JPS63311186A - Apparatus for measuring distribution of magnetic susceptibility - Google Patents

Apparatus for measuring distribution of magnetic susceptibility

Info

Publication number
JPS63311186A
JPS63311186A JP62147559A JP14755987A JPS63311186A JP S63311186 A JPS63311186 A JP S63311186A JP 62147559 A JP62147559 A JP 62147559A JP 14755987 A JP14755987 A JP 14755987A JP S63311186 A JPS63311186 A JP S63311186A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
subject
specimen
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62147559A
Other languages
Japanese (ja)
Other versions
JP2705067B2 (en
Inventor
Nobuaki Furuya
古谷 伸昭
Kazuhiko Okita
和彦 沖田
Masami Kawabuchi
川淵 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62147559A priority Critical patent/JP2705067B2/en
Publication of JPS63311186A publication Critical patent/JPS63311186A/en
Application granted granted Critical
Publication of JP2705067B2 publication Critical patent/JP2705067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To measure the distribution of magnetic susceptibility in a specimen without destruction, by providing a magnetic-field applying apparatus, which can change its position with low acceleration relatively with respect to the specimen, and providing a magnetism detecting means, whose relative position with respect to the applied magnetic field is fixed. CONSTITUTION:A magnetism sensor 103 and a supporting frame 109 are fixed to a magnet 106. The magnet 106 is stationary. A specimen 101 is moved in the direction of a Z axis with a moving means 301, which is linked with a holding means 102 for the specimen. High acceleration cannot be applied to the specimen 101. When a sufficient air space is provided in the direction of Z, however, the body can be moved at weak acceleration. At the time of measurement, equal-speed movement without acceleration is performed, and the adverse effect of the acceleration can be avoided substantially. In detail, when a human body is specimen, acceleration of 1/10 G or less is recommended. The magnetism sensor is associatively moved with respect to the applied magnetic field. The specimen 101 is relatively moved with respect to the magnetism sensor. Thus a signal corresponding to the magnetic susceptibility of the specimen can be obtained in the magnetism sensor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁化率を測定する装置に関し、特に生体など非
破壊で内部の磁化率分布を測定する必要のある被検体を
測定するための磁化率分布測定装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring magnetic susceptibility, and in particular to a magnetic susceptibility distribution for measuring a subject such as a living body whose internal magnetic susceptibility distribution needs to be measured non-destructively. This relates to a measuring device.

3ベーン 従来の技術 従来より物質の磁化率の測定には試料振動型磁力計(V
SM)が高感度な測定が可能であるためしばしば使用さ
れている。例えば、近角聡信編集、「磁気」、実験物理
学講座17、共立出版株式会社、P196〜P2O9等
に詳しく記載されている。
3-vane conventional technology Traditionally, sample vibrating magnetometers (V
SM) is often used because it allows highly sensitive measurements. For example, it is described in detail in "Magnetism" edited by Satoshi Chikazumi, Experimental Physics Course 17, Kyoritsu Publishing Co., Ltd., pages 196 to 209.

以下第6図を参照して従来の試料振動磁力計について説
明する。
A conventional sample vibrating magnetometer will be explained below with reference to FIG.

第6図において、601は被検体となる試料、602は
試料を振動させる加振器、603は加振器602と試料
601を結ぶ支持棒、604は試料に静磁界Hoを加え
る磁石、605は試料601が作る磁界を検出する磁界
検出器、606は磁界検出器の電気信号を増幅する増幅
器、607は増幅された交流信号の振幅を検出する検波
器である。
In FIG. 6, 601 is a sample to be examined, 602 is an exciter that vibrates the sample, 603 is a support rod that connects the exciter 602 and the sample 601, 604 is a magnet that applies a static magnetic field Ho to the sample, and 605 is a A magnetic field detector detects the magnetic field generated by the sample 601, 606 is an amplifier that amplifies the electric signal of the magnetic field detector, and 607 is a detector that detects the amplitude of the amplified alternating current signal.

以上のような構成において、以下その動作を説明する。The operation of the above configuration will be explained below.

まず、被検体である試料601は加振器60’2により
Z方向に数十〜数百Hzで振動させる。試料601は磁
石604によりX方向に静磁界Hoが加わるため、試料
の磁化率χとしてχHoの磁化を生ずる。磁化した試料
601がZ方向に振動するため磁界検出器605には試
料の振動磁化が作る振動磁界が交流信号となって検出さ
れる。通常、磁界検出器は単純なZ方向を向いたコイル
が使用され、振動磁界によりコイルに交流電圧が発生す
る。交流信号は増幅器606により増幅され、検波器6
07により交流信号の振幅が検出される。
First, a sample 601, which is an object to be inspected, is vibrated in the Z direction at several tens to several hundred Hz using a vibrator 60'2. Since a static magnetic field Ho is applied to the sample 601 in the X direction by the magnet 604, magnetization of χHo is generated as the magnetic susceptibility χ of the sample. Since the magnetized sample 601 vibrates in the Z direction, the oscillating magnetic field generated by the oscillating magnetization of the sample is detected by the magnetic field detector 605 as an alternating current signal. Usually, a magnetic field detector uses a simple coil oriented in the Z direction, and an alternating current voltage is generated in the coil by the oscillating magnetic field. The AC signal is amplified by an amplifier 606, and a detector 6
07 detects the amplitude of the AC signal.

検出される信号振幅は磁化に比例し、すなわち磁化率χ
に比例するので、被検体である試料601の磁化率が測
“定できる。
The detected signal amplitude is proportional to the magnetization, i.e. the magnetic susceptibility χ
Since it is proportional to , the magnetic susceptibility of the sample 601, which is the object to be examined, can be measured.

このような装置により数龍径の被検体の1010−6e
/cc程度の磁化率が十分な精度で測定可能であり、常
磁性材料の磁化率も十分に測定できる。
With such a device, 1010-6e of a sample with several diameters can be measured.
A magnetic susceptibility of about /cc can be measured with sufficient accuracy, and the magnetic susceptibility of paramagnetic materials can also be measured with sufficient accuracy.

