JP2705067B2 - Magnetic susceptibility distribution measurement device - Google Patents

Magnetic susceptibility distribution measurement device

Info

Publication number
JP2705067B2
JP2705067B2 JP62147559A JP14755987A JP2705067B2 JP 2705067 B2 JP2705067 B2 JP 2705067B2 JP 62147559 A JP62147559 A JP 62147559A JP 14755987 A JP14755987 A JP 14755987A JP 2705067 B2 JP2705067 B2 JP 2705067B2
Authority
JP
Japan
Prior art keywords
magnetic
subject
magnetic field
distribution
susceptibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62147559A
Other languages
Japanese (ja)
Other versions
JPS63311186A (en
Inventor
伸昭 古谷
和彦 沖田
正己 川淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62147559A priority Critical patent/JP2705067B2/en
Publication of JPS63311186A publication Critical patent/JPS63311186A/en
Application granted granted Critical
Publication of JP2705067B2 publication Critical patent/JP2705067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁化率を測定する装置に関し、特に生体など
非破壊で内部の磁化率分布を測定する必要のある被検体
を測定するための磁化率分布測定装置に関するものであ
る。 従来の技術 従来より物質の磁化率の測定には試料振動型磁力計
(VSM)が高感度な測定が可能であるためしばしば使用
されている。例えば、近角聡信編集、「磁気」、実験物
理学講座17、共立出版株式会社、P196〜P209等に詳しく
記載されている。以下第6図を参照して従来の試料振動
磁力計について説明する。 第6図において、601は被検体となる試料、602は試料
を振動させる加振器、603は加振器602と試料601を結ぶ
支持棒、604は試料に静磁界Hoを加える磁石、605は試料
601が作る磁界を検出する磁界検出器、606は磁界検出器
の電気信号を増幅する増幅器、607は増幅された交流信
号の振幅を検出する検波器である。 以上のような構成において、以下その動作を説明す
る。 まず、被検体である試料601は加振器602によりZ方向
に数十〜数百Hzで振動させる。試料601は磁石604により
x方向に静磁界Hoが加わるため、試料の磁化率χとして
χHoの磁化を生ずる。磁化した試料601がZ方向に振動
するため磁界検出器605には試料の振動磁化が作る振動
磁界が交流信号となって検出される。通常、磁界検出器
は単純なZ方向を向いたコイルが使用され、振動磁界に
よるコイルに交流電圧が発生する。交流信号は増幅器60
6により増幅され、検波器607により交流信号の振幅が検
出される。検出される信号振幅は磁化に比例し、すなわ
ち磁化率χに比例するので、被検体である試料601の磁
化率が測定できる。 このような装置により数mm径の被検体の10-6emu/cc程
度の磁気率が十分な精度で測定可能であり、常磁性材料
の磁化率も十分に測定できる。 発明が解決しようとする問題点 しかし、以上のような従来の磁化率測定装置は大きな
被検体の内部の磁化率分布の測定には以下に述べる問題
点のため測定不能であった。 大きな被検体の内部の磁化率分布の測定は例えば医療
測定分野では重要である。人間などの大きな生体中の磁
化率分布を測定することは生体の血液分布の測定が可能
となるため医療的な意味が大きい、すなわち、血液はヘ
モグロビンの鉄イオンを含むため常磁性体の中では比較
的大きな磁化率(数×10-6emu/cc)を持ち、生体中の磁
化率分布の測定により、血液分布に関する情報を得られ
ると考えられる。このような生体中の磁化率分布を生体
に悪影響なく(無侵襲的)に測定する事は医療測定に有
用である。しかし、上述した従来例の測定システムでは
基本的に2つの大きな問題点を有する。 すなわち、第1に試料(被検体)全体の平均的な磁化
率は測定可能であるが、その被検体内部の磁化率分布が
得られない。 第2には被検体を振動させるため、大きな被検体(例
えば人体)などでは振動などの加速度運動が質量が大き
いために非常に困難であるだけでなく、人体などの生体
に過度の振動的な加速度運動を与える事は生体に悪影響
を与えるため避ける必要がある。 以上に述べたように分布が測定できない事と、被検体
に振動などの加速度運動をさせられない事などが従来の
測定システムの問題であった。 本発明は従来技術の以上のような問題点を解決するも
ので、被検体に振動等の強い加速度運動を加える事な
く、被検体内部の磁化率分布を測定することを目的とす
るものである。 問題点を解決するための手段 本発明は、静止した被検体に対して磁界を振動的に変
位させて印加する磁界印加手段と、印加磁界と相対位置
が固定され前記静止した被検体の周囲に設置された複数
個の磁気検出手段と、前記磁気検出手段の相対位置の変
化に対応した変化信号より磁化率分布を計算する演算処
理装置とにより、上記目的を達成するものである。 作用 本発明は上記構成により、強い加速度運動を被検体に
与えずに、被検体に加えられた印加磁界との相対位置を
変化させる。印加磁界と磁気検出手段の相対位置は固定
してあるため、被検体と印加磁界の相対位置が変化して
も、磁気検出手段の感ずる磁界の印加磁界による成分は
変化せず被検体の磁化が磁気検出手段に対して相対運動
する事による成分のみが変化信号として磁気検出手段よ
り得られる。磁気検出手段は被検体の周囲に多数個配置
され、個々の磁気検出手段は被検体中の場所に応じて異
る感度を有するため、各検出手段ごとの被検体中の各場
所に応じた感度係数を用いて、得られた各検出手段の変
化信号から、演算処理により、被検体中の磁化率分布を
算出するようにしたものである。なお、被検体に強い加
速度運動させずに、相対運動させる事は、被検体を静止
させながら、印加磁界を振動的に運動させる方法や、被
検体または印加磁界を直線等速運動させる事により容易
に達成できる。 実 施 例 以下、図面を参照しながら、本発明の第1の実施例に
ついて説明する。 第1図は本発明の第1の実施例における磁化率分布測
定装置を示す概観図で、第2図は第1図の磁界分布の様
子を説明する部分拡大図である。第1図において、101
は被検体、102は被検体保持手段、103は磁気センサ、10
4は可動磁極、105は加振手段、106は磁石、107はコイ
ル、108は固定磁極、109は磁気センサ支持枠、110は演
算処理手段、111はケーブル、112は処理済みデータ、11
3は支持棒である。第2図において、104は可動磁極、10
4aは可動磁極が移動した状態での可動磁極、108は固定
磁極、114は磁力線、114aは可動磁極移動状態の磁力線
である。 以上のような構成において、以下その動作を説明す
る。 まず、被検体101は例えば人体で、以下第1図は人体
を想定して説明する。被検体101は被検体保持手段102上
で停止状態で保持されている。被検体101には磁界Hoが
X軸方向に磁石106により印加されている。磁石106は固
定磁極108の他に可動磁極104を有し、支持棒113により
加振手段105に連結され、Z軸方向に振動運動を可動磁
極104は行なう。可動磁極104には磁気センサ103を保持
する支持枠109が固定され、被検体101の周囲に多数配置
された磁気センサ103は可動磁極104と相対位置が固定さ
れ、可動磁極104と連動して振動運動を行なう。第2図
