JPH02240927A - Manufacture of insulating film for isolation of element in semiconductor device - Google Patents

Manufacture of insulating film for isolation of element in semiconductor device

Info

Publication number
JPH02240927A
JPH02240927A JP6322489A JP6322489A JPH02240927A JP H02240927 A JPH02240927 A JP H02240927A JP 6322489 A JP6322489 A JP 6322489A JP 6322489 A JP6322489 A JP 6322489A JP H02240927 A JPH02240927 A JP H02240927A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322489A
Other languages
Japanese (ja)
Inventor
Wataru Kamisaka
上坂 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6322489A priority Critical patent/JPH02240927A/en
Publication of JPH02240927A publication Critical patent/JPH02240927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To enable formation of an element isolation region in uniform dimensions by forming a side wall by making a high-temperature silicon oxide film grow by a chemical vapor deposition method after patterning of a first silicon nitride film and by making a second silicon nitride film thereafter. CONSTITUTION:After formation of a first silicon nitride film 8 serving as an oxidation-resistant masking material, a high-temperature silicon oxide film 9 is made to grow by a chemical vapor growth method in the sidewall part of the first silicon nitride film 8 before a second silicon nitride film 10 is formed as a side wall therein. Therefore, the high-temperature silicon oxide film 9 formed by the chemical vapor deposition method shows a high etching selection ratio at the time of anisotropic dry etching for forming the side wall of the second silicon nitride film 10, and it is left without being etched nearly at all. Accordingly, the first silicon nitride film located under the high-temperature silicon oxide film 9 is not etched at all and acts as the oxidation-resistant masking material with a uniform initial film thickness at the time of its growth left as it is. Thereby the expansion of an element isolation region in the lateral direction is made uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、シリコン基板の表面の所望の部分に素子分
離用絶縁膜となる酸化シリコン膜を形成する半導体装置
の素子分離用絶縁膜の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of an insulating film for element isolation of a semiconductor device, in which a silicon oxide film serving as an insulating film for element isolation is formed on a desired portion of the surface of a silicon substrate. It is about the method.

〔従来の技術〕[Conventional technology]

近年、MO3型半導体装置等の高集積化・微細化が発達
するに従い、その素子分離領域の微細化のため、LOC
O3法や改良LOCO3法等が利用されるようになって
きた。
In recent years, with the development of higher integration and miniaturization of MO3 type semiconductor devices, etc., LOC
O3 method, improved LOCO3 method, etc. have come into use.

以下に、改良LOCO3法による従来の半導体装置の素
子分離用絶縁膜の製造方法につい°ζ説明する。
Below, a conventional method for manufacturing an insulating film for element isolation of a semiconductor device using the improved LOCO3 method will be described.

第2図(al〜(d)は改良LOCO3法による従来の
半導体装置の素子分離用絶縁膜の製造方法を示す工程順
断面図である。同図において、lはP型シリコン基板、
2は酸化シリコン膜、3は第1窒化シリコン膜、4は第
2窒化シリコン膜、5は素子分離用酸化シリコン膜であ
る。
2(al) to (d) are step-by-step cross-sectional views showing a conventional manufacturing method of an insulating film for element isolation of a semiconductor device using the improved LOCO3 method. In the same figure, l is a P-type silicon substrate;
2 is a silicon oxide film, 3 is a first silicon nitride film, 4 is a second silicon nitride film, and 5 is a silicon oxide film for element isolation.

つぎに、この半導体装置の素子分離用絶縁膜の製造方法
について、以下その工程を説明する。
Next, the steps of the method for manufacturing the element isolation insulating film of this semiconductor device will be described below.