発明が解決しようとする問題点 しかし、以上のような従来の磁化率測定装置は大きな被
検体の内、部の磁化率分布の測定には以下−奢 に述べる問題点のため測定不能であった。
Problems to be Solved by the Invention However, the conventional magnetic susceptibility measuring device as described above was unable to measure the magnetic susceptibility distribution of a portion of a large object due to the problems detailed below. .

大きな被検体の内部の磁化率分布の測定は例えば医療測
定分野では重要である。人間などの太き5ページ な生体中の磁化率分布を測定することは生体の血液分布
の測定が可能となるため医療的な意味が大きい、すなわ
ち、血液はヘモグロビンの鉄イオンを含むため常磁性体
の中では比較的大きな磁化率(数x 10  ’ em
u/cc )を持ち、 生体中の磁化率分布の測定によ
り、血液分布(載量する情報を得られると考えられる。
Measuring the magnetic susceptibility distribution inside a large object is important, for example, in the medical measurement field. Measuring the magnetic susceptibility distribution in a thick 5-page living body such as a human being has great medical significance because it enables the measurement of the blood distribution in the living body.In other words, blood is paramagnetic because it contains iron ions of hemoglobin. Inside the body, there is a relatively large magnetic susceptibility (several x 10' em
u/cc), and it is thought that information on blood distribution (loading amount) can be obtained by measuring the magnetic susceptibility distribution in living organisms.

このように生体中の磁化率分布を生体に悪影響なく(無
侵襲的)に測定する事は医療測定に有用である。しかし
、上述した従来例の測定システムでは基本的に2つの大
きな問題点を有する。
Measuring the magnetic susceptibility distribution in a living body in this manner without adversely affecting the living body (non-invasively) is useful for medical measurements. However, the conventional measuring system described above basically has two major problems.

すなわち、第1に試料(被検体)全体の平均的な磁化率
は測定可能であるが、その被検体内部の磁化率分布が得
られない。
That is, first, although the average magnetic susceptibility of the entire sample (test object) can be measured, the magnetic susceptibility distribution inside the test object cannot be obtained.

第2には被検体を振動させるため、大きな被検体(例え
ば人体)などでは振動などの加速度運動が質量が大きい
ために非常に困難であるだけでなく、人体などの生体に
過度の振動的な加速度運動を与える事は生体に悪影響を
与えるため避ける必要がある。
Second, since the object to be examined is vibrated, it is not only very difficult to perform acceleration motion such as vibration in a large object (such as a human body) due to its large mass, but also because it causes excessive vibration to the living body such as the human body. It is necessary to avoid applying accelerated motion because it has a negative effect on living organisms.

6ページ 以上に述べたように分布が測定できない事と、被検体に
振動などの加速度運動をさせられない事などが従来の測
定システムの問題であった。
As mentioned on page 6 and above, problems with conventional measurement systems include the inability to measure distribution and the inability to cause the subject to undergo accelerated motion such as vibration.

本発明は従来技術の以上のような問題点を解決するもの
で、被検体に振動等の強い加゛速度運動を加える事なく
、被検体内部の磁化率分布を測定することを目的とする
ものである。
The present invention solves the above-mentioned problems of the prior art, and aims to measure the magnetic susceptibility distribution inside a subject without applying strong acceleration motion such as vibration to the subject. It is.

問題点を解決するための手段 本発明は被検体に対して強い加速度運動を与えずにすな
わち被検体−に対して相対的に低加速位置変化をなしう
るように構成された磁界印加装置と印加磁界と相対位置
の固定した複数個の磁気検出手段と、前記磁気検出手段
の相対位置の変化に対応した変化信号より磁化率分布を
計算する演算処理装置とにより、上記目的を達成するも
のである。
Means for Solving the Problems The present invention provides a magnetic field applying device and a magnetic field application device configured so as to be able to change the position of a subject at a relatively low acceleration without applying strong acceleration motion to the subject. The above object is achieved by a plurality of magnetic detection means whose magnetic field and relative position are fixed, and an arithmetic processing device that calculates a magnetic susceptibility distribution from a change signal corresponding to a change in the relative position of the magnetic detection means. .

作   用 本発明は上記構成により、強い加速度運動を被検体に与
えずに、被検体に加えられた印加磁界との相対位置を変
化させる。印加磁界と磁気検出手段の相対位置は固定し
であるため、被検体と印加7ページ 磁界の相対位置が変化しても、磁気検出手段の感する磁
界の印加磁界による成分は変化せず被検体の磁化が磁気
検出“手段に対して相対運動する事による成分のみが変
化信号として磁気検出手段より得られる。磁気検出手段
は被検体の周囲に多数個配置され、個々の磁気検出手段
は被検体中の場所に応じて異る感度を有するため、各検
出手段ごとの被検体中の各場所に応じた感度係数を用い
て、得られた各検出手段の変化信号から、演算処理によ
り、被検体中の磁化率分布を算出するようにしたもので
ある。なお、被検体に強い加速度運動させずに、相対運
動させる事は、被検体を静止させながら、印加磁界を振
動的に運動させる方法や、被検体または印加磁界を直線
等速運動させる事により容易に達成できる。
Function: With the above configuration, the present invention changes the relative position of the subject to the applied magnetic field without applying strong acceleration motion to the subject. Since the relative position between the applied magnetic field and the magnetic detection means is fixed, even if the relative position between the subject and the applied magnetic field changes, the component of the magnetic field sensed by the magnetic detection means due to the applied magnetic field does not change and the subject remains unchanged. Only the component caused by the relative movement of the magnetization with respect to the magnetic detection means is obtained as a change signal by the magnetic detection means. A large number of magnetic detection means are arranged around the subject, and each magnetic detection means is Since the sensitivity differs depending on the location inside the specimen, the sensitivity coefficient for each location in the specimen is used for each detection means, and the change signal of each detection means obtained is calculated. It is designed to calculate the magnetic susceptibility distribution inside the object.In addition, to make the object move relative to each other without making it move with strong acceleration, there are two methods: to move the applied magnetic field in an oscillatory manner while keeping the object stationary. This can be easily achieved by moving the subject or the applied magnetic field in a straight line at a constant velocity.

実施例 以下、図面を参照しながら、本発明の第1の実施例につ
いて説明する。
EXAMPLE A first example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例における磁化率分布測定
装置を示す概観図で、第2図は第1図の磁界分布の様子
を説明する部分拡大図である。第1図において、101
は被検体、102は被検体保持手段、103は磁気セン
サ、104は可動磁極、105は加振手段、106は磁
石、107はコイル、108は固定磁極、109は磁気
センサ支持枠、110は演算処理手段、111はケーブ
ル、112は処理済みデータ、113は支持棒である。
FIG. 1 is an overview diagram showing a magnetic susceptibility distribution measuring device according to a first embodiment of the present invention, and FIG. 2 is a partially enlarged view illustrating the state of the magnetic field distribution in FIG. 1. In Figure 1, 101
102 is an object to be examined, 102 is an object holding means, 103 is a magnetic sensor, 104 is a movable magnetic pole, 105 is an excitation means, 106 is a magnet, 107 is a coil, 108 is a fixed magnetic pole, 109 is a magnetic sensor support frame, 110 is an operation Processing means, 111 is a cable, 112 is processed data, and 113 is a support rod.

第2図におい′て、104は可動磁極、104aは可動
磁極が移動した状態での可動磁極、108は固定磁極、
114は磁力線、114aは可動磁極移動状態の磁力線
である。
In FIG. 2', 104 is a movable magnetic pole, 104a is a movable magnetic pole when the movable magnetic pole is moved, 108 is a fixed magnetic pole,
114 is a line of magnetic force, and 114a is a line of magnetic force in a moving state of the movable magnetic pole.

以上のような構成において、以下その動作を説明する。The operation of the above configuration will be explained below.

まず、被検体101は例えば人体で、以下第1図は人体
を想定して説明する。被検体101は被検体保持手段1
02上で静止状態で保持されている。被検体101には
束間HoがX軸方向に磁石106により印加されている
。磁石106は固定磁極108の他に可動磁極104を
有し、支持棒113により加振手段105に連結され、
Z軸方9ページ 向に振動運動を可動磁極104は行なう。可動磁極10
4には磁気セン+103を保持する支持枠109が固定
され、被検体101の周囲に多数配置された磁気センサ
103は可動磁極104と相対位置が固定され、可動磁
極104と連動して振動運動を行なう。第2図に示すよ
うに、左側の固定磁極108をN極とすると、この磁極
よりの磁束は左側の可動磁極104に流入し被検体を含
む空間に磁力線114に示すような磁界分布で右側の可
動磁極104に達し、右側のS極の固定磁極108に磁
束は流入している。可動磁極104が加振手段105に
よりZ軸方向に移動した瞬間を可動磁極104aとし、
その時の磁力線114aを考えると、磁力線分布すなわ
ち磁界も可動磁極104と同様にZ軸方向に平行移動し
ている。これは可動磁極104の固定磁極108に対向
した面の面積S1と逆に固定磁極108の可動磁極10
4に対向した面の面積S2ではSlより十分大きくしで
あるため、可動磁極104の移動でも、固定磁極108
よりの磁束はすべて可動磁極10410ページ に達するため、磁力線114の分布は可動磁極104に
固定して移動するためである。すなわち、被検体101
を含む部分の印加磁界は可動磁極104と連間して移動
する。ここで磁気センサ103は可動磁極104に固定
されているため、多数個の磁気センサ103は印加磁界
の運動と連動し、この結果磁気センサの出力は印加磁界
の運動では変化しない。しかし、被検体101は静止し
ているため、印加磁界や磁気セン+)103に対しては
相対的に運動していることになり、被検体101の内部
の磁化分布に応じて、可動磁極104の振動運動に対応
した変化信号が磁気センサ103より得られる。すなわ
ち、従来例で説明した試料振動型磁力計では試料が振動
し、磁界と磁気センサが静止しているのに対して、本実
施例では被検体が静止し、磁界と磁気センサが連間して
振動している。この場合も磁界や磁気センサより見れば
やはり被検体が相対的に振動運動しているので同様C二
相対運動に対応した変化信号が得られる。
First, the subject 101 is, for example, a human body, and FIG. 1 will be described below assuming a human body. The subject 101 is the subject holding means 1
It is held stationary on the 02. A flux Ho is applied to the subject 101 in the X-axis direction by a magnet 106. The magnet 106 has a movable magnetic pole 104 in addition to a fixed magnetic pole 108, and is connected to an excitation means 105 by a support rod 113.
The movable magnetic pole 104 performs a vibrating motion in the nine-page direction of the Z-axis. Movable magnetic pole 10
A support frame 109 that holds magnetic sensors 103 is fixed to 4, and a large number of magnetic sensors 103 arranged around the subject 101 have their relative positions fixed to the movable magnetic pole 104, and vibrate in conjunction with the movable magnetic pole 104. Let's do it. As shown in FIG. 2, when the fixed magnetic pole 108 on the left side is set as the N pole, the magnetic flux from this magnetic pole flows into the movable magnetic pole 104 on the left side, and the magnetic field distribution as shown by the magnetic force lines 114 in the space containing the subject is created on the right side. The magnetic flux reaches the movable magnetic pole 104 and flows into the fixed magnetic pole 108 of the S pole on the right side. The moment when the movable magnetic pole 104 is moved in the Z-axis direction by the vibration means 105 is defined as the movable magnetic pole 104a,
Considering the magnetic force lines 114a at that time, the magnetic force line distribution, that is, the magnetic field, is also moving in parallel in the Z-axis direction similarly to the movable magnetic pole 104. This is opposite to the area S1 of the surface of the movable magnetic pole 104 facing the fixed magnetic pole 108.
Since the area S2 of the surface facing 4 is sufficiently larger than Sl, even when the movable magnetic pole 104 moves, the fixed magnetic pole 108
This is because all of the magnetic flux from the twist reaches the movable magnetic pole 10410 pages, so the distribution of the magnetic lines of force 114 is fixed to the movable magnetic pole 104 and moves. That is, the subject 101
The applied magnetic field in the portion including the movable magnetic pole 104 moves continuously. Here, since the magnetic sensors 103 are fixed to the movable magnetic pole 104, the multiple magnetic sensors 103 move in conjunction with the movement of the applied magnetic field, and as a result, the outputs of the magnetic sensors do not change with the movement of the applied magnetic field. However, since the subject 101 is stationary, it is moving relative to the applied magnetic field and the magnetic sensor 103, and the movable magnetic pole 104 is A change signal corresponding to the vibrational movement of is obtained from the magnetic sensor 103. In other words, in the sample vibrating magnetometer described in the conventional example, the sample vibrates and the magnetic field and magnetic sensor are stationary, whereas in this example, the object is stationary and the magnetic field and magnetic sensor are connected. It's vibrating. In this case, as seen from the magnetic field and magnetic sensor, the subject is still in relative vibrational motion, so a change signal corresponding to the C2 relative motion is similarly obtained.