に示すように、左側の固定磁極108をN極とすると、こ
の磁極よりの磁束は左側の可動磁極104に流入し被検体
を含む空間に磁力線114に示すような磁界分布で右側の
可動磁極104に達し、右側のS極の固定磁極108に磁束は
流入している。可動磁極104が加振手段105によりZ軸方
向に移動した瞬間を可動磁極104aとし、その時の磁力線
114aを考えると、磁力線分布すなわち磁界も可動磁極10
4と同様にZ軸方向に平衡移動している。これは可動磁
極104の固定磁極108に対向した面の面積S1と逆に固定磁
極108の可動磁極104に対向した面の面積S2ではS1より十
分大きくしてあるため、可動磁極104の移動でも、固定
磁極108よりの磁束はすべて可動磁極104に達するため、
磁力線114の分布は可動磁極104に固定して移動するため
である。すなわち、被検体101を含む部分の印加磁界は
可動磁極104と連同して移動する。ここで磁気センサ103
は可動磁極104に固定されているため、多数個の磁気セ
ンサ103は印加磁界の運動と連動し、この結果敷センサ
の出力は印加磁界の運動では変化しない。しかし、被検
体101は静止しているため、印加磁界や磁気センサ103に
対しては相対的に運動していることになり、被検体101
の内部の磁化分布に応じて、可動磁極104の振動運動に
対応した変化信号が磁気センサ103より得られる。すな
わち、従来例で説明した試料振動型磁力計では試料が振
動し、磁界と磁気センサが静止しているのに対して、本
実施例では被検体が停止し、磁界と磁気センサが連同し
て振動している。この場合も磁界や磁気センサより見れ
ばやはり被検体が相対的に振動運動しているので同様に
相対運動に対応した変化信号が得られる。 被検体101の周囲に多数配置された磁気センサ103の信
号はまとめてケーブル111により演算処理手段110に送ら
れる。演算処理手段110は磁気センサ103により被検体10
1の内部の磁化分布に応じた変化信号より演算処理によ
り内部の磁化分布すなわち磁化率分布を演算する。 磁気センサ103は従来の振動試料型磁力計で使用され
ていたような単純なコイルを使用し、コイルを通過する
被検体101の磁化が生み出す磁束の時間変化に応じた電
圧を磁気センサ出力とする事も可能である。しかし、被
検体が人体の場合などでは装置全体が大きくなり、当
然、可動磁極104、支持枠109、磁気センサ103、支持棒1
13の全体は相当な質量となるため、従来の振動試料型磁
力計の様に数百Hzで振動させる事は困難となり、数十Hz
以下の振動と低周波となるが、単純なコイルの磁気セン
サは磁束の時間微分dφ/dtが出力となるため低周波で
は感度が低下する。この欠点を除くためには本質的に磁
気感度が高く、かつ磁束の時間微分でなく磁束を測定す
る超電導量子干渉計(SQUID)を使用することが望まし
い。 次に本実施例の被検体中の磁化分布を演算処理により
磁気センサの信号より求める方法について第3図を用い
て説明する。第3図は演算処理の説明図で、101は被検
体、103は磁気センサである。磁気センサ103は図中の1,
2,3……n−1,nに示すようにn個の磁気センサ103より
構成されている。被検体101を仮想的に区分1,2,3,……
n−1,nと示すように区分する。被検体101にはX軸方向
にHoの印加磁界があるためk番目の区分の磁化率をχ
k、区分の体積1/kとして磁化I kと磁気モーメントMkは
(1)式と与えられる。 Mk=I k1/k=χkHo1/k ………(1) また、k番目の区分に単位の磁気モーメントを仮定し
た時のi番目の磁気センサ103を感ずる磁束をfikとする
と、fikはi番目の磁気センサの位置とk番目の区分の
位置に依存する係数となる。これよりk番目の区分の磁
気モーメントが(1)式のMkの時のi番目の磁気センサ
の感ずる磁束φiは(2)式で与えられる。 φi=fikMk=fikχoVkHo ………(2) よって磁束φiの時間変化dφi/dtは(3)式とな
る。 ここで∂fik/∂zはZ方向に被検体101が磁気センサ1
03に対して相対的に変位した時の係数fikの偏微粉であ
り、i番目の磁気センサの位置とk番目の区分の位置に
依存する係数となる。 dz/dtは当然、被検体101の磁気センサ103に対する相
対的なZ方向の速度νzである。 以上より、新しい係数Fixを(4)式とすると磁束φ
iの時間変化dφi/dtは(5)式で与えられる。 ここで、k番目の区分がi番目の磁気センサに与える
磁束の時間変化を考えたが、1〜nまでの全区分のi番
目の磁気センサに与える磁束の時間変化は区分を加算し
て、(6)式で与えられる。 ここで(6)式はi番目の磁気センサを考えたが、1
〜n番目のすべての磁気センサについては、(7)式と
なる。 ここで、左辺のdφ1/dt,dφ2/dt……,dφn/dtは磁気
センサ103の各出力の時間変化より実測され、被検体101
の相対速度νzおよび係数Fixも既知の量であるので
(7)式はχkに関する連立方程式になり、演算処理に
よりχkは求められる。すなわち、被検体中の磁化率分
布χkが得られる。 第1図にもどり、演算処理手段110は上述の演算を行
ない、磁気センサ103の信号の被検体101の相対速度ν
に応じた時間変化信号成分より、(7)式により被検体
101に磁化分布χkを演算し、処理済みデータ112として
出力する。処理済みデータ112は一般的には画像表示さ
れたり記録されたりするが、第1図では特に図示してい
ない。 なお、以上の計算では簡単のため印加磁界Hoは空間的
に一様として計算したが、一般的には空間分布を持つ場
合もほぼ同様に計算できる。すなわち、多数個の磁気セ
ンサ103を使用すれば演算処理で被検体101中の多くの場
所の磁化率が計算可能となる。 なお、本実施例では第1図に示すように、印加磁界を
振動的に変位運動させるために、可動磁極104を使用し
たが、被検体の大きさが小さい場合は磁石106の全体を
変位運動させても良い事は当然である。ただし、一般に
磁石は電磁石、永久磁石、超電導磁石のいずれも重量が
大きいので、可動磁極104を使用した方が加振が容易で
ある。 次に本発明の第2の実施例について説明する。 第4図は本発明の第2の実施例における磁化率分布測
定装置の概観図であり、(A)は正面図、(B)は側面
図である。第4図において第1の実施例の第1図と同一
部分は同一番号を付した。第4図で、201は磁石106の移
動手段、202はレール、203はモータ、204は車輪であ
る。 本実施例においては、磁気センサ103と支持枠109は磁
石106に固定され、磁石106全体が移動装置201によりレ
ール202上を直線運動可能としている。被検体101は被検
体保持手段102上に静止しており、磁石106が移動手段20
1により相対的にZ方向に移動し、被検体101の周囲に磁
気センサ103が来た状態で、磁石106が移動しながら測定
する。 測定の原理は第1の実施例と同様であり、印加磁界Ho
に対して磁気センサ103が連動運動し、被検体101が磁気
センサ103に対して相対運動することにより、磁気セン
サ103に被検体101の磁化率χkに応じた信号を得る事に
より測定する。 信号の演算処理はほぼ第1の実施例と同じであるが、
本実施例では印加磁界Hoの空間分布も無視できないの
で、(3)式は(3)′式となる。 よって、(4)式は(4)′式となる。 その他の式は変化せず(7)式を演算処理装置でχk
について解く事で磁化率分布χkが求まる。 なお、本実施例において、磁石106の被検体101の各場
所を移動中のデータを解析する事で、被検体101の立体
的な磁化立分布も求められる。 なお、本実施例では磁石106の運動は必ずしも等速運
動でなくても良いが、あまり急な加速度運動は磁石106
の質量が大きく無理なので、実際的には等速運動に近い
状態の測定となる。 この様に本実施例は運動が直線運動のため加速度が少
く、質量の大きい磁石106を運動させられる特長があ
る。 次に本発明の第3の実施例について説明する。 第5図は本発明の第3の実施例における磁化率分布測
定装置の概観図であり、(A)は正面図、(B)は側面
図である。第5図において第1の実施例の第1図と同一
部分は同一番号を付した。第5図で、301は被検体を移
動させる移動手段、302はレール、303は車輪である。 本実施例では、第2の実施例と同様に、磁気センサ10