まず、P型シリコン基板lの表面全域に熱酸化法により
酸化シリコン膜2を成長させ、つづいて酸化シリコン膜
2の上に化学的気相成長法により第1窒化シリコン膜3
を成長させる。ついで、ホトレジストでバターニング後
、ドライエツチング行うことによりP型シリコン基板l
上の素子領域外(素子骨ill tin域となる)の第
1窒化シリコン膜3を除去し、ついでウェットエツチン
グを行うことによりP型シリコン基板l上の素子領域外
の酸化シリコン膜2を除去し、酸化シリコン膜2および
第1窒化シリコン膜3をP型シリコン基板l上の素子領
域にのみ残す、この状態は第2図(11に示される。
First, a silicon oxide film 2 is grown over the entire surface of a P-type silicon substrate l by a thermal oxidation method, and then a first silicon nitride film 3 is grown on the silicon oxide film 2 by a chemical vapor deposition method.
grow. Next, after patterning with photoresist, dry etching is performed to form a P-type silicon substrate.
The first silicon nitride film 3 outside the upper element region (which becomes the element bone ill tin region) is removed, and then wet etching is performed to remove the silicon oxide film 2 outside the element region on the P-type silicon substrate l. This state, in which the silicon oxide film 2 and the first silicon nitride film 3 are left only in the element region on the P-type silicon substrate l, is shown in FIG. 2 (11).

つぎに、第2図(b)に示すように、P型シリコン基板
1の表面全域に第2窒化シリコン膜4を成長させる。
Next, as shown in FIG. 2(b), a second silicon nitride film 4 is grown over the entire surface of the P-type silicon substrate 1.

その後、第2図1c)に示すように、異方性ドライエツ
チング(矢印で示す)により第2窒化シリコン膜4をエ
ツチング除去することにより、P型シリコン基板l上に
直接成長した第2窒化シリコン膜4を第1窒化シリコン
膜3の側壁部にのみサイドウオールとして残す。
Thereafter, as shown in FIG. 2 (c), the second silicon nitride film 4 is etched away by anisotropic dry etching (indicated by arrows), thereby removing the second silicon nitride film 4 grown directly on the P-type silicon substrate l. The film 4 is left only on the sidewall portions of the first silicon nitride film 3 as a sidewall.

そして、第2図1dlに示すように、第1窒化シリコン
膜3とその側壁部に残った第2窒化シリコン膜4とを耐
酸化マスキング材として熱酸化成長を行い、素子分離領
域にのみ素子分離用酸化シリコン[5を形成する。
Then, as shown in FIG. 2, 1dl, thermal oxidation growth is performed using the first silicon nitride film 3 and the second silicon nitride film 4 remaining on its sidewalls as oxidation-resistant masking material, and the elements are isolated only in the element isolation region. silicon oxide [5] is formed.

この結果、P型シリコン基板1上に直接成長した第2窒
化シリコン膜4が素子分離用酸化シリコンa5の横方向
への成長を抑制し、各々素子領域と素子骨jilt領域
の微細化が可能となる。
As a result, the second silicon nitride film 4 grown directly on the P-type silicon substrate 1 suppresses the lateral growth of the silicon oxide a5 for element isolation, making it possible to miniaturize the element region and the element bone jilt region. Become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の半導体装置の素子分離用絶縁
膜の製造方法では、第2窒化シリコン膜4の異方性ドラ
イエツチングの際に、P型シリコン基板l上に第2窒化
シリコン膜4のエツチング残渣が生じないようにオーバ
ーエツチングを行っている。このため、第1窒化シリコ
ン膜3もオーバーエツチングされ、第1窒化シリコン膜
3の膜厚が減少し、各P型シリコン基板1毎に第1窒化
シリコン膜3の残膜の膜厚が不均一となる。この結果、
素子分離領域が横方向に伸びて形成されるバーズビーク
の寸法にバラツキを生じ、微細プロセスに適しない。
However, in the above-described conventional method for manufacturing an insulating film for element isolation of a semiconductor device, during anisotropic dry etching of the second silicon nitride film 4, etching residues of the second silicon nitride film 4 are left on the P-type silicon substrate l. Over-etching is performed to prevent this from occurring. For this reason, the first silicon nitride film 3 is also overetched, the film thickness of the first silicon nitride film 3 is reduced, and the film thickness of the remaining first silicon nitride film 3 is uneven for each P-type silicon substrate 1. becomes. As a result,
The device isolation region extends in the lateral direction, causing variations in the dimensions of the bird's beak, which is not suitable for microprocessing.

また、第1窒化シリコン膜3の側壁部に残った第2窒化
シリコン膜4は、P型シリコン基板l上に直接成長させ
ているため、その下部のP型シリコン基板lが応力を受
は素子分離用酸化シリコン膜5の形成時にその第2窒化
シリコン膜4よりP型シリコン基板1中に結晶欠陥を誘
起し、素子領域と素子分離領域との境界部でリーク電流
が発生するという問題がある。
In addition, since the second silicon nitride film 4 remaining on the side wall portion of the first silicon nitride film 3 is grown directly on the P-type silicon substrate l, the P-type silicon substrate l below it receives stress and the device There is a problem that when forming the isolation silicon oxide film 5, crystal defects are induced in the P-type silicon substrate 1 from the second silicon nitride film 4, and leakage current is generated at the boundary between the element region and the element isolation region. .

したがって、この発明の目的は、素子分離領域の寸法を
均一化することができるとともに、結晶欠陥の発生を防
止することができる半導体装置の素子分離用絶縁膜の製
造方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing an insulating film for element isolation of a semiconductor device, which can make the dimensions of an element isolation region uniform and can prevent crystal defects from occurring.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の半導体装置の素子分離用絶縁膜の製造方法は
、シリコン基板の表面の素子分離用絶縁膜の形成部位以
外の箇所に耐酸化マスキング材となる第1窒化シリコン
膜を形成する工程と、前記第1窒化シリコン膜の形成後
に前記シリコン基板の表面全域に化学的気相成長法によ
って高温酸化シリコン膜を成長させる工程と、前記高温
酸化シリコン膜の形成後に耐酸化マスキング材となる第
2窒化シリコン膜を前記第1窒化シリコン膜の側壁部に
サイドウオールとして形成する工程と、前記第1窒化シ
リコン膜および第2窒化シリコン膜をマスクとして前記
シリコン基板の表面を酸化することにより前記素子分離
用絶縁膜となる酸化シリコン膜を形成する工程とを含む
A method of manufacturing an insulating film for element isolation of a semiconductor device according to the present invention includes the steps of: forming a first silicon nitride film serving as an oxidation-resistant masking material at a location other than the formation area of the insulating film for element isolation on the surface of a silicon substrate; After forming the first silicon nitride film, growing a high temperature silicon oxide film over the entire surface of the silicon substrate by chemical vapor deposition; and after forming the high temperature silicon oxide film, growing a second nitride film to serve as an oxidation-resistant masking material. forming a silicon film as a sidewall on the side wall of the first silicon nitride film; and oxidizing the surface of the silicon substrate using the first silicon nitride film and the second silicon nitride film as a mask, thereby forming the device isolation layer. The method includes a step of forming a silicon oxide film to serve as an insulating film.

〔作   用〕[For production]

この発明の方法によれば、耐酸化マスキング材となる第
1窒化シリコン膜を形成した後、第1窒化シリコン膜の
側壁部にサイドウオールとして形成される第2窒化シリ
コン膜の形成前に、化学的気相成長法によって高温酸化
シリコン膜を成長させることにより、第2窒化シリコン
膜によるサイドウオール形成のための異方性ドライエッ
チング時に、上記化学的気相成長法により形成した高温
酸化シリコン膜が高いエツチング選択比を示すこととな
り、はとんどエツチングされずに残る。したがって、高
温酸化シリコン膜の下層にある第1窒化シリコン膜は全
くエツチングされず、成長時の均一な初期膜厚のまま耐
酸化マスキング材として作用する。この結果、素子骨I
I fil域の横方向への広がりを均一化することがで
きる。したがって、素子骨jll SI域の寸法を均一
化することができる。
According to the method of the present invention, after forming the first silicon nitride film serving as an oxidation-resistant masking material, and before forming the second silicon nitride film to be formed as a sidewall on the side wall portion of the first silicon nitride film, chemical By growing a high-temperature silicon oxide film by a chemical vapor deposition method, the high-temperature silicon oxide film formed by the chemical vapor deposition method is It exhibits a high etching selectivity, and most of the material remains unetched. Therefore, the first silicon nitride film underlying the high-temperature silicon oxide film is not etched at all, and functions as an oxidation-resistant masking material while maintaining the uniform initial film thickness during growth. As a result, element bone I
The horizontal spread of the I fil region can be made uniform. Therefore, the dimensions of the element bone jll SI region can be made uniform.

また、第2窒化シリコン膜は、シリコン基板と直接接触
しないため、第2窒化シリコン膜の応力から誘起される
結晶欠陥の発生を防止することができる。
Furthermore, since the second silicon nitride film does not come into direct contact with the silicon substrate, it is possible to prevent the occurrence of crystal defects induced by stress in the second silicon nitride film.

〔実 施 例〕〔Example〕

以下、この発明の実施例を図面を参照しながら説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図181〜(dlはこの発明の一実施例の半導体装
置の素子分離用絶縁膜の製造方法を示す工程順断面図を
示している。同図において、6はP型シリコン基板、7
は酸化シリコン膜、8は素子領域上にのみ五“4した第
1窒化シリコン膜、9は第1II化シリコン膜8の全面
を覆うように成長させた高温酸化シリコン膜、lOはサ
イドウオール形成により第1窒化シリコン膜8の側壁部
にのみ残る第2窒化シリコン膜、11はLOCO5成長
した素子分離用絶縁膜である素子分離用酸化シリコン膜
である。
181 to 181 (dl) are step-by-step cross-sectional views showing a method of manufacturing an insulating film for element isolation of a semiconductor device according to an embodiment of the present invention. In the figure, 6 is a P-type silicon substrate;
8 is a silicon oxide film, 8 is a first silicon nitride film grown only on the element region, 9 is a high-temperature silicon oxide film grown to cover the entire surface of the first silicon oxide film 8, and IO is a silicon oxide film grown by forming sidewalls. The second silicon nitride film 11 remaining only on the side wall portion of the first silicon nitride film 8 is a silicon oxide film for element isolation which is an insulating film for element isolation grown by LOCO5.

つぎに、この半導体装置の素子分離用絶縁膜の製造方法
について、以下その工程を説明する。
Next, the steps of the method for manufacturing the element isolation insulating film of this semiconductor device will be described below.

まず、P型シリコン基板6をRCA洗浄し、酸化シリコ
ン膜7を熱酸化法により例えば500人の厚さに成長さ
せる。ついで、化学気相成長法により、5iH2Cj、
2(ジクロルシラン)ガスとNH3(アンモニア)ガス
の混合ガスを用いて、例えば780℃の温度下で第1窒
化シリコン1I18を全面に例えば1500人の厚さに
成長させる。そして、ホトレジストにより素子領域と素
子骨1m 8N域とをパターニングし、ドライエツチン
グを行うことによりP型シリコン基板6の素子分離領域
(素子領域外)上の第1窒化シリコン膜8を除去し、続
いて同じ箇所の酸化シリコン膜7をウェットエツチング
を行うことにより除去して、P型シリコン基板6の素子
領域上にのみ酸化シリコンITと第1窒化シリコン膜8
とが残存する形状を作成する。
First, the P-type silicon substrate 6 is subjected to RCA cleaning, and the silicon oxide film 7 is grown to a thickness of, for example, 500 nm using a thermal oxidation method. Then, by chemical vapor deposition, 5iH2Cj,
Using a mixed gas of 2 (dichlorosilane) gas and NH3 (ammonia) gas, the first silicon nitride 1I18 is grown to a thickness of, for example, 1500 nm over the entire surface at a temperature of, for example, 780°C. Then, the device region and the device bone 1 m 8N region are patterned using photoresist, and the first silicon nitride film 8 on the device isolation region (outside the device region) of the P-type silicon substrate 6 is removed by dry etching. Then, the silicon oxide film 7 at the same location is removed by wet etching, and the silicon oxide IT and the first silicon nitride film 8 are formed only on the element region of the P-type silicon substrate 6.
and create a shape that remains.

この状態は第1図(alに示される。This state is shown in FIG. 1 (al).

つぎに、第1図1blに示すように、化学的気相成長法
により、SiH,Cm!2ガスとN20ガスの混合ガス
を用いて、例えば870℃の温度下で高温酸化シリコン
膜9をP型シリコン基板6の全面に例えば150人の厚
さに成長させた後、第1窒化シリコン@Bと同一成長条
件にて第2窒化シリコン膜lOを例えば1000人の厚
さに成長させる。
Next, as shown in FIG. 1 1bl, SiH, Cm! After growing a high-temperature silicon oxide film 9 to a thickness of, for example, 150 mm on the entire surface of the P-type silicon substrate 6 at a temperature of, for example, 870° C. using a mixed gas of 2 gas and N20 gas, the first silicon nitride@ A second silicon nitride film 1O is grown to a thickness of, for example, 1000 nm under the same growth conditions as B.

そして、第1図(C1に示すように、CH2F2ガスと
02ガスの混合ガスを用いて異方性ドライエツチング(
矢印で示す)を例えば1分40秒行い、その後第2窒化
シリコン膜10のエツチング残渣がないように追加ドラ
イエツチングを例えば10秒行う、この結果、第1窒化
シリコン膜8の側壁部にのみ第2窒化シリコン膜10が
サイドウオールとして残る。
Then, as shown in Figure 1 (C1), anisotropic dry etching (
) is performed for, for example, 1 minute and 40 seconds, and then additional dry etching is performed for, for example, 10 seconds so that there is no etching residue on the second silicon nitride film 10. As a result, the etching is performed only on the side wall portion of the first silicon nitride film 8. The silicon 2 nitride film 10 remains as a sidewall.

この際、追加ドライエツチングを行っても、第1窒化シ
リコンM8上の高温酸化シリコン119はCH2F 2
 / 02 fA合ガスに対してほとんどエツチングさ
れないため、追加ドライエツチングによる第1窒化シリ
コン膜8のl!1減りが起きない、すなわち、第2窒化
シリコン1110によるサイドウオール形成時において
、P型シリコン基板6の全面上で、成長時の均一な膜厚
を有する第1窒化シリコン膜8を残すことが可能である
At this time, even if additional dry etching is performed, the high temperature silicon oxide 119 on the first silicon nitride M8 is CH2F2
/ 02 fA Since it is hardly etched by the combined gas, the l! of the first silicon nitride film 8 is reduced by additional dry etching. In other words, when forming the sidewall with the second silicon nitride 1110, it is possible to leave the first silicon nitride film 8 having a uniform thickness during growth on the entire surface of the P-type silicon substrate 6. It is.

そして、第1図(d)に示すように、素子分離用酸化シ
リコン膜11を例えば7000人の厚さに熱酸化法で成
長させ、素子骨R領域が形成される。
Then, as shown in FIG. 1(d), the element isolation silicon oxide film 11 is grown to a thickness of, for example, 7,000 layers by thermal oxidation to form the element bone R region.

このとき、上記に示したとおり、P型シリコン基板6の
表面において第1窒化シリコン11a8の膜厚が均一で
あるため、素子分離用酸化シリコン膜!lが横方向に伸
びる領域(バーズビーク)の大きさが一定となり、P型
シリコン基板6の表面での素子領域および素子分離領域
の寸法が各々均一となる。
At this time, as shown above, since the film thickness of the first silicon nitride 11a8 is uniform on the surface of the P-type silicon substrate 6, the silicon oxide film for element isolation! The size of the region (bird's beak) where l extends in the lateral direction is constant, and the dimensions of the element region and the element isolation region on the surface of the P-type silicon substrate 6 are uniform.

また、高温酸化シリコン膜9を形成した後、第2窒化シ
リコン膜lOを形成するため、第2窒化シリコン膜10
が直接P型シリコン基板6に接することはなく、第2窒
化シリコン膜lOからP型シリコン基板6への応力が緩
和され、P型シリコン5IliS内での結晶欠陥の発生
を防止することができる。したがって、素子領域と素子
骨HSI域との境界部でのリーク電流の発生も防止する
ことができる。
Further, after forming the high temperature silicon oxide film 9, in order to form the second silicon nitride film IO, the second silicon nitride film 10 is
does not come into direct contact with the P-type silicon substrate 6, the stress from the second silicon nitride film lO to the P-type silicon substrate 6 is relaxed, and it is possible to prevent crystal defects from occurring within the P-type silicon 5IliS. Therefore, it is also possible to prevent leakage current from occurring at the boundary between the element region and the element bone HSI region.

〔発明の効果〕〔Effect of the invention〕

この発明の半導体装置の素子分離用vA縁膜の製造方法
によれば、第1窒化シリコン膜のパターニング後、化学
的気相成長法による高温酸化シリコン膜を成長させ、そ
の後第2窒化シリコン膜を成長させてサイドウオールを
形成することにより、シリコン基板表面において素子分
離領域を均一な寸法で形成することができる。また、第
2窒化シリコン膜が高温酸化シリコン膜の上に形成され
るため、第2窒化シリコン膜からシリコン基板への応力
が緩和され、シリコン基板内での結晶欠陥の発生を防止
することができる。
According to the method of manufacturing a vA edge film for element isolation of a semiconductor device of the present invention, after patterning the first silicon nitride film, a high temperature silicon oxide film is grown by chemical vapor deposition, and then a second silicon nitride film is grown. By growing and forming sidewalls, element isolation regions can be formed with uniform dimensions on the surface of the silicon substrate. Furthermore, since the second silicon nitride film is formed on the high-temperature silicon oxide film, stress from the second silicon nitride film to the silicon substrate is alleviated, making it possible to prevent crystal defects from occurring within the silicon substrate. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の半導体装置の素子分離用
絶縁膜の製造方法を示す断面図、第2図は改良LOCO
3法による従来の半導体装置の素子分離用絶縁膜の製造
方法の一例を示す工程順断面図である。 6・・・P型シリコン基板、7・・・酸化シリコン膜、
8・・・第1窒化シリコン膜、9・・・高温酸化シリコ
ン膜、10・・・第2窒化シリコン膜、11・・・素子
分離用酸化シリコン膜 第1図 第2図
FIG. 1 is a cross-sectional view showing a method of manufacturing an insulating film for element isolation of a semiconductor device according to an embodiment of the present invention, and FIG.
FIG. 3 is a step-by-step cross-sectional view showing an example of a conventional method for manufacturing an insulating film for element isolation of a semiconductor device using three methods. 6... P-type silicon substrate, 7... silicon oxide film,
8... First silicon nitride film, 9... High temperature silicon oxide film, 10... Second silicon nitride film, 11... Silicon oxide film for element isolation.

Claims (1)

【特許請求の範囲】[Claims] シリコン基板の表面の素子分離用絶縁膜の形成部位以外
の箇所に耐酸化マスキング材となる第1窒化シリコン膜
を形成する工程と、前記第1窒化シリコン膜の形成後に
前記シリコン基板の表面全域に化学的気相成長法によっ
て高温酸化シリコン膜を成長させる工程と、前記高温酸
化シリコン膜の形成後に耐酸化マスキング材となる第2
窒化シリコン膜を前記第1窒化シリコン膜の側壁部にサ
イドウォールとして形成する工程と、前記第1窒化シリ
コン膜および第2窒化シリコン膜をマスクとして前記シ
リコン基板の表面を酸化することにより前記素子分離用
絶縁膜となる酸化シリコン膜を形成する工程とを含む半
導体装置の素子分離用絶縁膜の製造方法。
a step of forming a first silicon nitride film serving as an oxidation-resistant masking material on a surface of the silicon substrate other than the formation region of an insulating film for element isolation; and a step of forming a first silicon nitride film as an oxidation-resistant masking material over the entire surface of the silicon substrate after forming the first silicon nitride film. a step of growing a high-temperature silicon oxide film by a chemical vapor deposition method; and a second step of growing a high-temperature silicon oxide film as an oxidation-resistant masking material after the formation of the high-temperature silicon oxide film.
forming a silicon nitride film as a sidewall on the side wall of the first silicon nitride film; and oxidizing the surface of the silicon substrate using the first silicon nitride film and the second silicon nitride film as a mask to separate the elements. 1. A method for manufacturing an insulating film for element isolation of a semiconductor device, comprising the step of forming a silicon oxide film to serve as an insulating film.
JP6322489A 1989-03-14 1989-03-14 Manufacture of insulating film for isolation of element in semiconductor device Pending JPH02240927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6322489A JPH02240927A (en) 1989-03-14 1989-03-14 Manufacture of insulating film for isolation of element in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322489A JPH02240927A (en) 1989-03-14 1989-03-14 Manufacture of insulating film for isolation of element in semiconductor device

Publications (1)

Publication Number Publication Date
JPH02240927A true JPH02240927A (en) 1990-09-25

Family

ID=13223024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322489A Pending JPH02240927A (en) 1989-03-14 1989-03-14 Manufacture of insulating film for isolation of element in semiconductor device

Country Status (1)

Country Link
JP (1) JPH02240927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376386B1 (en) 1997-02-25 2002-04-23 Fujitsu Limited Method of etching silicon nitride by a mixture of CH2 F2, CH3F or CHF3 and an inert gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376386B1 (en) 1997-02-25 2002-04-23 Fujitsu Limited Method of etching silicon nitride by a mixture of CH2 F2, CH3F or CHF3 and an inert gas
USRE44292E1 (en) 1997-02-25 2013-06-11 Fujitsu Semiconductor Limited Method of etching silicon nitride by a mixture of CH2F2, CH3F or CHF3 and an inert gas

Similar Documents

Publication Publication Date Title
GB2128400A (en) Isolation and wiring of a semiconductor integrated circuit device and method of manufacturing the same
JPH01241823A (en) Manufacture of semiconductor device
US5369052A (en) Method of forming dual field oxide isolation
JPH07302836A (en) Field oxidized film formation of semiconductor device
JP2000164691A (en) Semiconductor device and its manufacture
JPH06302684A (en) Forming method for field oxide film in semiconductor element
JPH0748491B2 (en) Method for manufacturing integrated circuit semiconductor device
JPH0312785B2 (en)
JPH02240927A (en) Manufacture of insulating film for isolation of element in semiconductor device
JPS61244041A (en) Manufacture of semiconductor device
US5747357A (en) Modified poly-buffered isolation
JPS6359538B2 (en)
US6245643B1 (en) Method of removing polysilicon residual in a LOCOS isolation process using an etching selectivity solution
JPH05121656A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPS63152155A (en) Manufacture of semiconductor device
KR19990060858A (en) Device Separator Formation Method of Semiconductor Device
JPH0726843Y2 (en) Semiconductor element isolation structure
JPS6084832A (en) Manufacture of semiconductor device
JPS63153864A (en) Manufacture of mos semiconductor device
KR0151607B1 (en) A field oxide film forming method of a semiconductor device
KR0183971B1 (en) Semiconductor element isolation method
JPH06163531A (en) Formation of element isolation region in semiconductor
JPH01162351A (en) Manufacture of semiconductor device
JPS63253650A (en) Manufacture of semiconductor device