被検体101の周囲に多数配置された磁気セン11ペー
ジ サ103の信号はまとめてケーブル111により演算処
理手段110に送られる。演算処理手段110は磁気セ
ンサ103により被検体101の内部の磁化分布に応じ
た変化信号より演算処理により内部の磁化分布すなわち
磁化率分布を演算する。
Signals from a large number of magnetic sensors 11 and pagers 103 arranged around the subject 101 are collectively sent to the arithmetic processing means 110 via a cable 111. The arithmetic processing means 110 uses the magnetic sensor 103 to calculate the internal magnetization distribution, that is, the magnetic susceptibility distribution, by arithmetic processing from a change signal corresponding to the magnetization distribution inside the subject 101 .

磁気センナ103は従来の振動試料型磁力計で使用され
ていたような単純なコイルを使用し、コイルを通過する
被検体101・の磁化が生み出す磁束の時間変化に応じ
た電圧を磁気センサ出力とする事も可能である。しかし
、被検体が人体の場合などでは装置全体が大きくなり、
当然、可動磁極104、支持枠109、磁気センサ10
3、支持棒113の全体は相当な質量となるため、従来
の振動試料型磁力計の様に数百Hzで振動させる事は困
難となり、数十Hz以下の振動と低周波となるが、単純
なコイルの磁気センサは磁束の時間微分dφ/dt が
出力となるため低周波では感度が低下する。この欠点を
除くためには本質的に磁気感度が高く、かつ磁束の時間
微分でなく磁束を測定する超電導量子干渉計(SQUI
D)を使用することが望ましい。
The magnetic sensor 103 uses a simple coil similar to that used in conventional vibrating sample magnetometers, and outputs a voltage corresponding to the time change in the magnetic flux generated by the magnetization of the object 101 passing through the coil as the magnetic sensor output. It is also possible to do so. However, when the subject to be examined is a human body, the entire device becomes large.
Naturally, the movable magnetic pole 104, the support frame 109, the magnetic sensor 10
3. Since the entire support rod 113 has a considerable mass, it is difficult to vibrate at several hundred Hz like in a conventional vibrating sample magnetometer, and the vibration is at a low frequency of several tens of Hz or less. In a magnetic sensor with a coil, the output is the time differential dφ/dt of the magnetic flux, so the sensitivity decreases at low frequencies. In order to eliminate this drawback, a superconducting quantum interferometer (SQUI), which has essentially high magnetic sensitivity and measures magnetic flux rather than the time derivative of magnetic flux, is needed.
It is desirable to use D).

次に本実施例の被検体中の磁化分布を演算処理により磁
気センサの信号より求める方法(二ついて第3図を用い
て説明する。第3図は演算処理の説明図で、101は被
検体、103は磁気センサである。磁気センサ103は
図中の1.2.3・・・・・・n−1,nに示すように
n個の磁気センサ103より構成されている。被検体1
01を仮想的に区分1. 2. 3. ・・・・・・n
−1,nと示すように区分する。被検体101にはX軸
方向にHoの印加磁界があるために番目の区分の磁化率
をχに1 区分の体積1/にとして磁化Ikと磁気モー
メントMkは(1)式と与えられる。
Next, the method of calculating the magnetization distribution in the object according to this embodiment from the signal of the magnetic sensor by calculation processing (the two will be explained using FIG. 3. FIG. , 103 is a magnetic sensor.The magnetic sensor 103 is composed of n magnetic sensors 103 as shown in 1.2.3...n-1,n in the figure.Subject 1
01 is virtually divided into categories 1. 2. 3.・・・・・・n
-1, n. Since there is a magnetic field Ho applied to the object 101 in the X-axis direction, the magnetization Ik and the magnetic moment Mk are given by equation (1), where the magnetic susceptibility of the th section is χ and the volume of the section is 1/.

Mk = I k 1/に−Zk Ho 1/k ・・
−(1)また、k番目の区分に単位の磁気モーメントを
仮定した時のi番目の磁気センサ103の感する磁束を
fikとすると、fikはi番目の磁気センナの位置と
に番目の区分の位置に依存する係数となる。これよりに
番目の区分の磁気モーメントが13ページ (1)式のMkの時のi番目の磁気センサの感する磁束
φiは(2)式で与えられる。
Mk = I k 1/ to −Zk Ho 1/k ・・
-(1) Also, if fik is the magnetic flux sensed by the i-th magnetic sensor 103 when assuming a unit magnetic moment in the k-th section, then fik is the position of the i-th magnetic sensor and the magnetic flux of the i-th section. It is a coefficient that depends on the position. As a result, when the magnetic moment of the th division is Mk in equation (1) on page 13, the magnetic flux φi felt by the i-th magnetic sensor is given by equation (2).

φi = f ikMk = f ikχoVkHo・
・・・・・・・・(2)よって磁束φiの時間変化dφ
i /d tは(3)式となる。
φi = f ikMk = f ikχoVkHo・
......(2) Therefore, the time change dφ of the magnetic flux φi
i/dt is expressed as equation (3).

d             df ikdφi/dt
=  (fikχoVkHo)−χoVkHoコrt −χkVkHoガ詠鉦・・・・・・・・・・・・(5)
δz  dt ここでafik/θ2はZ方向に被検体101が磁気セ
ンサ103に対して相対的に変位した時の係数fikの
偏微分であり、i番目の磁気センサの位置とに番目の区
分の位置(二依存する係数となる。
d df ikdφi/dt
= (fikχoVkHo)−χoVkHocort −χkVkHogaeigon・・・・・・・・・・・・(5)
δz dt Here, afik/θ2 is the partial differential of the coefficient fik when the subject 101 is displaced relative to the magnetic sensor 103 in the Z direction, and the position of the i-th magnetic sensor and the position of the th division (Two dependent coefficients.

d z/d tは当然、被検体101の磁気センサ10
3(二対する相対的なZ方向の速度νZである。
Naturally, dz/dt is the magnetic sensor 10 of the subject 101.
3 (the relative velocity νZ in the Z direction between the two).

以上より、新しい係数Fixを(4)式とすると磁束φ
iの時間変化dφi/dtは(5)式で与えられる。
From the above, if the new coefficient Fix is expressed as (4), the magnetic flux φ
The time change dφi/dt of i is given by equation (5).

dφi /d t =χkFi kν2 ・・・・・・
・・・・・・・・・・・・・・・(5)14ベー〉′ ここで、k番目の区分がi番目の磁気センサに与える磁
束の時間変化を考えたが、1〜nまでの全区分のi番目
の磁気センサに与える磁束の時間変化は区分を加算して
、(6)式で与えられる。
dφi /d t =χkFi kν2 ・・・・・・
・・・・・・・・・・・・・・・(5) 14be〉' Here, we considered the time change of the magnetic flux given to the i-th magnetic sensor by the k-th division, and from 1 to n The time change in the magnetic flux applied to the i-th magnetic sensor in all the sections is given by equation (6) by adding up the sections.

ここで(6)式はi番目の磁気センサを考えたが、1〜
n番目のすべての磁気センせについては、(7)式とな
る。
Here, equation (6) considers the i-th magnetic sensor, but
For all n-th magnetic sensors, equation (7) is obtained.

ここで、左辺のdφ1/dt、 dφ2/dt ・−−
−、dφn/dtは磁気センサ103の各出力の時間変
化より実測され、被検体101の相対速度ν2および係
数Fixも既知の量であるので(7)式はχkに関する
連立方程式となり、演算処理によりχには求められる。
Here, dφ1/dt on the left side, dφ2/dt ・−−
-, dφn/dt are actually measured from the time change of each output of the magnetic sensor 103, and the relative velocity ν2 of the subject 101 and the coefficient Fix are also known quantities, so equation (7) becomes a simultaneous equation regarding χk, and the calculation process χ is required.

すなわち、被検体中の磁化率分布χkが得ら15ベーン
′ れる。
That is, the magnetic susceptibility distribution χk in the subject is obtained.

第1図にもどり、演算処理手段110は上述の演算を行
ない、磁気センサ103の信号の被検体101の相対速
度νZに応じた時間変化信号成分より、(7)式により
被検体101の磁化分布χkを演算し、処理済みデータ
112として出力する。
Returning to FIG. 1, the arithmetic processing means 110 performs the above-mentioned calculation, and calculates the magnetization distribution of the object 101 from the time-varying signal component of the signal from the magnetic sensor 103 according to the relative velocity νZ of the object 101 using equation (7). χk is calculated and output as processed data 112.

処理済みデータ112は一般的には画像表示されたり記
録されたりするが、第1図では特に図示していない。
Processed data 112 is generally displayed as an image or recorded, but is not particularly illustrated in FIG.

なお、以上の計算では簡単のため印加磁界HOは空間的
に一様として計算したが、一般的には空間分布を持つ場
合もほぼ同様に計算できる。すなわち、多数個の磁気セ
ンサ103を使用すれば演算処理で被検体101中の多
くの場所の磁化率が計算可能となる。
In addition, in the above calculation, for simplicity, the applied magnetic field HO was calculated assuming that it is spatially uniform, but in general, calculations can be made in almost the same way even when the applied magnetic field HO has a spatial distribution. That is, by using a large number of magnetic sensors 103, it becomes possible to calculate the magnetic susceptibility of many locations in the subject 101 through arithmetic processing.

なお、本実施例では第1図に示すように、印加磁界を振
動的に変位運動させるために、可動磁極104を使用し
たが、被検体の大きさが小さい場合は磁石106の全体
を変位運動させても良い事は当然である。ただし、一般
に磁石は電磁石、永久磁石、超電導磁石のいずれも重量
が大きいので、可動磁極104を使用した方が加振が容
易である。
In this embodiment, as shown in FIG. 1, the movable magnetic pole 104 is used to oscillally displace the applied magnetic field, but if the object to be examined is small, the entire magnet 106 may be displaced. Of course it's okay to let them do it. However, since magnets such as electromagnets, permanent magnets, and superconducting magnets are generally heavy, it is easier to excite using the movable magnetic pole 104.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第4図は本発明の第2の実施例における磁化率分布測定
装置の概観図であり、(A)は正面図、(B)は側面図
である。第4図において第1の実施例の第1図と同一部
分は同一番号を付した。第4図で、201は磁石106
の移動手段、202はレーノベ 203はモータ、20
4は車輪である。
FIG. 4 is an overview diagram of a magnetic susceptibility distribution measuring device according to a second embodiment of the present invention, in which (A) is a front view and (B) is a side view. In FIG. 4, the same parts as in FIG. 1 of the first embodiment are given the same numbers. In FIG. 4, 201 is a magnet 106
transportation means, 202 is a light novel, 203 is a motor, 20
4 is a wheel.

本実施例においては、磁気セン+103と支持枠109
は磁石106に固定され、磁石106全体が移動装置2
01によりレール202上を直線運動可能としている。
In this embodiment, the magnetic sensor +103 and the support frame 109 are
is fixed to the magnet 106, and the entire magnet 106 is attached to the moving device 2.
01 enables linear movement on the rail 202.

被検体101は被検体保持手段102上に静止しており
、磁石106が移動手段201により相対的にZ方向に
移動し、被検体101の周囲に磁気セン−+3−103
が来た状態で、磁石106が移動しながら測定する。
The subject 101 is stationary on the subject holding means 102, and the magnet 106 is relatively moved in the Z direction by the moving means 201, and a magnetic sensor is placed around the subject 101.
Measurement is performed while the magnet 106 is moving in the state where the magnet 106 has arrived.

測定の原理は第1の実施例と同様であり、印加磁界Ho
に対して磁気セン+103が連動運動し、被検体101
が磁気センサ103に対して相対運17 ページ 動することにより、磁気センサ103に被検体101の
磁化率χkに応じた信号を得る事により測定する。
The principle of measurement is the same as in the first embodiment, and the applied magnetic field Ho
The magnetic sensor +103 moves in conjunction with the subject 101.
The measurement is performed by obtaining a signal corresponding to the magnetic susceptibility χk of the subject 101 from the magnetic sensor 103 by moving 17 pages relative to the magnetic sensor 103.

信号の演算処理はほぼ第1の実施例と同じであるが、本
実施例では印加磁界Hoの空間分布も無視できないので
、(3)式は(3)7式となる。
The signal arithmetic processing is almost the same as in the first embodiment, but in this embodiment, the spatial distribution of the applied magnetic field Ho cannot be ignored, so Equation (3) becomes Equation (3)7.

dφi/dt −χoVk (Ho 肛林+ ” f 
ik )dt    dt −χoVk (Ho ”” + j虹f ik )−”
 −(3)’aX     δx      dt よって、(4)式は(4)7式となる。
dφi/dt −χoVk (Ho anorin+”f
ik ) dt dt −χoVk (Ho “” + j rainbow f ik ) −”
-(3)'aX δx dt Therefore, equation (4) becomes equation (4)7.

afik  aH。afik aH.

Fik三vk(Ho]マ+−ムーf1k)・・・・・・
・・・・・・(4)′その他の式は変化せず(7)式を
演算処理装置でχkについて解く事で磁化率分布χkが
求まる。
Fik3vk (Ho] Ma + - Mu f1k)...
(4)' The magnetic susceptibility distribution χk is determined by solving the equation (7) for χk using an arithmetic processing device, without changing the other equations.

なお、本実施例において、磁石106の被検体101の
各場所を移動中のデータを解析する事で、被検体101
の立体的な磁化率分布も求められる。
In addition, in this embodiment, by analyzing data while the magnet 106 is moving from place to place on the subject 101,
The three-dimensional magnetic susceptibility distribution is also determined.

なお、本実施例では磁石106の運動は必ずしも等速運
動でなくても良いが、あまり急な加速度運動は磁石10
6の質量が大きく無理なので、実18ベーン゛ 際的には等速運動に近い状態の測定となる。
In addition, in this embodiment, the movement of the magnet 106 does not necessarily have to be a uniform movement, but if the movement is too rapid, the movement of the magnet 106 may not be uniform.
Since the mass of 6 is large and unreasonable, the actual measurement of 18 vanes will be in a state close to uniform motion.

この様に本実施例は運動が直線運動のため加速度が少く
、質量の大きい磁石106を運動させられる特長がある
In this way, this embodiment has the advantage that the motion is linear, so the acceleration is small, and the magnet 106, which has a large mass, can be moved.

次に本発明の第3の実施例について説明する。Next, a third embodiment of the present invention will be described.

第5図は本発明の第3の実施例における磁化率分布測定
装置の概観図であり、(A)は正面図、(B)は側面図
である。第5図において第1の実施例の第1図と同一部
分は同一番号を付した。第5図で、301は被検体を移
動させる移動手段、302はレーノベ 303は車輪で
ある。
FIG. 5 is an overview diagram of a magnetic susceptibility distribution measuring device according to a third embodiment of the present invention, in which (A) is a front view and (B) is a side view. In FIG. 5, the same parts as in FIG. 1 of the first embodiment are given the same numbers. In FIG. 5, 301 is a moving means for moving the subject, 302 is a light novel, and 303 is a wheel.

本実施例では、第2の実施例と同様に、磁気センサ10
3と支持枠109は磁石106に固定され、磁石106
は静止している。被検体101は被検体保持手段102
1:連結した移動手段301によりZ軸方向に移動する
。当然ながら被検体101に大きな加速度を与えられな
いが、十分にZ方向の空間的スペースをとる(レール3
02を長くする)ことにより、弱い加速度で移動可能で
あり、測定時は加速度なしの等速運動させる事で19ベ
ーン 実質的に加速度の悪影響を避ける事が可能である。
In this embodiment, similarly to the second embodiment, the magnetic sensor 10
3 and the support frame 109 are fixed to the magnet 106, and the magnet 106
is stationary. The subject 101 is the subject holding means 102
1: Move in the Z-axis direction by the connected moving means 301. Naturally, large acceleration cannot be applied to the subject 101, but sufficient spatial space is taken up in the Z direction (rail 3
02), it is possible to move with weak acceleration, and by moving at a constant speed without acceleration during measurement, it is possible to substantially avoid the adverse effects of acceleration on the 19 vanes.

具体的には人体を被検体とすれば^G以下の加速度にす
れば良いと考えられる。この様な構成で、第2の実施例
で述べたと同様な信号処理により、被検体101の磁化
率分布χkを得る事ができる。
Specifically, if the subject is a human body, it is considered that the acceleration should be less than ^G. With such a configuration, the magnetic susceptibility distribution χk of the subject 101 can be obtained by signal processing similar to that described in the second embodiment.

なお、本実施例でも第2の実施例と同様に、被検体10
1の立体的な磁化分布も求められる。この場合は質量の
大きな磁石106を静止状態にできるので、移動手段3
01が簡単になる長所がある。
Note that in this embodiment, as in the second embodiment, the subject 10
The three-dimensional magnetization distribution of 1 is also determined. In this case, since the magnet 106 having a large mass can be kept stationary, the moving means 3
01 has the advantage of being simple.

なお、第1〜第3の実施例の被検体101は生体に限定
せず、比較的質量が大きく振動運動が困難であったり、
加速度運動が悪響のある被検体であったりした時に、内
部の磁化率分布を非破壊で調べる場合であれば被検体と
して使用可能である。
Note that the subject 101 in the first to third embodiments is not limited to a living body, but may have a relatively large mass and have difficulty in vibrating motion, or
It can be used as a test object if the internal magnetic susceptibility distribution is to be non-destructively investigated in cases where accelerated motion has an adverse effect on the test object.

なお、第1〜第3の実施例の磁気センぜ103の個数は
被検体104の磁化率分布の分解能を高めるためには多
いほど良いので、画像的な磁化率分布を得るには10個
以上使用する事が望ましい。
The number of magnetic sensors 103 in the first to third embodiments is preferably 10 or more in order to improve the resolution of the magnetic susceptibility distribution of the subject 104, so to obtain an image-like magnetic susceptibility distribution. It is desirable to use it.

発明の効果 以上のように本発明は、被検体に強い加速度運動を加え
ずに被検体に対して相対位置の変えられる磁界印加手段
と、被検体の周囲に配置された複数の磁気検出手段とに
よって、被検体中の磁化率分布を非破壊(無侵襲)で測
定ず能であり、その効果は大きい。
Effects of the Invention As described above, the present invention comprises a magnetic field applying means whose relative position can be changed with respect to the subject without applying strong acceleration motion to the subject, and a plurality of magnetic detection means disposed around the subject. This allows non-destructive (non-invasive) measurement of the magnetic susceptibility distribution in the subject, and its effectiveness is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における磁化率分布測定装置の
概観図、第2図は第1の実施例の要部拡大図、第3図は
本発明の磁化分布演算処理を説明する概観図、第4図は
本発明の第2の実施例における磁化率分布測定装置の概
観図で第4図(A)は正面図、第4図(B)は側面図、
第5図は本発明の第3の実施例における磁化率分布測定
装置の概観図で、第5図(A)は正面図、第5図(B)
は側面図、第6図は従来の試料振動型磁力計の概観図で
ある。 101・・・被検体、102・・・被検体保持手段、1
03・・・磁気センサ、104・・・可動磁極、105
・・・加振装置、106・・・磁石、110・・・演算
処理手21 ページ 段。 代理人の氏名 弁理士 中 尾 敏 男 はか1名第2
図 第3図 103夜気ビンブ
Fig. 1 is an overview diagram of a magnetic susceptibility distribution measuring device according to an embodiment of the present invention, Fig. 2 is an enlarged view of main parts of the first embodiment, and Fig. 3 is an overview diagram illustrating the magnetic susceptibility distribution calculation process of the invention. , FIG. 4 is an overview diagram of a magnetic susceptibility distribution measuring device according to a second embodiment of the present invention, FIG. 4(A) is a front view, FIG. 4(B) is a side view,
FIG. 5 is an overview diagram of the magnetic susceptibility distribution measuring device according to the third embodiment of the present invention, FIG. 5(A) is a front view, and FIG. 5(B) is a front view.
is a side view, and FIG. 6 is an overview of a conventional sample vibrating magnetometer. 101... Subject, 102... Subject holding means, 1
03... Magnetic sensor, 104... Movable magnetic pole, 105
... Vibration device, 106 ... Magnet, 110 ... Arithmetic processing unit 21 Page stage. Name of agent: Patent attorney Toshio Nakao (1st person, 2nd person)
Figure 3 Figure 103 Night air Bimbu

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも被検体を横切って磁界を印加するとと
もに被検体に対して相対的に低加速位置変化をなしうる
ように構成された磁界印加手段と、前記磁界印加手段か
らの磁界に対して空間的相対位置が固定され、被検体の
周囲に設置された複数個の磁気検出手段と、前記磁気検
出手段で検出された、磁界と被検体との相対的位置変化
に基づく磁界の変化信号より被検体中の磁化率分布を計
算する演算処理手段とを具備することを特徴とする磁化
率分布測定装置。
(1) A magnetic field applying means configured to apply a magnetic field at least across the subject and to make a low acceleration position change relative to the subject, and a space with respect to the magnetic field from the magnetic field applying means. The relative position of the object is fixed, and the object is detected by a plurality of magnetic detection means installed around the object, and a change signal of the magnetic field based on a change in the relative position between the magnetic field and the object detected by the magnetic detection means. 1. A magnetic susceptibility distribution measuring device comprising: arithmetic processing means for calculating a magnetic susceptibility distribution in a specimen.
(2)被検体を静止させ、被検体に対して磁界印加手段
を振動的に位置変化させるようにしたことを特徴とする
特許請求の範囲第1項記載の磁化率分布測定装置。
(2) The magnetic susceptibility distribution measuring device according to claim 1, characterized in that the subject is kept stationary and the position of the magnetic field applying means is vibrated relative to the subject.
(3)被検体を静止させ、被検体に対して磁界印加手段
を直線運動的に位置変化させるようにしたことを特徴と
する特許請求の範囲第1項記載の磁化率分布測定装置。
(3) The magnetic susceptibility distribution measuring device according to claim 1, characterized in that the subject is kept stationary and the position of the magnetic field applying means is changed linearly with respect to the subject.
(4)磁界印加手段を静止させ、前記磁界印加手段に対
して被検体を直線運動的に位置変化させるようにしたこ
とを特徴とする特許請求の範囲第1項記載の磁化率分布
測定装置。
(4) The magnetic susceptibility distribution measuring device according to claim 1, characterized in that the magnetic field applying means is kept stationary and the position of the object to be examined is changed linearly relative to the magnetic field applying means.
(5)磁気検出手段が超電導量子干渉計(SQUID)
であることを特徴とする特許請求の範囲第1項記載の磁
化率分布測定装置。
(5) Magnetic detection means is a superconducting quantum interferometer (SQUID)
A magnetic susceptibility distribution measuring device according to claim 1, characterized in that:
(6)磁界印加手段が固定磁極と可動磁極よりなり、前
記可動磁極を磁気検出手段と空間的相対位置を固定する
とともに振動運動させるようにしたことを特徴とする特
許請求の範囲第1項記載の磁化率分布測定装置。
(6) The magnetic field applying means includes a fixed magnetic pole and a movable magnetic pole, and the movable magnetic pole is fixed in a spatial relative position with the magnetic detection means and is caused to vibrate. magnetic susceptibility distribution measuring device.
JP62147559A 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device Expired - Fee Related JP2705067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147559A JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147559A JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Publications (2)

Publication Number Publication Date
JPS63311186A true JPS63311186A (en) 1988-12-19
JP2705067B2 JP2705067B2 (en) 1998-01-26

Family

ID=15433081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147559A Expired - Fee Related JP2705067B2 (en) 1987-06-12 1987-06-12 Magnetic susceptibility distribution measurement device

Country Status (1)

Country Link
JP (1) JP2705067B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073858A (en) * 1984-12-10 1991-12-17 Mills Randell L Magnetic susceptibility imaging (msi)
US5408178A (en) * 1991-05-17 1995-04-18 Vanderbilt University Apparatus and method for imaging the structure of diamagnetic and paramagnetic objects
WO2001000088A1 (en) * 1999-06-29 2001-01-04 Japan Science And Technology Corporation Method for imaging pneumoconiosis or pulmonary function by in-vivo magnetism measurement and apparatus therefor
US7382129B2 (en) 2000-08-22 2008-06-03 Mills Randell L 4 dimensional magnetic resonance imaging
CN106560721A (en) * 2015-09-30 2017-04-12 苹果公司 Efficient Testing Of Magnetometer Sensor Assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147770A (en) * 1978-05-12 1979-11-19 Hitachi Ltd Inspection method of ferrite core for deflection yoke
JPS6153561A (en) * 1984-08-23 1986-03-17 Shimadzu Corp Evaluator for low magnetic-permeability material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147770A (en) * 1978-05-12 1979-11-19 Hitachi Ltd Inspection method of ferrite core for deflection yoke
JPS6153561A (en) * 1984-08-23 1986-03-17 Shimadzu Corp Evaluator for low magnetic-permeability material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073858A (en) * 1984-12-10 1991-12-17 Mills Randell L Magnetic susceptibility imaging (msi)
US5408178A (en) * 1991-05-17 1995-04-18 Vanderbilt University Apparatus and method for imaging the structure of diamagnetic and paramagnetic objects
WO2001000088A1 (en) * 1999-06-29 2001-01-04 Japan Science And Technology Corporation Method for imaging pneumoconiosis or pulmonary function by in-vivo magnetism measurement and apparatus therefor
US7382129B2 (en) 2000-08-22 2008-06-03 Mills Randell L 4 dimensional magnetic resonance imaging
CN106560721A (en) * 2015-09-30 2017-04-12 苹果公司 Efficient Testing Of Magnetometer Sensor Assemblies

Also Published As

Publication number Publication date
JP2705067B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
Valberg et al. Magnetic particle motions within living cells. Physical theory and techniques
EP0042254B2 (en) Nuclear resonance apparatus including means for rotating the gradient of a magnetic field
US5166613A (en) Method and apparatus for mapping stress within ferrromagnetic materials by analyzing Barkhausen noise formed by the introduction of magnetic fields
US5493511A (en) High speed thin plate fatigue crack monitor
JPS59166847A (en) Nuclear magnetic resonance analysis method and device
EP1177455B1 (en) Measurement of magnetic fields using a string fixed at both ends
JP2829375B2 (en) Weak magnetic field measuring device and measuring method
JPS6333601A (en) Method and device for measuring ferromagnetic body buried into non-magnetic body material
US5252920A (en) Magnetic characteristics measuring apparatus with a balancing mechanism
JPS63311186A (en) Apparatus for measuring distribution of magnetic susceptibility
US7348773B2 (en) Method and device for assessing ambient conditions of an installation site of a magnetic resonance imaging device
Reeves An alternating force magnetometer
JP2005003503A (en) Magnetic-shielding method using induction coil
JP3655425B2 (en) Biomagnetic field measurement device
JP3837180B2 (en) Method for generating an elastic image of a subject by magnetic resonance
GB2202630A (en) Stress measurement in a body by detecting magneto-acoustic emission
JPH0545184B2 (en)
JP2002272695A (en) Versatile high-sensitivity magnetic detection device
Sadiq et al. Excitation coil design for single-sided magnetic particle imaging scanner
JP2001235375A (en) Strain gauge for measuring face strain and device for measuring strain
Plewes et al. An inductive method to measure mechanical excitation spectra for MRI elastography
Niwa et al. Proposal of Inspection Method for Shrinkage Cavities in Spheroidal Graphite Cast Iron by Electromagnetic Force Vibration Using Differential Vibration Measurement
Towe Investigation of a Lorentz force biomagnetometer
JPS63311185A (en) Apparatus for measuring distribution of magnetic susceptibility
EP0917653B1 (en) Method of and apparatus for torque magnetometry

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees