JPH02239621A - Vacuum chuck device - Google Patents

Vacuum chuck device

Info

Publication number
JPH02239621A
JPH02239621A JP6011689A JP6011689A JPH02239621A JP H02239621 A JPH02239621 A JP H02239621A JP 6011689 A JP6011689 A JP 6011689A JP 6011689 A JP6011689 A JP 6011689A JP H02239621 A JPH02239621 A JP H02239621A
Authority
JP
Japan
Prior art keywords
suction plate
bump
wafer
suction
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6011689A
Other languages
Japanese (ja)
Inventor
Koji Nakamura
幸次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6011689A priority Critical patent/JPH02239621A/en
Publication of JPH02239621A publication Critical patent/JPH02239621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To obtain a vacuum chuck device capable of easily realizing the accuracy of desired thickness at the time of grinding working by forming a bump relief coinciding with the pattern of the bump of a semiconductor wafer to the surface of a suction plate to which a suction surface is shaped. CONSTITUTION:Bump reliefs 5 coinciding with the patterns of bumps 2 formed to a semiconductor wafer 1 and having depth deeper than the height of the bumps 2 are shaped to the surface of a suction plate 14 composed of a metallic plate. A film 3 in thickness of approximately 50-60mum is stuck uniformly onto a plane consisting of the surface of the suction plate 14 and the top face of a retaining ring 7 in order to relax a shock to the wafer 1 at the time of grinding working and protect an element shaped onto the wafer 1. When a vacuum pump 10 is started, air in spaces formed by the wafer 1 and the reliefs 5 is sucked into a sealed space from suction holes 6, and the wafer 1 is sucked and held firmly under the state in which the whole surface on the bump side except the bumps 2 is abutted against the surface of the film. Accordingly, the accuracy of the thickness of the wafer 1 in grinding working can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、バンプが形成された半導体ウェーハの裏面
研削加工時に咳ウェーハを吸着面に吸引,保持する真空
チャック装lであって、平面に形成されて吸着面を形成
する表面と裏面との間が細孔を介して連通ずる吸着板と
、該吸着板を周縁部で支持するとともに該吸着板の裏面
側に該裏面を壁面の一部とする密閉空間を形成するテー
ブルと、前記密閉空間内の圧力を真空圧に減圧する真空
ポンプとを備え、該真空ポンプを運転して前記密閉空間
の圧力を真空圧に減圧しつつバンプが形成された半導体
ウェーハをパンブ側の面を吸引して前記吸着板の表面に
吸着する真空チャック装置に関する.ここで、上記バン
プは、半導体基板上に形成された金属膜に外部のリード
線を接続するために該金属膜に接合して形成されたパッ
ドであり、?部リード線との接合部がはんだであるはん
だバンプの場合には例えば第7図のような断面構造を有
する.図において、符号20はシリコン基板を示し、こ
の基板上に形成されたSiO■絶縁膜2la上にMから
なる金属膜22が形成され、この金属膜22上に形成さ
れたSing絶縁膜2lbに形成された孔の位置で、金
属膜22上に、S101絶縁膜との接合性も良好なCr
層23と、Cr/Cu層24とが順に形成され、最上部
に外部リード線に融着されるPb−Snすなわちはんだ
座25が形成されている. 〔従来の技術〕 第5図に従来の真空チャック装置の構成例と、この装置
構成によるはんだバンプ付き半導体ウェーハの吸着方法
とを示す.多孔質セラミックス板または吸引孔を有する
金属板(図は多孔賞セラミックス板の場合を示す)から
なる吸着板4の上面は平面に形成され、テーブル8の周
壁上面に固設された保持リング7に嵌め込まれている.
保持リング7は上面が吸着板4の上面と同一平面を形成
するよう、吸着板4と同じ厚さに形成されている.テー
ブル8の周壁により吸着板裏面側には該裏面を壁面の一
部とする密閉空間8aが形成され、この密閉空間8aは
排気管8bを介して真空ボンプ10の排気空間に連通し
ている.なお、図中の符号9はテーブル8を回転駆動す
るためのモータであり真空チャック装置の一部を構成す
る. このような装置構成ではんだバンプ2が形成された半導
体ウェーハ1を吸着板4の上面に吸着する際、半導体ウ
エーハ1を直接吸着しようとしても、はんだバンプが存
在するため、吸着板との間にギャップが形成され、真空
ポンプ10により減圧された密閉空間8a内へ吸い込ま
れる吸着板上面側の空気がこのギャップを自由に通過し
、半導体ウェーハ1のバンプ側の面に半導体ウェーハ裏
面側を研削加工可能に保持しうる負圧を生じない.この
ため、粘着シ一ト11をはんだバンプが形成されている
面に貼り付け、この粘着シートを介して真空吸着し、裏
面加工を行っていた. なお、粘着シートを用いた裏面研削加工は、バンプが形
成されていない通常の半導体ウエーハにおいても、加工
時の衝撃の緩和とウェーハ面に形成されている素子の保
護とのために一般に行われている. C発明が解決しようとする課題〕 バンプが形成された半導体ウェーハを粘着シートを介し
て平面をなす吸着面に吸着する際の問題点は次の通りで
ある.すなわち、粘着シートを介して吸着面に吸着する
際に、第6図の拡大図に示すように、バンプを介して半
導体ウェーハのバンプまわりが相対的に上方へ押し退け
られ、このため半導体ウェーハと粘着シートとの接触面
積が減少し、最悪の場合には、接線方向すなわち研削面
方向の研削力によりウェーハが飛ばされてしまうことが
ある.さらに、吸着板の表面は研削加工時の寸法基準面
となるため、この面に倣って各バンプの頂点が粘着シー
トを介して吸着板に押し付けられる.従って、バンプの
高さにばらつきがある場合には、このばらつきが半導体
ウェーハの厚さの精度(厚さの絶対値および面内の厚さ
のばらつき)に影響を与え、目的とする加工精度を得る
ことが困難であワた. この発明の月的は、バンプが形成された半導体ウェーハ
のバンプ側の面を、ウェーハ裏面の研削加工に十分な強
さに吸着板表面に吸引,保持することができかつ、研削
加工時の所望の厚さ精度を容易に実現しうる真空チャッ
ク装置を提供することである. 〔課題を解決するための手段〕 上記課題を解決するために、この発明においては、平面
に形成されて吸着面を形成する吸着板表面に半導体ウェ
ーハのバンプのパターンと合致するバンプ逃げ溝を形成
するものとする.なお、吸着板表面をバンプ逃げ溝を除
いてフィルムにより密に覆うようにしても良い.また、
吸着板は多孔性の硬質プラスティックスで形成しても良
い.〔作用〕 このように、吸着面を形成する吸着板表面にバンプの逃
げ溝を形成すると、半導体ウェーハのバンプ側の面を吸
引したときにバンプがバンプ逃げ溝にはまり込み、半導
体ウェーハのバンプ側の面が全面、吸着板表面に密着し
た状態に吸引され、吸着板に強固に保持されるとともに
、バンプの高さにばらつきがあってもこのばらつきの影
響がなくなり、所望の厚さ精度の研削加工が容易に可能
となる.吸着板表面をバンプ逃げ溝を除いてフィルムに
より密に覆うと、研削加工時のウェーハへの衝撃が緩和
される.また吸着板を多孔性の硬質プラスティックスで
形成すると、吸着板に占める細孔部分の面積が小さくな
り、ウェーハ全面が吸着板により強固に吸着される. 〔実施例〕 第1図および第2図に本発明の第1の実施例を示す.図
中、第5図と同一の部材には同一符号を付し、説明を省
略する.金属板からなる吸着板14の表面には、第2図
に示すように、半導体ウエーハ1に形成されたバンプ2
のパターンと合致する,深さがバンプ2の高さよりも深
いバンプ逃げ溝5が形成され、この吸着板表面と保持リ
ング7の上面とからなる平面には、研削加工時のウエー
ハへの衝撃の緩和とウェーハ上に形成された素子の保護
とのため、バンプ逃げ溝5を除いて厚さが50〜601
rIl程度のフィルム3が一様に貼られている。真空ポ
ンプ10を起動させると、半導体ウェーハ1とバンプ逃
げ溝5とにより形成されている空間内の空気が吸引孔6
から密閉空間8a内に吸入され、半導体ウェーハ1はバ
ンプを除くバンプ側の面全面をフィルム面に当接させた
状態に強固に吸引,保この実施例が第1の実施例と異な
るところは、吸着板15を多孔性の硬質プラスティック
スで形成し、また金属板との硬さのちがいからフィルム
を省略した点である.この場合には、第1の実施例と比
較し、半導体ウェーハ1のバンプ側の面全面がより均一
に吸着力を受け、より強固に吸着板表面に吸着される. 〔発明の効果〕 以上に述べたように、本発明によれば、吸着面を形成す
る吸着板表面に半導体ウェーハのバンプのパターンと合
致するバンプ逃げ溝を形成したので、半導体ウェーハが
バンプ側の面全面が吸着板表面に密着した状態に吸引さ
れ、バンプの高さにばらつきがあってもこの影響を受け
ることなく安定した,強力な吸着力が得られるとともに
、裏面研削加工における半導体ウェー八の厚さ精度を向
上させることが容易に可能となる.さらに、従来のよう
に粘着シートを用いないので、加工後の剥離作業も不要
となる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a vacuum chuck device for sucking and holding a wafer on a suction surface during backside grinding of a semiconductor wafer on which bumps are formed. A suction plate in which the front surface and the back surface that are formed to form a suction surface communicate with each other through pores, and the suction plate is supported at the peripheral edge and the back surface is attached to a part of the wall surface on the back side of the suction plate. a table that forms a sealed space, and a vacuum pump that reduces the pressure in the sealed space to vacuum pressure, and the bump is formed while operating the vacuum pump to reduce the pressure in the sealed space to vacuum pressure. The present invention relates to a vacuum chuck device that sucks a semiconductor wafer that has been processed by vacuum onto the surface of the suction plate by suctioning the pan side surface. Here, the bump is a pad formed on a metal film formed on a semiconductor substrate in order to connect an external lead wire to the metal film, and ? For example, in the case of a solder bump whose joint with a lead wire is made of solder, it has a cross-sectional structure as shown in Fig. 7, for example. In the figure, reference numeral 20 indicates a silicon substrate, a metal film 22 made of M is formed on a SiO2 insulating film 2la formed on this substrate, and a Sing insulating film 2lb formed on this metal film 22 is formed. At the position of the hole, a Cr layer with good bonding properties with the S101 insulating film is placed on the metal film 22.
A layer 23 and a Cr/Cu layer 24 are formed in this order, and a Pb-Sn or solder seat 25 is formed at the top to be fused to an external lead wire. [Prior Art] Fig. 5 shows an example of the configuration of a conventional vacuum chuck device and a method of suctioning a semiconductor wafer with solder bumps using this device configuration. The upper surface of the suction plate 4, which is made of a porous ceramic plate or a metal plate with suction holes (the figure shows the case of a porous ceramic plate), is formed into a flat surface, and is attached to a retaining ring 7 fixed to the upper surface of the peripheral wall of the table 8. It is embedded.
The retaining ring 7 is formed to have the same thickness as the suction plate 4 so that its upper surface forms the same plane as the upper surface of the suction plate 4. A closed space 8a is formed on the back side of the suction plate by the peripheral wall of the table 8, with the back surface being part of the wall, and this closed space 8a communicates with the exhaust space of the vacuum pump 10 via an exhaust pipe 8b. Note that the reference numeral 9 in the figure is a motor for rotating the table 8, and constitutes a part of the vacuum chuck device. When the semiconductor wafer 1 on which the solder bumps 2 are formed is suctioned onto the upper surface of the suction plate 4 with such an apparatus configuration, even if an attempt is made to directly suction the semiconductor wafer 1, the presence of the solder bumps causes a gap between the suction plate and the suction plate. A gap is formed, and the air on the upper surface side of the suction plate sucked into the sealed space 8a, which is depressurized by the vacuum pump 10, freely passes through this gap, and the back side of the semiconductor wafer 1 is ground on the bump side surface of the semiconductor wafer 1. Does not create negative pressure that can be maintained. For this reason, an adhesive sheet 11 was attached to the surface on which the solder bumps were formed, and vacuum suction was carried out through this adhesive sheet to process the back surface. Note that backside grinding using an adhesive sheet is generally performed even on normal semiconductor wafers without bumps, in order to cushion the impact during processing and protect the elements formed on the wafer surface. There is. Problems to be Solved by the Invention C] The problems when adhering a semiconductor wafer with bumps to a flat adsorption surface via an adhesive sheet are as follows. That is, when the semiconductor wafer is attracted to the suction surface through the adhesive sheet, as shown in the enlarged view of FIG. The contact area with the sheet decreases, and in the worst case, the wafer may be blown away by the grinding force in the tangential direction, that is, the direction of the grinding surface. Furthermore, since the surface of the suction plate serves as a dimensional reference surface during the grinding process, the top of each bump is pressed against the suction plate via the adhesive sheet, following this surface. Therefore, if there is variation in bump height, this variation will affect the accuracy of the thickness of the semiconductor wafer (absolute thickness value and in-plane thickness variation), and the desired processing accuracy will be achieved. It was difficult to obtain. The main feature of this invention is that the bump-side surface of a semiconductor wafer on which bumps are formed can be suctioned and held on the suction plate surface with sufficient strength for grinding the back surface of the wafer, and that The purpose of the present invention is to provide a vacuum chuck device that can easily achieve thickness accuracy of . [Means for Solving the Problems] In order to solve the above problems, in the present invention, bump relief grooves that match the bump pattern of the semiconductor wafer are formed on the surface of the suction plate which is formed into a flat surface and forms a suction surface. It shall be. Note that the surface of the suction plate may be covered tightly with a film, except for the bump relief grooves. Also,
The suction plate may be made of porous hard plastic. [Function] In this way, when the bump relief groove is formed on the surface of the suction plate that forms the suction surface, when the bump side surface of the semiconductor wafer is sucked, the bump gets stuck in the bump relief groove, and the bump side of the semiconductor wafer is sucked. The entire surface of the bump is suctioned in close contact with the surface of the suction plate, and is firmly held on the suction plate, and even if there is variation in bump height, the influence of this variation is eliminated, allowing grinding with the desired thickness accuracy. Processing becomes possible easily. By densely covering the surface of the suction plate with a film, except for the bump relief grooves, the impact on the wafer during grinding is alleviated. Furthermore, when the suction plate is made of porous hard plastic, the area occupied by the pores on the suction plate becomes smaller, and the entire surface of the wafer is firmly adsorbed by the suction plate. [Embodiment] Figures 1 and 2 show a first embodiment of the present invention. In the figure, the same members as in FIG. 5 are designated by the same reference numerals, and their explanations will be omitted. As shown in FIG. 2, bumps 2 formed on the semiconductor wafer 1 are formed on the surface of the suction plate 14 made of a metal plate.
A bump relief groove 5 is formed which is deeper than the height of the bump 2 and matches the pattern shown in FIG. For relaxation and protection of elements formed on the wafer, the thickness is 50 to 60 mm excluding the bump relief groove 5.
A film 3 of about rIl is uniformly pasted. When the vacuum pump 10 is started, the air in the space formed by the semiconductor wafer 1 and the bump escape groove 5 flows into the suction hole 6.
The semiconductor wafer 1 is sucked into the sealed space 8a, and the semiconductor wafer 1 is strongly sucked and held in a state in which the entire surface of the bump side excluding the bumps is in contact with the film surface. This embodiment differs from the first embodiment in the following points. The suction plate 15 is made of porous hard plastic, and the film is omitted due to the difference in hardness from the metal plate. In this case, compared to the first embodiment, the entire surface of the semiconductor wafer 1 on the bump side receives the suction force more uniformly and is more firmly adsorbed to the surface of the suction plate. [Effects of the Invention] As described above, according to the present invention, bump relief grooves that match the bump pattern of the semiconductor wafer are formed on the surface of the suction plate forming the suction surface, so that the semiconductor wafer is The entire surface of the suction plate is suctioned in close contact with the surface of the suction plate, and even if there are variations in bump height, a stable and strong suction force is obtained without being affected by this. This makes it easy to improve thickness accuracy. Furthermore, since an adhesive sheet is not used as in the past, there is no need for peeling work after processing.

また、第1の実施例のように、吸着板を金属製とするか
,あるいはセラミックス製とし、バンプ逃げ溝を除く部
分をフィルムにより密に覆うことにより、高い平面度を
有する,剛性の高い吸着面を形成することができ、大口
径の半導体ウェーハを衝撃を与えることなく高い厚さ精
度で研削加工可能な真空チャック装置とすることができ
る.また、第2の実施例のように、吸着板を多孔性の硬
質プラスティックスで形成すれば、ウヱーハの直接的な
吸引面積が大きくなり、ウエーハをより強固に吸着する
ことができる.また、吸着板がプラステイフクス製であ
ることから研削加工時の衝撃が緩和され、ウェーハ面上
の素子が傷つけられることもなくなるため、吸着面のフ
ィルムが不要となり、真空チャック装置の形成がS易と
なるメリットが生じる.
In addition, as in the first embodiment, the suction plate is made of metal or ceramics, and the portions other than the bump relief grooves are tightly covered with a film, so that the suction plate has high flatness and high rigidity. A vacuum chuck device that can grind large-diameter semiconductor wafers with high thickness accuracy without applying impact can be created. Furthermore, if the suction plate is made of porous hard plastic as in the second embodiment, the direct suction area for the wafer will be increased, and the wafer can be more firmly suctioned. In addition, since the suction plate is made of Plastifux, the impact during the grinding process is alleviated and the elements on the wafer surface are not damaged, so there is no need for a film on the suction surface, and the formation of the vacuum chuck device is simplified. This has the advantage of making it easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例による真空チャック装置
の要部構成を示す断面図、第2図は第1図における吸着
板の上面図、第3図は本発明の第2の実施例による真空
チャック装置の要部構成を示す断面図、第4図は第3図
における吸着板の上面図、第5図は従来の真空チャック
装置要部の構成例を示す断面図、第6図は第5図に示す
真空チャック装置によるはんだバンプ付き半導体ウェー
ハ吸着時のバンプまわりの状態を示す拡大断面図、第7
図ははんだバンプの断面構造例を示す断面図である. 1:半導体ウェーハ、2:バンプ、3:フィルム、4,
14.15  :吸着板、5:バンプ逃げ溝、6:吸引
孔(細孔)  8:テーブル、8a:密閉空間、第 l 図 第2図 第3図 第 図
FIG. 1 is a sectional view showing the configuration of main parts of a vacuum chuck device according to a first embodiment of the present invention, FIG. 2 is a top view of the suction plate in FIG. 1, and FIG. 3 is a second embodiment of the present invention. 4 is a top view of the suction plate in FIG. 3; FIG. 5 is a sectional view showing an example of the configuration of the main parts of a conventional vacuum chuck device; FIG. 7 is an enlarged sectional view showing the state around the solder bumps when the semiconductor wafer with solder bumps is attracted by the vacuum chuck device shown in FIG.
The figure is a cross-sectional view showing an example of the cross-sectional structure of a solder bump. 1: semiconductor wafer, 2: bump, 3: film, 4,
14.15: Adsorption plate, 5: Bump escape groove, 6: Suction hole (pore) 8: Table, 8a: Closed space, Figure l Figure 2 Figure 3 Figure

Claims (1)

【特許請求の範囲】 1)平面に形成されて吸着面を形成する表面と裏面との
間が細孔を介して連通する吸着板と、該吸着板を周縁部
で支持するとともに該吸着板の裏面側に該裏面を壁面の
一部とする密閉空間を形成するテーブルと、前記密閉空
間内の圧力を真空圧に減圧する真空ポンプとを備え、該
真空ポンプを運転して前記密閉空間の圧力を真空圧に減
圧しつつバンプが形成された半導体ウェーハをバンプ側
の面を吸引して前記吸着板の表面に吸着する真空チャッ
ク装置において、前記吸着板の表面に前記半導体ウェー
ハのバンプのパターンと合致するバンプ逃げ溝が形成さ
れたことを特徴とする真空チャック装置。 2)請求項第1項に記載の真空チャック装置において、
吸着板の表面がバンプの逃げ溝を除いてフィルムにより
密に覆われていることを特徴とする真空チャック装置。 3)請求項第1項に記載の真空チャック装置において、
吸着板が多孔性の硬質プラスティックスで形成されてい
ることを特徴とする真空チャック装置。
[Scope of Claims] 1) A suction plate that is formed into a plane and has a front surface and a back surface that communicate with each other through pores, and a suction plate that supports the suction plate at its peripheral edge and that A table that forms a sealed space with the back surface as part of the wall on the back side, and a vacuum pump that reduces the pressure in the sealed space to vacuum pressure, and operates the vacuum pump to reduce the pressure in the sealed space. In a vacuum chuck device that sucks a bump-side surface of a semiconductor wafer on which bumps are formed while reducing the pressure to a vacuum pressure, and sucks the semiconductor wafer onto the surface of the suction plate, the bump pattern of the semiconductor wafer is formed on the surface of the suction plate. A vacuum chuck device characterized in that matching bump escape grooves are formed. 2) In the vacuum chuck device according to claim 1,
A vacuum chuck device characterized in that the surface of the suction plate is densely covered with a film except for the escape grooves of the bumps. 3) In the vacuum chuck device according to claim 1,
A vacuum chuck device characterized in that a suction plate is made of porous hard plastic.
JP6011689A 1989-03-13 1989-03-13 Vacuum chuck device Pending JPH02239621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6011689A JPH02239621A (en) 1989-03-13 1989-03-13 Vacuum chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6011689A JPH02239621A (en) 1989-03-13 1989-03-13 Vacuum chuck device

Publications (1)

Publication Number Publication Date
JPH02239621A true JPH02239621A (en) 1990-09-21

Family

ID=13132829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6011689A Pending JPH02239621A (en) 1989-03-13 1989-03-13 Vacuum chuck device

Country Status (1)

Country Link
JP (1) JPH02239621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510334A (en) * 2000-09-27 2004-04-02 ストラスバウ Method for back-polishing a wafer while leaving a back polishing tape on the chuck
US7135124B2 (en) * 2003-11-13 2006-11-14 International Business Machines Corporation Method for thinning wafers that have contact bumps
JP2011029300A (en) * 2009-07-23 2011-02-10 Disco Abrasive Syst Ltd Chuck table of grinding device
WO2013049476A1 (en) * 2011-09-30 2013-04-04 Electro Scientific Industries, Inc. Controlled surface roughness in vacuum retention
JP2015229206A (en) * 2014-06-04 2015-12-21 株式会社ディスコ Holding jig and method for processing plate-like material
US9224712B2 (en) 2014-02-11 2015-12-29 International Business Machines Corporation 3D bond and assembly process for severely bowed interposer die

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510334A (en) * 2000-09-27 2004-04-02 ストラスバウ Method for back-polishing a wafer while leaving a back polishing tape on the chuck
US7135124B2 (en) * 2003-11-13 2006-11-14 International Business Machines Corporation Method for thinning wafers that have contact bumps
JP2011029300A (en) * 2009-07-23 2011-02-10 Disco Abrasive Syst Ltd Chuck table of grinding device
WO2013049476A1 (en) * 2011-09-30 2013-04-04 Electro Scientific Industries, Inc. Controlled surface roughness in vacuum retention
CN103843127A (en) * 2011-09-30 2014-06-04 电子科学工业有限公司 Controlled surface roughness in vacuum retention
US8960686B2 (en) 2011-09-30 2015-02-24 Electro Scientific Industries, Inc. Controlled surface roughness in vacuum retention
US9224712B2 (en) 2014-02-11 2015-12-29 International Business Machines Corporation 3D bond and assembly process for severely bowed interposer die
JP2015229206A (en) * 2014-06-04 2015-12-21 株式会社ディスコ Holding jig and method for processing plate-like material

Similar Documents

Publication Publication Date Title
KR102541126B1 (en) Electrostatic attachment chuck, method for manufacturing the same, and semiconductor device manufacturing method
JP2004510334A5 (en)
JP2001035817A (en) Method of dividing wafer and manufacture of semiconductor device
JP2000353682A (en) Method for cutting semiconductor protecting tape
JPH09321001A (en) Method for polishing semiconductor wafer
JPH02239621A (en) Vacuum chuck device
JPS6022500B2 (en) Positioning and mounting method
JP2006303329A (en) Thin plate working method of silicon substrate and working apparatus used for it
JPH08330401A (en) Wafer chuck
JP2004283936A (en) Vacuum sucking device
JP2010137349A (en) Chuck table for wafer and wafer processing apparatus
JP2002151580A (en) Wafer holding jig and method for manufacturing the same
US8206198B2 (en) Wafer grinding machine and wafer grinding method
JP7488116B2 (en) Electrode Formation Method
JP3803214B2 (en) Manufacturing method of semiconductor device
JP2004022899A (en) Process for machining thin silicon wafer
JP2538511B2 (en) Holding plate for polishing semiconductor substrates
JPS6133831A (en) Vacuum adsorption device
TWI700148B (en) Chuck table, grinding device and manufacturing method of grinding product
JPH08274286A (en) Manufacture of soi substrate
JPH0253558A (en) Suction jig
JPH04206930A (en) Chuck for polishing semiconductor wafer
JP2005150371A (en) Grinding method and grinder of substrate
JP2009239194A (en) Method of processing semiconductor wafer
JPS60238246A (en) Vacuum suction block