probe 2 are metal probes of the same size and have tips with a radius of curvature of about 0.1μ, and are formed by processing tungsten by electrolytic polishing, for example. Ru. The first probe 1 is fixed to a first actuator 7 that is movable in three axes (x, y, z axes), and is placed a predetermined distance MM above the sample 3 placed a on the sample stage 4. It is supported by The first actuator 7 has, for example, three prismatic piezoelectric bodies each several square square and length +1, which are orthogonal to each other, and two parallel prismatic piezoelectric bodies
It consists of a so-called tri-bod with electrodes facing each other on the sides. The first actuator 7 includes a scanning circuit 8 that independently applies a predetermined voltage to each opposing electrode of the prismatic piezoelectric body.
connected to. When a voltage is applied to the opposing electrodes of the prismatic piezoelectric bodies, each prismatic piezoelectric body moves in its longitudinal direction (X+Y+
z direction). As a result, the first probe 1 fixed to the first actuator 7 is scanned in three-dimensional directions.

一方、第2の探針2は、少なくとも検査面に垂直なZ軸
方向に移動できる第2のアクチュエータ−9に固定され
、第1の探針と同様、試料3の上方に所定間隔おいて支
持される。第2のアクチュエータ−9は、第1のアクチ
ュエーターと同一サイズのトライボッドで構或されるの
が望ましい。
On the other hand, the second probe 2 is fixed to a second actuator 9 that can move at least in the Z-axis direction perpendicular to the inspection surface, and, like the first probe, is supported above the sample 3 at a predetermined interval. be done. The second actuator 9 is preferably constructed of a tri-bod of the same size as the first actuator.

第2のアクチュエータ−9は2位置制御回路10に接続
され、所定の電圧が2方向駆動用の圧電体に印加されて
第2の探針2の2方向の位置が制御される。
The second actuator 9 is connected to a two-position control circuit 10, and a predetermined voltage is applied to the piezoelectric body for bidirectional driving to control the position of the second probe 2 in two directions.

走査回路8から第1のアクチュエータ−7の2方向駆動
用圧電体に所定の電圧が印加されることにより、第1の
探針1が試料3の検査面からins程度の距離に近づけ
られる。第1の電[5により、第1の探針1と試料3と
の間に電圧が印加されると、第1の探針1と試料3との
間に第1のトンネル電流が流れる。第1のトンネル電流
は、増幅器11において増幅された後、減算器13の正
入力端子に人力される。
By applying a predetermined voltage from the scanning circuit 8 to the bidirectional driving piezoelectric body of the first actuator 7, the first probe 1 is brought close to a distance of about ins from the inspection surface of the sample 3. When a voltage is applied between the first probe 1 and the sample 3 by the first electric current [5], a first tunnel current flows between the first probe 1 and the sample 3. The first tunnel current is amplified in the amplifier 11 and then input to the positive input terminal of the subtracter 13 .

第2の探針2もまた、2位置制御回路10から第2のア
クチュエータ−9に所定の電圧が印加されることにより
、試料3からlnm程度の距離に支持される。第2の電
源6により第2の探針2と試料3との間に電圧が印加さ
れると、両者の間に第2のトンネル電流が流れる。第2
のトンネル電流は増幅器12で増幅された後、減算器1
3の負人力端子に人力される。
The second probe 2 is also supported at a distance of about lnm from the sample 3 by applying a predetermined voltage from the two-position control circuit 10 to the second actuator 9. When a voltage is applied between the second probe 2 and the sample 3 by the second power supply 6, a second tunnel current flows between them. Second
After the tunnel current is amplified by the amplifier 12, the subtracter 1
Human power is applied to the negative human power terminal of 3.

減算器13に人力された第1のトンネル電流および第2
のトンネル電流は、減算器13において減算処理され、
第1のトンネル電流と第2のトンネル電流の差の信号が
減算器13から出力される。
The first tunnel current and the second tunnel current manually input to the subtracter 13
The tunnel current is subjected to subtraction processing in the subtracter 13,
A signal representing the difference between the first tunnel current and the second tunnel current is output from the subtracter 13.

第1の探針1により検出される第1のトンネル電流は、
試料3の検査面の振動による探針・試料間距離の変動の
影響を含んでいる。また、第2の探針2で検出される第
2のトンネル電流は、その変化が試料3の試料面の振動
による探針・試料間距離の変化を反映している。第1の
探針1及び第1のアクチュエータ−7は、それぞれ第2
の探針2及び第2のアクチュエータ−9と同一のサイズ
であるので、振動による第1の探針1と試料3との間隔
の変動は、第2の探針2と試料3との間隔の変動に等し
い。従って、減算器13から出力される、第1のトンネ
ル電流から第2のトンネル電流が差し引かれた信号は、
第1のトンネル電流から試料3の振動が除去された、第
1の探針1と試料3の検査面との間の距離を正確に反映
した信号である。
The first tunnel current detected by the first probe 1 is
This includes the influence of variations in the probe-sample distance due to vibrations on the inspection surface of sample 3. Further, the change in the second tunneling current detected by the second probe 2 reflects the change in the distance between the probe and the sample due to the vibration of the sample surface of the sample 3. The first probe 1 and the first actuator 7 are connected to the second probe 1 and the first actuator 7, respectively.
Since the size of the probe 2 and the second actuator 9 are the same, the variation in the distance between the first probe 1 and the sample 3 due to vibration is due to the change in the distance between the second probe 2 and the sample 3. Equals variation. Therefore, the signal output from the subtracter 13, which is obtained by subtracting the second tunnel current from the first tunnel current, is:
This is a signal that accurately reflects the distance between the first probe 1 and the inspection surface of the sample 3, with the vibration of the sample 3 removed from the first tunneling current.

測定時においては、この信号が一定に保たれるように、
走査回路8により適宜所定の電圧が第1のアクチュエー
タ−7の2方向駆動用の圧電体に印加され、第1の探針
1の2方向の位置が制御されるとともに、x,y方向駆
動用の各圧電体に所定の電圧が印加されて、第1の探針
1が試料3の検査面に沿って走査される。従って、X+
Y,z方向駆動用の各圧電体に印加される電圧を、座標
値として得られる曲面は、試料3の振動による探針・試
料間距離の変動が除去された、検査面の凹凸を正確に表
現する画像である。
During measurement, so that this signal remains constant,
A predetermined voltage is applied to the piezoelectric body of the first actuator 7 for driving in two directions by the scanning circuit 8, and the position of the first probe 1 in two directions is controlled, as well as for driving in the x and y directions. A predetermined voltage is applied to each piezoelectric body, and the first probe 1 is scanned along the inspection surface of the sample 3. Therefore, X+
The curved surface obtained as coordinate values of the voltages applied to each piezoelectric body for driving in the Y and Z directions accurately depicts the unevenness of the inspection surface, eliminating fluctuations in the distance between the probe and the sample due to vibration of the sample 3. It is an image to express.

この発明の走査型トンネル顕微鏡によれば、第1の探針
1と試料3との間に流れるトンネル電流から、振動によ
る探針・試料間距離の変動が除去された信号が、減算器
13から出力されるので、振動に対して安定した測定が
できるようになり、測定精度の向上に効果がある。
According to the scanning tunneling microscope of the present invention, the subtracter 13 outputs a signal from which fluctuations in the distance between the probe and the sample due to vibration have been removed from the tunnel current flowing between the first probe 1 and the sample 3. Since it is output, stable measurements against vibrations can be performed, which is effective in improving measurement accuracy.

[発明の効果コ この発明の走査型トンネル顕微鏡によれば、試料の検査
面の振動が第2の探針で第2のトンネル電流として検出
され、第1の探針で検出される検査面の表面状態を反映
した第1のトンネル電流から第2のトンネル電流が差し
引かれて減算器から出力される。従って、振動の影響が
除去されたトンネル電流が出力される。この結果、振動
に対して安定した測定ができるようになり、測定精度の
向上に効果がある。あるいは、大がかりな除振装置を用
いなくても、測定結果がかなりの精度で得られるように
なる。
[Effects of the Invention] According to the scanning tunneling microscope of the present invention, the vibration of the inspection surface of the sample is detected by the second probe as a second tunneling current, and the vibration of the inspection surface detected by the first probe is detected by the second probe as a second tunneling current. The second tunnel current is subtracted from the first tunnel current reflecting the surface state and output from the subtracter. Therefore, a tunnel current from which the influence of vibration has been removed is output. As a result, stable measurement against vibrations can be performed, which is effective in improving measurement accuracy. Alternatively, measurement results can be obtained with considerable accuracy without using a large-scale vibration isolator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例に係る走査型トンネル顕微
鏡の構成を示すブロック図である。 1・・・第1の探針、2・・・第2の探針、3・・・試
料、5・・・第1の電源、6・・・第2の電源、7・・
・第1のアクチュエータ− 9・・・第2のアクチュエ
ーター13・・・城算器。
FIG. 1 is a block diagram showing the configuration of a scanning tunneling microscope according to an embodiment of the invention. DESCRIPTION OF SYMBOLS 1... First probe, 2... Second probe, 3... Sample, 5... First power source, 6... Second power source, 7...
- First actuator 9... Second actuator 13... Castle calculator.

Claims (1)

【特許請求の範囲】 鋭い先端を有する第1及び第2の探針と、 前記第1の探針を、試料の検査面に近づけて支持すると
ともに、3次元方向に移動させる第1のアクチュエータ
ーと、 前記第2の探針を、前記検査面に近づけて支持するとと
もに、少なくとも前記検査面に垂直方向に移動させる第
2のアクチュエーターと、 前記第1の探針と前記試料をバイアスする第1の電源と
、 前記第2の探針と前記試料をバイアスする第2の電源と
、 前記第1の探針と前記試料との間に流れる第1のトンネ
ル電流と、前記第2の探針と前記試料との間に流れる第
2のトンネル電流との差を出力する減算器とを備えるこ
とを特徴とする走査型トンネル顕微鏡。
[Claims] First and second probes having sharp tips; a first actuator that supports the first probe close to the inspection surface of the sample and moves it in three dimensions; , a second actuator that supports the second probe close to the inspection surface and moves it at least in a direction perpendicular to the inspection surface; and a first actuator that biases the first probe and the sample. a power source; a second power source that biases the second probe and the sample; a first tunnel current flowing between the first probe and the sample; A scanning tunneling microscope characterized by comprising: a subtracter that outputs a difference between a sample and a second tunneling current flowing between the sample and the second tunneling current.
JP15019989A 1989-06-13 1989-06-13 Scanning tunnelling microscope Pending JPH0315704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15019989A JPH0315704A (en) 1989-06-13 1989-06-13 Scanning tunnelling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15019989A JPH0315704A (en) 1989-06-13 1989-06-13 Scanning tunnelling microscope

Publications (1)

Publication Number Publication Date
JPH0315704A true JPH0315704A (en) 1991-01-24

Family

ID=15491685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15019989A Pending JPH0315704A (en) 1989-06-13 1989-06-13 Scanning tunnelling microscope

Country Status (1)

Country Link
JP (1) JPH0315704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope

Similar Documents

Publication Publication Date Title
JP2915554B2 (en) Barrier height measurement device
JP2566794B2 (en) Measuring method of scanning tunneling microscope
JPH0348102A (en) Detecting apparatus of very small displacement, piezoelectric actuator having this detecting apparatus and scanning probe microscope having this piezoelectric actuator
Baikie et al. Automatic Kelvin probe compatible with ultrahigh vacuum
KR102097351B1 (en) Multiple integrated tips scanning probe microscope
CN1373891A (en) Magnetic sensing of motion in microfabricated device
JPH0651831A (en) Two-dimensional position adjusting device
CN107462745A (en) A kind of apparatus and method of the quadrature amplitude scanning imagery pattern of SICM
JP2004301548A (en) Electric characteristic evaluating apparatus
JPH0315704A (en) Scanning tunnelling microscope
CN102998635A (en) Method and its apparatus for inspecting a magnetic head device
JPS61239154A (en) Method and device for detecting crack shape
JP2705067B2 (en) Magnetic susceptibility distribution measurement device
CN1963452B (en) Offset current mode spectrograph for scan tunnel and microscope for scan tunnel
JP3425382B2 (en) Surface inspection equipment
Zhang et al. Effect of scanning acceleration on the leakage signal in magnetic flux leakage type of non-destructive testing
JP2554764B2 (en) Surface shape measuring method and apparatus
JP3272314B2 (en) measuring device
CN200989961Y (en) Bias current type tunnel scanning spetrometer and tunnel flying-spot microscope
JPH0224574A (en) Measuring method of microscopic distribution of specific resistance of semiconductor
JPH07248332A (en) Surface observing method and device
JPH0835976A (en) Integrated spm sensor and displacement detecting circuit
JPH09171027A (en) Scanning probe microscope
JP3812372B2 (en) Magnetic field measuring method and magnetic field measuring apparatus
JPH05322552A (en) Probe scanning microscope