3と支持枠109は磁石106に固定され、磁石106は静止して
いる。被検体101は被検体保持手段102に連結した移動手
段301によりZ軸方向に移動する。当然ながら被検体101
に大きな加速度を与えられないが、十分にZ方向の空間
的スペースをとる(レール302を長くする)ことによ
り、弱い加速度で移動可能であり、測定時は加速度なし
の等速運動させる事で実質的に加速度の悪影響を避ける
事が可能である。具体的には人体を被検体とすれば1/10
G以下の加速度にすれば良いと考えられる。この様な構
成で、第2の実施例で述べたと同様な信号処理により、
被検体101の磁化率分布χkを得る事ができる。 なお、本実施例でも第2の実施例と同様に、被検体10
1の立体的な磁化分布も求められる。この場合は質量の
大きな磁石106を静止状態にできるので、移動手段301が
簡単になる長所がある。 なお、第1〜第3の実施例の被検体101は生体に限定
せず、比較的質量が大きく振動運動が困難であったり、
加速度運動が悪影響のある被検体であったりした時に、
内部の磁化率分布を非破壊で調べる場合であれば被検体
として使用可能である。 なお、第1〜第3の実施例の磁気センサ103の個数は
被検体104の磁化率分布の分解能を高めるためには多い
ほど良いので、画像的な磁化率分布を得るには10個以上
使用する事が望ましい。 発明の効果 以上のように本発明は、被検体に強い加速度運動を加
えずに被検体に対して相対位置の変えられる磁界印加手
段と、被検体の周囲に配置された複数の磁気検出手段に
よって、被検体中の磁化率分布を非破壊(無侵襲)で測
定可能であり、その効果は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring magnetic susceptibility, and more particularly to a magnetic susceptibility distribution for measuring a non-destructive subject such as a living body whose internal magnetic susceptibility distribution needs to be measured. It relates to a measuring device. 2. Description of the Related Art Conventionally, a vibrating sample magnetometer (VSM) is often used for measuring the magnetic susceptibility of a substance because it can perform highly sensitive measurement. For example, it is described in detail in, for example, edited by Toshinobu Chikagaku, "Magnetic", Experimental Physics Course 17, Kyoritsu Shuppan Co., Ltd., pages 196 to P209. Hereinafter, a conventional sample vibration magnetometer will be described with reference to FIG. In FIG. 6, 601 is a sample to be a subject, 602 is a vibrator for vibrating the sample, 603 is a support rod connecting the vibrator 602 and the sample 601, 604 is a magnet for applying a static magnetic field Ho to the sample, 605 is sample
A magnetic field detector 601 detects the magnetic field generated by the magnetic field detector 601, an amplifier 606 amplifies the electric signal of the magnetic field detector, and a detector 607 detects the amplitude of the amplified AC signal. The operation of the above configuration will be described below. First, a sample 601 as a subject is vibrated at several tens to several hundreds Hz in the Z direction by a vibrator 602. Since a static magnetic field Ho is applied to the sample 601 in the x direction by the magnet 604, a magnetization of χHo is generated as the magnetic susceptibility χ of the sample. Since the magnetized sample 601 vibrates in the Z direction, the magnetic field detector 605 detects the oscillating magnetic field generated by the oscillating magnetization of the sample as an AC signal. Usually, a simple Z-oriented coil is used for the magnetic field detector, and an alternating voltage is generated in the coil by the oscillating magnetic field. AC signal is amplifier 60
The amplitude of the AC signal is amplified by the detector 6 and detected by the detector 607. Since the detected signal amplitude is proportional to the magnetization, that is, proportional to the magnetic susceptibility χ, the magnetic susceptibility of the sample 601 as the subject can be measured. With such an apparatus, a magnetic susceptibility of about 10 −6 emu / cc of an object having a diameter of several mm can be measured with sufficient accuracy, and a magnetic susceptibility of a paramagnetic material can also be sufficiently measured. Problems to be Solved by the Invention However, the conventional magnetic susceptibility measuring apparatus as described above cannot measure the magnetic susceptibility distribution inside a large object due to the following problems. Measurement of the magnetic susceptibility distribution inside a large subject is important, for example, in the medical measurement field. Measuring the magnetic susceptibility distribution in a large living body such as a human has a great medical significance because the blood distribution of the living body can be measured.In other words, since blood contains iron ions of hemoglobin, it is a paramagnetic material. It has a relatively high magnetic susceptibility (number × 10 −6 emu / cc), and it is considered that information on blood distribution can be obtained by measuring magnetic susceptibility distribution in a living body. It is useful for medical measurement to measure such a magnetic susceptibility distribution in a living body without adversely affecting the living body (non-invasively). However, the above-described conventional measurement system basically has two major problems. That is, first, the average magnetic susceptibility of the entire sample (test object) can be measured, but the magnetic susceptibility distribution inside the test object cannot be obtained. Second, in order to vibrate the subject, it is very difficult for a large subject (for example, a human body) to perform acceleration motion such as vibration due to a large mass. It is necessary to avoid giving acceleration motion because it has a bad effect on the living body. As described above, it is a problem of the conventional measurement system that the distribution cannot be measured and that the subject cannot be caused to perform acceleration motion such as vibration. The present invention solves the above problems of the prior art, and has an object to measure a magnetic susceptibility distribution inside a subject without applying strong acceleration motion such as vibration to the subject. . Means for solving the problem The present invention provides a magnetic field applying means for applying a magnetic field to a stationary subject by vibratingly displacing the magnetic field, and a fixed position relative to the applied magnetic field and around the stationary subject. The above object is achieved by a plurality of magnetic detecting means provided and an arithmetic processing unit for calculating a magnetic susceptibility distribution from a change signal corresponding to a change in the relative position of the magnetic detecting means. Operation The present invention changes the relative position with the applied magnetic field applied to the subject without giving a strong acceleration motion to the subject by the above configuration. Since the relative position between the applied magnetic field and the magnetic detection means is fixed, even if the relative position between the subject and the applied magnetic field changes, the component of the magnetic field sensed by the magnetic detection means does not change and the magnetization of the subject is changed. Only the component caused by the relative movement with respect to the magnetic detecting means is obtained from the magnetic detecting means as a change signal. Since a large number of magnetic detecting means are arranged around the subject, and the individual magnetic detecting means have different sensitivities depending on the location in the subject, the sensitivity corresponding to each location in the subject for each detecting means The susceptibility distribution in the subject is calculated by a calculation process from the obtained change signal of each detecting means using the coefficient. In addition, relative movement without subjecting the subject to strong acceleration motion can be easily performed by moving the applied magnetic field in an oscillatory manner while the subject is stationary or by moving the subject or the applied magnetic field linearly at a constant velocity. Can be achieved. Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a magnetic susceptibility distribution measuring apparatus according to a first embodiment of the present invention, and FIG. 2 is a partially enlarged view for explaining the magnetic field distribution shown in FIG. In FIG. 1, 101
Is the subject, 102 is the subject holding means, 103 is the magnetic sensor, 10
4 is a movable magnetic pole, 105 is a vibration means, 106 is a magnet, 107 is a coil, 108 is a fixed magnetic pole, 109 is a magnetic sensor support frame, 110 is arithmetic processing means, 111 is a cable, 112 is processed data, 11
3 is a support bar. In FIG. 2, reference numeral 104 denotes a movable magnetic pole;
4a is a movable magnetic pole in a state where the movable magnetic pole is moved, 108 is a fixed magnetic pole, 114 is a magnetic field line, and 114a is a magnetic field line in a movable magnetic pole moving state. The operation of the above configuration will be described below. First, the subject 101 is, for example, a human body, and FIG. 1 will be described below assuming a human body. The subject 101 is held on the subject holding means 102 in a stopped state. A magnetic field Ho is applied to the subject 101 by the magnet 106 in the X-axis direction. The magnet 106 has a movable magnetic pole 104 in addition to the fixed magnetic pole 108, is connected to the vibration means 105 by a support rod 113, and the movable magnetic pole 104 performs a vibration motion in the Z-axis direction. A support frame 109 for holding the magnetic sensor 103 is fixed to the movable magnetic pole 104, and the magnetic sensors 103 arranged around the subject 101 have fixed positions relative to the movable magnetic pole 104, and vibrate in conjunction with the movable magnetic pole 104. Perform exercise. As shown in FIG. 2, when the left fixed magnetic pole 108 is an N pole, the magnetic flux from this magnetic pole flows into the left movable magnetic pole 104 and enters the space including the subject in the magnetic field distribution as shown by the magnetic field lines 114 on the right. The magnetic flux reaches the movable magnetic pole 104 and flows into the fixed magnetic pole 108 on the right side of the S pole. The moment when the movable magnetic pole 104 moves in the Z-axis direction by the vibration means 105 is defined as a movable magnetic pole 104a, and the magnetic force line at that time
Considering 114a, the magnetic field distribution, that is, the magnetic field
Similar to FIG. 4, the balance moves in the Z-axis direction. This is because you have sufficiently larger than the fixed magnetic pole 108 to the movable magnetic pole 104 facing the surface area S 2 in S 1 of the opposing surfaces of the area S 1 opposite to the fixed magnetic pole 108 of the movable magnetic pole 104, the movable pole 104 Even when moving, all the magnetic flux from the fixed magnetic pole 108 reaches the movable magnetic pole 104,
This is because the distribution of the magnetic force lines 114 is fixed to the movable magnetic pole 104 and moves. That is, the applied magnetic field of the portion including the subject 101 moves in conjunction with the movable magnetic pole 104. Here the magnetic sensor 103
Is fixed to the movable magnetic pole 104, the multiple magnetic sensors 103 are linked with the movement of the applied magnetic field, and as a result, the output of the floor sensor does not change with the movement of the applied magnetic field. However, since the subject 101 is stationary, the subject 101 is relatively moving with respect to the applied magnetic field and the magnetic sensor 103.
A change signal corresponding to the oscillating motion of the movable magnetic pole 104 is obtained from the magnetic sensor 103 in accordance with the magnetization distribution inside. That is, in the sample vibration type magnetometer described in the conventional example, the sample vibrates, and the magnetic field and the magnetic sensor are stationary, whereas in the present embodiment, the subject stops and the magnetic field and the magnetic sensor are connected. Vibrating. In this case as well, the subject is relatively oscillating when viewed from the magnetic field or the magnetic sensor, so that a change signal corresponding to the relative motion can be obtained. Signals from a large number of magnetic sensors 103 arranged around the subject 101 are collectively sent to the arithmetic processing means 110 via the cable 111. The arithmetic processing means 110 uses the magnetic sensor 103 to detect the subject 10
The internal magnetization distribution, that is, the susceptibility distribution, is calculated from the change signal corresponding to the internal magnetization distribution of 1 by arithmetic processing. The magnetic sensor 103 uses a simple coil as used in a conventional vibrating sample magnetometer, and outputs a voltage corresponding to a time change of a magnetic flux generated by the magnetization of the subject 101 passing through the coil as a magnetic sensor output. Things are also possible. However, when the subject is a human body or the like, the entire apparatus becomes large. Naturally, the movable magnetic pole 104, the support frame 109, the magnetic sensor 103, the support rod 1
Since the entire 13 has a considerable mass, it is difficult to vibrate at several hundred Hz like a conventional vibrating sample magnetometer.
Although the following vibration and low frequency occur, the sensitivity of a simple coil magnetic sensor decreases at low frequency because the time derivative dφ / dt of the magnetic flux is output. To eliminate this drawback, it is desirable to use a superconducting quantum interferometer (SQUID) that has essentially high magnetic sensitivity and measures magnetic flux instead of time derivative of the magnetic flux. Next, a method of calculating the magnetization distribution in the subject from the signal of the magnetic sensor by arithmetic processing according to the present embodiment will be described with reference to FIG. FIG. 3 is an explanatory diagram of the arithmetic processing, where 101 is a subject, and 103 is a magnetic sensor. The magnetic sensor 103 is denoted by 1,
2, 3,..., N−1, n are configured by n magnetic sensors 103. The subject 101 is virtually classified into 1, 2, 3, ...
It is divided as shown by n−1, n. Since the subject 101 has an applied magnetic field of Ho in the X-axis direction, the susceptibility of the k-th section is set to χ
The magnetization I k and the magnetic moment M k are given by Equation (1), where k is the volume of the section and 1 / k is the volume. Mk = Ik1 / k = χkHo1 / k (1) Further, assuming that a magnetic flux perceived by the i-th magnetic sensor 103 when a unit magnetic moment is assumed in the k-th section is fik, fik is i-th. Is a coefficient depending on the position of the magnetic sensor and the position of the k-th section. From this, the magnetic flux φi felt by the i-th magnetic sensor when the magnetic moment of the k-th section is Mk in equation (1) is given by equation (2). φi = fikMk = fikχoVkHo (2) Therefore, the time change dφi / dt of the magnetic flux φi is given by the following equation (3). Here, ∂fik / ∂z indicates that the object 101 is the magnetic sensor 1 in the Z direction.
This is a fine powder having a coefficient fik when displaced relative to 03, and is a coefficient depending on the position of the i-th magnetic sensor and the position of the k-th section. dz / dt is, of course, the velocity v z in the Z direction of the subject 101 relative to the magnetic sensor 103. From the above, if the new coefficient Fix is expressed by equation (4), the magnetic flux φ
The time change dφi / dt of i is given by equation (5). Here, the time change of the magnetic flux given to the i-th magnetic sensor by the k-th section is considered, and the time change of the magnetic flux given to the i-th magnetic sensor of all the sections from 1 to n is obtained by adding the sections, It is given by equation (6). Here, equation (6) considers the i-th magnetic sensor.
Expression (7) is given for all of the nth to nth magnetic sensors. Here, dφ1 / dt, dφ2 / dt..., Dφn / dt on the left side are actually measured from the time change of each output of the magnetic sensor 103.
Since the relative velocity ν z and the coefficient Fix are also known quantities, equation (7) is a simultaneous equation relating to χk, and χk is obtained by arithmetic processing. That is, the susceptibility distribution Δk in the subject is obtained. Returning to FIG. 1, the arithmetic processing means 110 performs the above-described arithmetic operation, and calculates the relative speed v z of the signal of the magnetic sensor 103 of the subject 101.
From the time-varying signal component according to
A magnetization distribution Δk is calculated in 101 and output as processed data 112. The processed data 112 is generally displayed or recorded as an image, but is not particularly shown in FIG. In the above calculation, the applied magnetic field Ho is calculated as being spatially uniform for simplicity. However, in general, the calculation can be performed in substantially the same manner when the magnetic field has a spatial distribution. That is, if a large number of magnetic sensors 103 are used, the magnetic susceptibilities of many places in the subject 101 can be calculated by arithmetic processing. In this embodiment, as shown in FIG. 1, the movable magnetic pole 104 is used to cause the applied magnetic field to vibrate, but if the size of the subject is small, the entire magnet 106 is displaced. It is natural that you may let them. However, since the magnet is generally heavy in all of the electromagnet, the permanent magnet, and the superconducting magnet, the use of the movable magnetic pole 104 facilitates the excitation. Next, a second embodiment of the present invention will be described. FIG. 4 is a schematic view of a magnetic susceptibility distribution measuring apparatus according to a second embodiment of the present invention, wherein (A) is a front view and (B) is a side view. 4, the same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. In FIG. 4, 201 is a moving means of the magnet 106, 202 is a rail, 203 is a motor, and 204 is a wheel. In this embodiment, the magnetic sensor 103 and the support frame 109 are fixed to the magnet 106, and the entire magnet 106 can be moved linearly on the rail 202 by the moving device 201. The subject 101 is stationary on the subject holding means 102, and the magnet 106 is
The measurement is performed while the magnet 106 moves in a state in which the magnetic sensor 103 is moved relatively in the Z direction due to 1 and the subject 101 is around the magnetic sensor 103. The principle of measurement is the same as that of the first embodiment, and the applied magnetic field Ho
The magnetic sensor 103 performs an interlocking movement, the subject 101 moves relative to the magnetic sensor 103, and the magnetic sensor 103 obtains a signal corresponding to the magnetic susceptibility χk of the subject 101 to measure. The signal processing is almost the same as in the first embodiment,
In this embodiment, since the spatial distribution of the applied magnetic field Ho cannot be ignored, the expression (3) becomes the expression (3) '. Therefore, equation (4) becomes equation (4) ′. The other expressions are not changed, and the expression (7) is calculated by the arithmetic processing unit at χk
By solving, the susceptibility distribution χk is obtained. In the present embodiment, the three-dimensional distribution of the magnetization of the subject 101 can be obtained by analyzing the data of the magnet 106 while moving each location of the subject 101. In this embodiment, the movement of the magnet 106 does not necessarily have to be a constant velocity movement.
Since the mass is too large, the measurement is actually in a state close to a uniform motion. As described above, this embodiment has a feature that the magnet 106 having a large mass can be moved with a small acceleration because the movement is a linear movement. Next, a third embodiment of the present invention will be described. FIG. 5 is a schematic view of a magnetic susceptibility distribution measuring apparatus according to a third embodiment of the present invention, wherein (A) is a front view and (B) is a side view. 5, the same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals. In FIG. 5, reference numeral 301 denotes a moving unit for moving the subject, 302 denotes a rail, and 303 denotes wheels. In the present embodiment, similarly to the second embodiment, the magnetic sensor 10
3 and the support frame 109 are fixed to the magnet 106, and the magnet 106 is stationary. The subject 101 is moved in the Z-axis direction by the moving means 301 connected to the subject holding means 102. Subject 101, of course
Although it is not possible to give a large acceleration to the object, it is possible to move with a small acceleration by taking a sufficient space in the Z direction (lengthening the rail 302). It is possible to avoid the adverse effect of acceleration. Specifically, 1/10 if the human body is the subject
It is considered that the acceleration should be less than G. With such a configuration, by performing the same signal processing as described in the second embodiment,
The susceptibility distribution Δk of the subject 101 can be obtained. In this embodiment, as in the second embodiment, the specimen 10
A three-dimensional magnetization distribution is also required. In this case, since the magnet 106 having a large mass can be stopped, there is an advantage that the moving means 301 is simplified. In addition, the subject 101 of the first to third embodiments is not limited to a living body, and has a relatively large mass and is difficult to vibrate,
When the subject is affected by acceleration motion,
If the internal susceptibility distribution is to be examined nondestructively, it can be used as a subject. The number of the magnetic sensors 103 in the first to third embodiments is preferably as large as possible in order to increase the resolution of the magnetic susceptibility distribution of the subject 104. It is desirable to do. Effect of the Invention As described above, the present invention provides a magnetic field applying unit whose relative position can be changed with respect to a subject without applying a strong acceleration motion to the subject, and a plurality of magnetic detection units arranged around the subject. In addition, the susceptibility distribution in the subject can be measured nondestructively (non-invasively), and the effect is great.

【図面の簡単な説明】 第1図は本発明の実施例における磁化率分布測定装置の
概観図、第2図は第1の実施例の要部拡大図、第3図は
本発明の磁化率分布演算処理を説明する概観図、第4図
は本発明の第2の実施例における磁化率分布測定装置の
概観図で第4図(A)は正面図、第4図(B)は側面
図、第5図は本発明の第3の実施例における磁化率分布
測定装置の概観図で、第5図(A)は正面図、第5図
(B)は側面図、第6図は従来の試料振動型磁力計の概
観図である。 101……被検体、102……被検体保持手段、103……磁気
センサ、104……可動磁極、105……加振装置、106……
磁石、110……演算処理手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a magnetic susceptibility distribution measuring device according to an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of the first embodiment, and FIG. FIG. 4 is a schematic view illustrating a distribution calculation process, FIG. 4 is a schematic view of a magnetic susceptibility distribution measuring apparatus according to a second embodiment of the present invention, FIG. 4 (A) is a front view, and FIG. 4 (B) is a side view. FIG. 5 is a schematic view of a susceptibility distribution measuring apparatus according to a third embodiment of the present invention. FIG. 5 (A) is a front view, FIG. 5 (B) is a side view, and FIG. FIG. 2 is a schematic view of a sample vibration magnetometer. 101: subject, 102: subject holding means, 103: magnetic sensor, 104: movable magnetic pole, 105: vibrating device, 106:
Magnet, 110... Arithmetic processing means.

Claims (1)

(57)【特許請求の範囲】 1.静止した被検体に対して磁界を振動的に変位させて
印加する磁界印加手段と、前記磁界印加手段からの磁界
に対して空間的相対位置が固定され、前記静止した被検
体の周囲に設置された複数個の磁気検出手段と、前記磁
気検出手段で検出された、磁界と被検体との相対的位置
変化に基づく磁界の変化の変化信号により被検体中の磁
化率分布を計算する演算処理手段とを具備することを特
徴とする磁化率分布測定装置。 2.磁界印加手段が固定磁極と可動磁極よりなり、前記
可動磁極を磁気検出手段と空間的相対位置を固定すると
ともに振動運動させるようにしたことを特徴とする特許
請求の範囲第1項記載の磁化率分布測定装置。
(57) [Claims] A magnetic field applying means for applying a magnetic field by vibratingly displacing the magnetic field with respect to a stationary object, and a spatial relative position fixed with respect to a magnetic field from the magnetic field applying means, being installed around the stationary object; A plurality of magnetic detecting means, and an arithmetic processing means for calculating a magnetic susceptibility distribution in the subject based on a change signal of a magnetic field change based on a relative position change between the magnetic field and the subject detected by the magnetic detecting means. A magnetic susceptibility distribution measuring device comprising: 2. 2. The magnetic susceptibility according to claim 1, wherein the magnetic field applying means comprises a fixed magnetic pole and a movable magnetic pole, and the movable magnetic pole is fixed in a spatial relative position to the magnetic detecting means and is caused to vibrate. Distribution measuring device.
JP62147559A 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device Expired - Fee Related JP2705067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147559A JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147559A JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Publications (2)

Publication Number Publication Date
JPS63311186A JPS63311186A (en) 1988-12-19
JP2705067B2 true JP2705067B2 (en) 1998-01-26

Family

ID=15433081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147559A Expired - Fee Related JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Country Status (1)

Country Link
JP (1) JP2705067B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073858A (en) * 1984-12-10 1991-12-17 Mills Randell L Magnetic susceptibility imaging (msi)
US5408178A (en) * 1991-05-17 1995-04-18 Vanderbilt University Apparatus and method for imaging the structure of diamagnetic and paramagnetic objects
JP3846675B2 (en) * 1999-06-29 2006-11-15 独立行政法人科学技術振興機構 Pneumoconiosis or lung function imaging device by in vivo magnetic measurement
US7382129B2 (en) 2000-08-22 2008-06-03 Mills Randell L 4 dimensional magnetic resonance imaging
US20170090003A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Efficient testing of magnetometer sensor assemblies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147770A (en) * 1978-05-12 1979-11-19 Hitachi Ltd Inspection method of ferrite core for deflection yoke
JPH061261B2 (en) * 1984-08-23 1994-01-05 株式会社島津製作所 Evaluation equipment for low permeability pipe

Also Published As

Publication number Publication date
JPS63311186A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
Valberg et al. Magnetic particle motions within living cells. Physical theory and techniques
EP0042254B2 (en) Nuclear resonance apparatus including means for rotating the gradient of a magnetic field
CN109414212B (en) Biomagnetic measuring device
Yu et al. Electromagnetic inductance tomography (EMT): sensor, electronics and image reconstruction algorithm for a system with a rotatable parallel excitation field
JP2017072456A (en) Minute magnetic material detection sensor and foreign matter detection device
JPH08285953A (en) Magnetism detector
JP2705067B2 (en) Magnetic susceptibility distribution measurement device
CN103260513A (en) Detection system using magnetic resistance sensor
JPH0236260B2 (en)
JPS6333601A (en) Method and device for measuring ferromagnetic body buried into non-magnetic body material
JPH04346087A (en) Measuring apparatus of magnetic characteristic
US7348773B2 (en) Method and device for assessing ambient conditions of an installation site of a magnetic resonance imaging device
JP2000037362A (en) Device for removing environment noise magnetic field
JP3655425B2 (en) Biomagnetic field measurement device
Sonoda Observation of tongue movements employing magnetometer sensor
US4037149A (en) Multiple mode magnetometers
JP3907267B2 (en) Vibrator with built-in sensor for measuring mechanical properties of biological surface
JPH0545184B2 (en)
JP2002272695A (en) Versatile high-sensitivity magnetic detection device
Tomek et al. Application of fluxgate gradiometer in magnetopneumography
Plewes et al. An inductive method to measure mechanical excitation spectra for MRI elastography
JPH05142090A (en) Vibration detector
RU2654827C1 (en) Sensor for measuring mechanical deformations
JPH06138094A (en) Device for inspecting reinforcing bar for corrosion
RU2328754C2 (en) Magnetometric module for measuring-analytical set for testing open magnetic systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees