JPH02239127A - Quartz glass base material for light transmission body, quartz glass lump for mainly producing this base material and light transmission body formed by using this base material - Google Patents

Quartz glass base material for light transmission body, quartz glass lump for mainly producing this base material and light transmission body formed by using this base material

Info

Publication number
JPH02239127A
JPH02239127A JP5606489A JP5606489A JPH02239127A JP H02239127 A JPH02239127 A JP H02239127A JP 5606489 A JP5606489 A JP 5606489A JP 5606489 A JP5606489 A JP 5606489A JP H02239127 A JPH02239127 A JP H02239127A
Authority
JP
Japan
Prior art keywords
distribution
concentration
base material
quartz glass
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5606489A
Other languages
Japanese (ja)
Other versions
JPH075332B2 (en
Inventor
Shigeru Yamagata
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5606489A priority Critical patent/JPH075332B2/en
Publication of JPH02239127A publication Critical patent/JPH02239127A/en
Publication of JPH075332B2 publication Critical patent/JPH075332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To effectively suppress the fluctuation in refractive index by combining the OH group concn. distribution and C concn. distribution formed along a prescribed sectional direction and the virtual temp. distribution formed along the sectional direction by heating and cooling treatments. CONSTITUTION:Circular cylindrical synthetic quartz glass 1' is produced while high-purity silicon tetrachloride is brought into reaction in an oxyhydrogen flame by an oxyhydrogen flame hydrolysis method and the mixing ratios of both gases are adjusted to control the refractive index distribution added with the refractive index distribution determined by the OH group concn. in the section orthogonal with the circular columnar axis and the refractive index distribution determined by the Cl concn. in such a manner that as to attain the curve which indicates the max. value in the central area and indicates the value gently decreasing toward the outer edge part. The produced synthetic quartz glass is cut along the inside of the section orthogonal with the symmetrical axis of the OH group concn. and Cl concn. distribution to form the quartz glass stock lump 1. This stock lump is held at a specified temp. for a prescribed period of time in an electric furnace and is slowly cooled while the difference in the virtual temp. distribution is so controlled as to attain in the prescribed difference. The highly homogeneous glass base material which is small in the fluctuation width of the refractive index is obtd. in this way.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高出力の赤外光、可視光、紫外光に対し高均
質性と耐久性を保証し得るレンズ、ウィンドウ、ミラー
、プリズム、フィルター等の光透過体、該透過体を製造
する為の光透過体用ガラス母材,該母材を製造する為の
石英ガラス素塊に係り、特にエキシマレーザ発振装置,
リソグラフィー用レーザ露光装置.レーザCVD装置、
レーザ加工装置、レーザ医療装置等の紫外線波長域のレ
ーザを利用した各種装置に用いるレーザ光用透過体とし
て好適な光透過体と、該透過体を製造する為の母材、及
び主として母材の出発材として機能する石英ガラス素塊
に関する. 「従来の技術」 高純度の石英ガラスは他の光学ガラスに比較して光透過
率が高く且つ歪のない高均質なレンズやミラ一部材等の
光学用光透過体を得る膚が出来る為に、リソグラフィー
用レーザ露光装置その他の高解像度を必要とする各種装
置の光透過体として多用されている. そしてこの種の光透過体を製造する為の母材は一般によ
り高純度化を図る為に、例えば四塩化珪素を酸水素炎中
で反応させて形成される合成石英ガラスを用い、該合成
石英ガラスを略円柱状,円板状、又は球状等の所望形状
に成型した後、1000℃前後の高温で加熱し、ついで
徐冷を行う事により内部歪を除去し均質化を図っている
.(尚、本願では加熱一徐冷前後の石英ガラス塊の状態
を区別する為に、加熱一徐冷前のガラス塊を石英ガラス
素塊、加熱一徐冷後必要に応じてその周縁域位を研削し
て半製品化されたガラス魂を石英ガラス母材として呼称
し、更に該母材を用いてレンズ、ウインド、エタロン板
等に製品化又は半製品化したものを光透過体と呼称する
.)しかしながら例え前記徐冷速度を極力遅くしても,
外気と接する周縁側と中心域位側の除冷速度を均一化し
ながら徐冷する事は不可悌であり、該徐冷中高温状態に
あるガラス素塊の中心域より周縁域の冷却速度が必然的
に早くなってしまい、いわゆる中心城より周縁側に向け
同心状にして且つその断面内における仮想温度( F 
ictve tempertuve)分布が中心域から
外縁部に向ってなめらかに大きくなる仮想温度値を示す
、上に凹型の曲線となってしまう. 尚、室温における石英ガラスの密度屈折率等の特性値は
そのガラスが過去に高温度域にてなじまされた時の温度
条件によって決定されていると推定される.そしてこの
特性値が決定された時の温度を仮想温度という。
Detailed Description of the Invention "Field of Industrial Application" The present invention is directed to lenses, windows, mirrors, prisms, and Light transmitting bodies such as filters, glass base materials for light transmitting bodies for manufacturing said transmitting bodies, and quartz glass blocks for manufacturing said base materials, especially excimer laser oscillation devices,
Laser exposure equipment for lithography. laser CVD equipment,
A light transmitting body suitable as a transmitting body for laser light used in various devices using lasers in the ultraviolet wavelength range such as laser processing equipment and laser medical devices, a base material for manufacturing the transmitting body, and a base material mainly for the base material. Concerning silica glass blocks that function as starting materials. ``Prior art'' High purity quartz glass has a higher light transmittance than other optical glasses, and is highly homogeneous without distortion, making it possible to obtain optical light transmitting materials such as lenses and mirror materials. It is widely used as a light transmitting material in laser exposure equipment for lithography and various other devices that require high resolution. The base material for producing this type of light transmitting material is generally synthetic quartz glass, which is formed by reacting silicon tetrachloride in an oxyhydrogen flame, in order to achieve higher purity. After molding glass into a desired shape such as a cylinder, disk, or sphere, it is heated at a high temperature of around 1000°C, and then slowly cooled to remove internal distortion and achieve homogenization. (In this application, in order to distinguish the state of the quartz glass lump before and after heating and slow cooling, the glass lump before heating and slow cooling is referred to as the quartz glass block, and after heating and slow cooling, the peripheral area is The glass soul that has been ground and made into a semi-finished product is called a quartz glass base material, and the product or semi-finished product made from this base material into lenses, windows, etalon plates, etc. is called a light transmitting body. ) However, even if the slow cooling rate is as slow as possible,
It is impossible to perform gradual cooling while equalizing the cooling rate on the peripheral side and the central area side that are in contact with the outside air, and it is inevitable that the cooling rate in the peripheral area is faster than that in the central area of the glass block, which is in a high temperature state during the slow cooling. The fictive temperature ( F
The ictve temperature distribution becomes an upwardly concave curve that indicates a fictive temperature value that increases smoothly from the center region toward the outer edge. It is assumed that the density refractive index and other characteristic values of quartz glass at room temperature are determined by the temperature conditions under which the glass was acclimated in the past at high temperatures. The temperature at which this characteristic value is determined is called the fictive temperature.

そして前記のような仮想温度分布差が生じたまま室温状
態にまで冷却すると、組成上理想的に均一なガラス素塊
を用いて前記加熱一途冷処理を行ったとしても、該処理
により形成されたガラス母材の屈折率分布は前記仮想温
度分布に依存してしまう為に、ガラス塊の中心域より周
縁域の屈折率の方が大きい、軸対称で且つ凹型の曲線状
の屈折率分布が生じてしまう. 従って前記石英ガラス母材の屈折率分布の均一化を図る
為には、石英ガラスの合成による高純度化とともに,そ
の後における前記熱処理時における仮想温度分布の平坦
化を図らねばならないが、特に仮想温度分布の平坦化に
ついては熱処理炉の改良や熱処理温度プログラムの改善
等を図っても,徐冷速度を実質的に無限大に近づけるの
が不可能である以上,その改善には限界があり、結果と
して前記屈折率分布の均質化を図るのは極めて困難であ
る. 一方近年、LSIの高集積化が進むに伴い露光波長の短
波長化により、より高解像化を図ったリソグラフィー用
レーザ露光装置が提案されているが、前記のような短波
長レーザ光(193〜308 nm)特にエキシマレー
ザ光を用いた光透過体の屈折率の均一性は従来の水銀灯
の使用波長であるg線(4313 n■)或いはi線(
385 nm)の場合に比較して1桁以上高いものが要
求ざれるが、前記のように光学的均質性の低い石英ガラ
ス母材から製造された光透過体では高い屈折率の均一性
を得る事は出来ない為に、微細且つ鮮明な線画像の露光
が不可俺になる. 「発明が解決しようとする課題」 かかる欠点を解消する為に本発明者達は先に、前記加熱
一途冷処理により生じる仮想温度分布の変動幅を許容し
つつ、該仮想温度分布と少なくとも一つの所定断面方向
に沿って形成したOH基濃度分布を効果的に組み合わせ
る車により、前記OH基濃度分布と仮想温度分布夫々に
起因して発生する屈折率変動を互いに相殺し、結果とし
て前記断面方向における屈折率分布の変動幅を抑制した
技術を提案している(特願昭83−254875号)が
、本発明者達は更に研究及び実験を繰り返した結果、よ
り一層屈折率分布の変動を抑制し得る光透過体を開発し
得た. 即ち本発明は、短波長レーザ光(183〜308 nm
)特に高出力のエキシマレーザ光を利用した各種装置に
用いるレーザ光用透過体として極めて好適な光透過体、
該透過体を製造する為の母材、及び主として母材の出発
材として機能する石英ガラス素塊を提供する事を目的と
する.[課題を解決する為の手段J 本発明は、屈折率分布の変動要因たる仮想温度差やOH
基その他の不純物濃度差夫々を極力Oに近付けて、光透
過体における屈折率の高均一性を得るのではなく、逆に
前記変動要因の温度差又は濃度差を実質的にO、特に仮
想温度差を実質的にOにする事が不可能である為に、前
記変動要因の温度差又は濃度差の発生を許容しつつその
分布状態を夫々適切に規制する事により、前記夫々の分
布状態に起因して発生する屈折率変動を互いに相殺し、
結果として少なくともーの断面方向における屈折率分布
の変動幅を抑制した点については前記先願技術と同様で
ある. 即ち前記先願発明は,仮想温度差に依存して変動する屈
折率を抑制する為にOH基濃度分布を効果的に組み合わ
せているが、特に合成石英ガラスの製造過程では、高純
度の四塩化珪素を酸水素炎中で反応させながら合成石英
ガラスを製造している為に、結果としてOH基とともに
前記屈折率分布にも影響を与えるCl基も多数存在する
為に、これを無視して屈折率変動の抑制を図る事は困難
である. そこで木発明は、屈折率の変動の大きな変動要素となり
易い前記OH基とCl濃度分布及び仮想温度夫々の変動
に着目して、その変動分布を規制する事により前記先願
発明より更に効果的に屈折率変動の抑制を図る事を可能
にしたものである.即ち本発明は第1図に示すように,
 OH基濃度分布とCl濃度分布を、母材中心域から周
縁域に移行するに連れ変位点が生じる事なく順次変化す
るようにした合成石英ガラスを製造し、必要に応じ該石
英ガラスを前記濃度分布と平行する面内に沿って切断し
て円柱状、円板状または球状素塊を形成した後、該素塊
を、前記両濃度分布に依存して形成される屈折率分布(
B)と対応する断面方向に形成される仮想温度分布をも
って加熱一放冷処理をする事により、前記夫々の変動要
素に起因して発生する屈折率分布変動(B , C)を
互いに相殺し、この結果高均一性の屈折率分布(A)を
有する石英ガラス母材を得る事が出来るものである. そして、本発明は前記石英ガラス母材のみならず,主と
して母材の出発材として機能する石英ガラス素塊、及び
前記母材に基づいて製造された光透過体夫々においてク
レーム化し、前記目的を達成する為に必要な技術思想の
明瞭化を図っている. 「作用」 本発明の作用を第1図に基づいて詳細に説明する. 前記したように高純度で且つ均一組成の合成石英ガラス
素塊を用いて加熱一途冷処理を行った場合は,屈折率分
布は前記仮想温度分布に依存してしまう為に、ガラス塊
の中心域より周縁域のに移行するに連れ順次屈折率が大
である曲線、例えば(C)に示すような軸対称で且つ凹
型曲線状の屈折率分布が生じてしまう. そこで前記屈折率分布を相殺し,(A)に示すような平
坦な屈折率分布を得る為には、加熱処理前の石英ガラス
素塊の屈折率分布をCB)のような、母材中心域から周
縁城に移行するに連れ順次小になるよう軸対称で且つ凸
型曲線状の分布形状にすればよい. 即ち請求項5)において提案する石英ガラス素塊は前記
着眼に基づくものであり50H基濃度分布とClg度分
布を、母材中心城から周縁城に移行するに連れ変位点が
生じる事なく順次変化させ,これにより前記断面内にお
ける屈折率分布をCB)のような分布形状にした点にあ
る. 尚OH基濃度分布と屈折率分布は第1図に示すように逆
比例関係にあり、又Cl濃度分布と屈折率分布は正比例
関係にある為に,第1図No.1,No.2及びNO.
3に示すようにその組み合わせ及び曲率カーブを任意に
設定する事により、前記仮想温度分布に依存する屈折率
分布(C)に対応する屈折率分布(B)形成が容易であ
り、これにより本願の効果を円滑に達成する事が可能と
なる。
If the above-described difference in fictive temperature distribution occurs and the glass is cooled to room temperature, even if the heating and cooling treatment is performed using an ideally uniform glass ingot, the Since the refractive index distribution of the glass base material depends on the above-mentioned fictive temperature distribution, an axially symmetrical and concave curved refractive index distribution occurs in which the refractive index of the peripheral region is larger than that of the central region of the glass lump. I end up. Therefore, in order to make the refractive index distribution of the quartz glass base material uniform, it is necessary to improve the purity by synthesizing the quartz glass and to flatten the fictive temperature distribution during the subsequent heat treatment. Even if we try to flatten the distribution by improving the heat treatment furnace or the heat treatment temperature program, there is a limit to the improvement as it is impossible to make the slow cooling rate virtually infinite. It is extremely difficult to homogenize the refractive index distribution. On the other hand, in recent years, as the integration of LSIs has progressed, the exposure wavelength has become shorter, and lithography laser exposure apparatuses have been proposed that aim for higher resolution. ~308 nm) In particular, the uniformity of the refractive index of a light transmitting material using excimer laser light is particularly important for the uniformity of the refractive index of a light transmitting material using excimer laser light.
However, as mentioned above, a light transmitting body manufactured from a quartz glass base material with low optical homogeneity can achieve high refractive index uniformity. This makes it impossible to expose fine and clear line images. ``Problems to be Solved by the Invention'' In order to eliminate such drawbacks, the present inventors first attempted to create a method that allows at least one change in the fictive temperature distribution while allowing the fluctuation range of the fictive temperature distribution caused by the continuous heating and cooling treatment. By effectively combining the OH group concentration distributions formed along a predetermined cross-sectional direction, the refractive index fluctuations caused by the OH group concentration distribution and the fictive temperature distribution are mutually offset, and as a result, the The inventors have proposed a technique for suppressing the fluctuation range of the refractive index distribution (Japanese Patent Application No. 83-254875), but as a result of further research and repeated experiments, the present inventors have succeeded in suppressing the fluctuation of the refractive index distribution even further. We have developed a light transmitting material that can That is, the present invention uses short wavelength laser light (183 to 308 nm
) A light transmitting body that is extremely suitable as a laser light transmitting body used in various devices that use particularly high-output excimer laser light;
The purpose of this invention is to provide a base material for producing the transparent body, and a silica glass ingot that primarily functions as a starting material for the base material. [Means for Solving the Problems J] The present invention is based on the fictive temperature difference and OH
Rather than bringing the concentration differences of groups and other impurities as close to O as possible to obtain high uniformity of the refractive index in the light transmitting material, conversely, the temperature difference or concentration difference of the fluctuation factors is reduced to O, especially the fictive temperature. Since it is impossible to substantially reduce the difference to O, by allowing the temperature difference or concentration difference of the above-mentioned fluctuation factors to occur and appropriately regulating their distribution state, the above-mentioned distribution state can be adjusted. The refractive index fluctuations caused by this are canceled out by each other,
As a result, the variation width of the refractive index distribution at least in the cross-sectional direction is suppressed, which is the same as in the prior art. That is, the prior invention effectively combines the OH group concentration distribution in order to suppress the refractive index that fluctuates depending on the fictive temperature difference. Because synthetic silica glass is manufactured by reacting silicon in an oxyhydrogen flame, there are many Cl groups that affect the refractive index distribution as well as OH groups. It is difficult to suppress rate fluctuations. Therefore, the Ki invention focuses on the fluctuations in the OH group and Cl concentration distribution and the fictive temperature, which tend to be major fluctuation factors in the fluctuation of the refractive index, and regulates the fluctuation distribution, thereby making it more effective than the earlier invention. This makes it possible to suppress fluctuations in the refractive index. That is, the present invention, as shown in FIG.
Synthetic quartz glass is manufactured in which the OH group concentration distribution and the Cl concentration distribution change sequentially without a displacement point as it moves from the center region of the base material to the peripheral region, and if necessary, the quartz glass is adjusted to the above concentration. After cutting along a plane parallel to the distribution to form a cylindrical, disk-shaped, or spherical elementary mass, the elementary mass is cut into a refractive index distribution (
By performing a heating and cooling treatment with a fictive temperature distribution formed in the cross-sectional direction corresponding to B), the refractive index distribution fluctuations (B, C) caused by the above-mentioned respective fluctuation elements are canceled out from each other, As a result, a silica glass matrix having a highly uniform refractive index distribution (A) can be obtained. The present invention achieves the above object by making claims not only for the quartz glass base material, but also for the quartz glass ingot that mainly functions as a starting material for the base material, and for the light transmitting body manufactured based on the base material. We are trying to clarify the technical philosophy necessary to achieve this goal. "Operation" The operation of the present invention will be explained in detail based on FIG. As mentioned above, when a synthetic silica glass block of high purity and uniform composition is heated and cooled, the refractive index distribution depends on the virtual temperature distribution, so that the central region of the glass block is A curve in which the refractive index gradually increases as the region moves closer to the periphery, for example, an axially symmetrical and concave refractive index distribution as shown in (C) occurs. Therefore, in order to cancel out the refractive index distribution and obtain a flat refractive index distribution as shown in (A), the refractive index distribution of the quartz glass ingot before heat treatment must be The distribution shape should be axially symmetrical and convex curved so that it becomes smaller as it moves from the edge to the edge. That is, the silica glass ingot proposed in claim 5) is based on the above-mentioned consideration, and the 50H group concentration distribution and the Clg degree distribution change sequentially without any displacement points as they move from the center of the base material to the periphery. This is because the refractive index distribution within the cross section has a distribution shape like CB). Note that since the OH group concentration distribution and the refractive index distribution are in an inversely proportional relationship as shown in FIG. 1, and the Cl concentration distribution and the refractive index distribution are in a directly proportional relationship, No. 1 in FIG. 1, No. 2 and NO.
By arbitrarily setting the combination and curvature curve as shown in 3, it is easy to form a refractive index distribution (B) corresponding to the refractive index distribution (C) that depends on the virtual temperature distribution, and thereby the present application It becomes possible to achieve the effect smoothly.

そして前記素塊を(C)に示すような屈折率分布を得る
べく加熱一途冷処理を行う事により(A)に示すような
平坦な屈折率分布を有する石英ガラス母材を得る事が出
来る. これが請求項1)に記載された発明である.更に又請求
項7)及び8)に記載された発明は、前記母材を加工す
る事により形成されたレンズその他の光透過体、好まし
くはレーザ光用透過体に関するもので、 少なくとも前記OH基及びCl濃度分布を有する断面方
向から直交する面方向にレーザー光入射面を設定した点
を第1の特徴とし,又光透過体2の場合は第2図に示す
ように前記母材1の一部を使用するものである為に、前
記濃度分布の極大又は極小点が中心城にあるとは限らず
第2図の2^,2Gに示すように極大又は極小点さえな
い場合もある.そこで第2の特徴とする所は、前記母材
のOH基及びCal濃度分布が凸曲線又は凹曲線であっ
ても入射面と直交する面内における最少濃度領域から最
大濃度領域に至る濃度分布は、変異点をもつことなく順
次大になる為に、これを第2の特徴にしている. これにより前記透過体の光使用領域における屈折率分布
変動幅(Δn)を2X10−6以下に設定し、これによ
り前記のような短波長レーザ光(183〜308 nm
)特にエキシマレーザ光用透過体として極めて好適な光
透過体を提供し得る.且つレーザ光用透過体として好ま
しい透過体を得る事が出来る. また、耐レーザー光性の点からは該石英ガラス組織中に
含まれるOH基とCA.濃度分布差を60ppm以下に
設定するのが好ましい. 「実施例」 次に製造手順に従って、本発明の好ましい実施例を説明
する. 先ず酸水素炎加水分解法より、高純度の四塩化珪素を酸
水素炎中で反応させながら円柱状の合成石英ガラス1′
を製造するとともに、前記両ガスの混合比を調整して円
柱軸に対して、ほぼ直交する断面におけるOH基濃度に
より決定される屈折率分布(B−1 )とCl濃度によ
り決定される屈折率分* (B−2 >の合算された屈
折率分布(B)が中心域で極大値を示し、外縁部に移行
するに従いなめらかに小さい値を示す曲線、具体的には
極大点が中心域にある上に軸対称の凸曲線になるように
制御する. 尚、前記合成石英ガラス素塊中のOH基濃度分布及びC
l濃度分布は原料ガスと酸水素ガスとの混合比率を調整
するのみならず、合成装置のバーナー形状,バーナ位置
等を変化させて制御することが可能である. 又、前記OH基濃度分布及びCl濃度分布の合算された
屈折率分布(B)における屈折率の極大点とガラス周縁
域間の屈折率変動幅(Δn)は後記する、加熱一放冷処
理による仮想温度分布と対応させて逆比例的に設定する
ことが好ましく、具体的には現状の熱処理による仮想温
度分布差が前記合成石英ガラスの直径によっても異なる
が光使用領域(クリアーアバーチャー)において略4℃
以内の範囲にあることから、OH基濃度分布差(ΔOH
)  Cl濃度分布差(ΔC旦)夫ノ7を略60ppm
以内に設定するのが良い.そして,前記のようにして製
造された合成石莢ガラスは必要に応じて円柱軸すなわち
OH基濃度及びC!;L濃度分布対称軸と直交する断面
内に沿って切断して第2図に示すような石英ガラス素塊
1を形成する. 次に,このガラス素塊を電気炉内に設置し、800℃か
ら1300℃の範囲で所定時間一定温度を保持して,加
熱温度の均一化を図った後,仮想温度分布差が有効域(
光透過域)において略2℃FTになるように制御しなか
ら徐冷を行う. この際,熱処理温度を800℃から1300℃の範囲と
した理由は、合成石英ガラスの歪点が約1020℃,徐
冷点が約1120℃とされており、1020℃から11
20℃のガラス転移領域を含む温度領域で熱処理するこ
とが工業上非常に重要で有効であると考えられるからで
ある. 又、仮想温度分布差を略2℃訂以内に設定した理由はこ
れより大に設定すると仮想温度分布曲線が乱れやすくな
るためである. この結果、前記仮想温度分布による屈折率分布(C)が
軸を通る断面内における分布曲線が軸において極小値を
示し、外縁部に移行するに従いなめらかに大きい値を示
す曲線,具体的には極小値が母材中心城にある上に凹型
曲線状になり、OH基とCl濃度分布に基づく屈折率分
布(B)と対称形状となる. 従って前記熱処理後の石英ガラス塊の周縁域を研削され
た石英ガラス母材の屈折率分布(A)は、前記仮想温度
勾配により形成される屈折率分布(C)と,OH基とC
l濃度分布により形成される屈折率分布(B)が加算さ
れる結果、屈折不変動幅(Δn)の小さい高均質な石英
ガラス母材を得ることができる. そして、該母材の所望部分を第2図に示すように円柱軸
と断面方向から直交する面方向にレーザー光入射面2a
を設定して切断して必要に応じて研磨その他の加工をし
製品化された光透過体2は、屈折率変動幅(Δn)  
2XI.04以下という高い均質性を示すことになる. 「実験結果」 先ず、酸水素炎加水分解法により、原料ガスと酸水素ガ
スとの混合比率を適宜調整しながら合成石英ガラスを製
造した後、その両端を軸と直交する面内に沿って切断す
ることにょりφ200 X  t70mmの円柱状の合
成石英ガラス素塊4ヶを作成する. 次に前記4ヶのガラス素塊を同時に同一の加熱処理用電
気炉内に設置し、約1100℃の温度条件にで長時間の
熱処理を行った.その後これらのガラス素塊を室温まで
冷却した後、円柱体側面の外周研削と上下面の平行研削
を行いΦ150 X t40mmのガラス母材を形成し
、OH基濃度分布測定とCl濃度分布測定干渉計による
屈折率分布の測定を行った. その結果、第1図に示すように、前記OH基濃度分布が
,母材中心部から周縁部に移行するに連れ順次大になる
ように形成した凹曲線,又C立濃度分布が、母材中心域
から周縁域に移行するに連れ、順次小になるように形成
した凸曲線の組み合わせであるサンプルNO.1と,前
記0}1基濃度分布とC交濃度分布が夫々前記凹曲線又
は夫々前記凸曲線の組み合わせであるサンプルNo.2
及びNO、3では屈折率分布CB)と(C)が相殺され
て(A)に示すような屈折率変動幅(Δn)  IXI
O″6以下という非常に高均質なガラスを得ることがで
きた。
Then, by heating and cooling the raw mass to obtain a refractive index distribution as shown in (C), a silica glass base material having a flat refractive index distribution as shown in (A) can be obtained. This is the invention described in claim 1). Furthermore, the invention described in claims 7) and 8) relates to a lens or other light transmitting body formed by processing the base material, preferably a laser beam transmitting body, wherein at least the OH group and The first feature is that the laser light incident surface is set in the plane direction perpendicular to the cross-sectional direction having the Cl concentration distribution, and in the case of the light transmitting body 2, as shown in FIG. Since the concentration distribution uses a maximum or minimum point, the maximum or minimum point of the concentration distribution is not necessarily located at the center, and as shown in 2^ and 2G in Fig. 2, there may not even be a maximum or minimum point. Therefore, the second feature is that even if the OH group and Cal concentration distribution of the base material is a convex curve or a concave curve, the concentration distribution from the minimum concentration region to the maximum concentration region in the plane perpendicular to the plane of incidence is , because it gradually increases in size without having a mutation point, this is the second feature. As a result, the refractive index distribution variation width (Δn) in the light usage area of the transmitting body is set to 2X10-6 or less, and as a result, the short wavelength laser beam (183 to 308 nm) as described above is set.
) In particular, it is possible to provide a light transmitting material that is extremely suitable as a transmitting material for excimer laser light. In addition, a transparent material suitable for use as a laser beam transmitting material can be obtained. In addition, from the point of view of laser light resistance, the OH groups contained in the quartz glass structure and the CA. It is preferable to set the concentration distribution difference to 60 ppm or less. "Example" Next, a preferred example of the present invention will be described according to the manufacturing procedure. First, using the oxyhydrogen flame hydrolysis method, a cylindrical synthetic quartz glass 1' was produced by reacting high-purity silicon tetrachloride in an oxyhydrogen flame.
At the same time, the mixing ratio of both gases is adjusted to obtain a refractive index distribution (B-1) determined by the OH group concentration and a refractive index determined by the Cl concentration in a cross section substantially perpendicular to the cylinder axis. A curve in which the summed refractive index distribution (B) of min * (B-2 > shows a maximum value in the center region and gradually decreases as it moves to the outer edge, specifically, the maximum point is in the center region. The OH group concentration distribution in the synthetic silica glass block and the C
The l concentration distribution can be controlled not only by adjusting the mixing ratio of raw material gas and oxyhydrogen gas, but also by changing the burner shape, burner position, etc. of the synthesizer. In addition, the refractive index variation width (Δn) between the maximum point of the refractive index and the glass peripheral region in the refractive index distribution (B) which is the sum of the OH group concentration distribution and the Cl concentration distribution is determined by the heating and cooling treatment described later. It is preferable to set it in inverse proportion to correspond to the fictive temperature distribution. Specifically, although the fictive temperature distribution difference due to the current heat treatment varies depending on the diameter of the synthetic quartz glass, it is approximately equal to 4℃
Since the difference in OH group concentration distribution (ΔOH
) Cl concentration distribution difference (ΔC) approximately 60 ppm
It is best to set it within The synthetic stone capsule glass produced in the above manner is then adjusted according to the cylindrical axis, ie, OH group concentration and C! A silica glass ingot 1 as shown in FIG. 2 is formed by cutting along a cross section perpendicular to the axis of symmetry of the L concentration distribution. Next, this glass ingot is placed in an electric furnace and kept at a constant temperature in the range of 800°C to 1300°C for a predetermined period of time to equalize the heating temperature.
Slow cooling is performed while controlling the temperature to approximately 2°C FT in the light transmission region). At this time, the reason why the heat treatment temperature was set in the range of 800°C to 1300°C is that the strain point of synthetic quartz glass is approximately 1020°C and the annealing point is approximately 1120°C.
This is because heat treatment in a temperature range that includes the glass transition region of 20°C is considered to be very important and effective industrially. Also, the reason why the fictive temperature distribution difference is set within approximately 2 degrees Celsius is that if it is set larger than this, the fictive temperature distribution curve will be easily disturbed. As a result, the distribution curve in the cross section where the refractive index distribution (C) due to the fictive temperature distribution passes through the axis shows a minimum value at the axis, and gradually increases as it moves toward the outer edge, specifically, a curve that shows a minimum value at the axis. The value is located at the center of the base metal and forms a concave curve, which is symmetrical to the refractive index distribution (B) based on the OH group and Cl concentration distribution. Therefore, the refractive index distribution (A) of the quartz glass base material obtained by grinding the peripheral area of the quartz glass lump after the heat treatment is the refractive index distribution (C) formed by the fictive temperature gradient, and the OH group and C
As a result of adding the refractive index distribution (B) formed by the l concentration distribution, a highly homogeneous silica glass base material with a small refractive constant width (Δn) can be obtained. Then, as shown in FIG. 2, the desired portion of the base material is aligned with the laser light incident surface 2a in the direction perpendicular to the cylinder axis and the cross-sectional direction.
The light transmitting body 2 that is manufactured by setting and cutting, polishing and other processing as necessary, has a refractive index variation width (Δn)
2XI. It shows high homogeneity of 04 or less. "Experimental Results" First, synthetic quartz glass was manufactured using the oxyhydrogen flame hydrolysis method while adjusting the mixing ratio of raw material gas and oxyhydrogen gas as appropriate, and then both ends of the glass were cut along a plane perpendicular to the axis. By doing this, four cylindrical synthetic silica glass blocks measuring φ200 x t70mm were created. Next, the four glass ingots were placed simultaneously in the same electric furnace for heat treatment, and heat treated at a temperature of about 1100°C for a long time. After cooling these glass blocks to room temperature, the outer circumference of the side surface of the cylindrical body was ground and the top and bottom surfaces were ground in parallel to form a glass base material of Φ150 x t40mm, which was then used to measure the OH group concentration distribution and the Cl concentration distribution using an interferometer. The refractive index distribution was measured by As a result, as shown in Fig. 1, the OH group concentration distribution is a concave curve formed so that it gradually increases as it moves from the center of the base material to the periphery, and the C vertical concentration distribution is Sample No. 1 is a combination of convex curves formed so that they become smaller as they move from the center region to the peripheral region. Sample No. 1 and the 0}1 group concentration distribution and the C cross concentration distribution are each a combination of the concave curve or the convex curve. 2
and NO, 3, the refractive index distributions CB) and (C) cancel each other out, resulting in the refractive index variation width (Δn) as shown in (A) IXI
It was possible to obtain a glass with very high homogeneity of O''6 or less.

しかし、OH基濃度分布が凸曲線とCl濃度分布が凹曲
線の組み合わせであるサンプルNo.4では(B)と(
C)が逆に増長されて(A)に示すような非常に悪い屈
折率分布となってしまった.更に、サンプルNo.1,
No.2及びNO.3について同一条件によって、Kr
Fエキシマレーザー(248n+s)を照射したところ
、蛍光や内部歪、透過率低下のダメージを受けることな
く耐レーザー性の面で実用的に問題のない事が確認でき
た. かかる実験結果より本発明の効果が円滑に達成されてい
る事が理解出来るや 「発明の効果」 以−ト記載した如く本発明によれば、内部歪を除去しガ
ラス組織の均質化を図る為に行われる加熱一徐冷処理に
より生じる仮想温度分布を許容しつつ,該仮想温度分布
が存在する場合でも均一な屈折率分布を得る事が出来,
特に193〜308n厘前後の高出力のエキシマレ・−
ザ光を利用した各種装置に用いるレーザ光用透過体とし
て好適な光透過体を提供する事が出来る.等の種々の著
効を有す。
However, sample No. 1 has a combination of a convex curve in the OH group concentration distribution and a concave curve in the Cl concentration distribution. 4, (B) and (
C) was conversely increased, resulting in a very poor refractive index distribution as shown in (A). Furthermore, sample no. 1,
No. 2 and NO. Under the same conditions for 3, Kr
When irradiated with F excimer laser (248n+s), it was confirmed that there were no problems in terms of laser resistance, with no damage such as fluorescence, internal distortion, or decreased transmittance. From these experimental results, it can be understood that the effects of the present invention are smoothly achieved.As described above, according to the present invention, in order to eliminate internal strain and homogenize the glass structure, It is possible to obtain a uniform refractive index distribution even when the fictive temperature distribution exists, while allowing the fictive temperature distribution caused by the heating and slow cooling treatment performed in
Especially high output excimer of around 193 to 308n.
It is possible to provide a light transmitting body suitable as a laser light transmitting body used in various devices using laser light. It has various effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造過程に対応して屈折率分布の変化
状態を示す作用図、第2図は本発明に用いられる石英ガ
ラ゜ス素塊から光透過体までの形状の変化を示す概略図
である. 第2図
Fig. 1 is an action diagram showing how the refractive index distribution changes in accordance with the manufacturing process of the present invention, and Fig. 2 shows the change in shape from the quartz glass element used in the present invention to the light transmitting body. This is a schematic diagram. Figure 2

Claims (1)

【特許請求の範囲】 1)OH基とCl基を含有する合成石英ガラス素塊を加
熱し、ついで冷却処理した後、必要に応じてその周縁部
分を研削して形成される光透過体用石英ガラス母材にお
いて、少なくとも一つの所定断面方向に沿って形成した
OH基濃度分布とCl濃度分布、及び前記加熱し、つい
で冷却処理により前記断面方向に沿って形成される仮想
温度分布を効果的に組み合わせる事により、これらの分
布夫々に起因して発生する屈折率変動を互いに相殺し、
結果として前記断面方向における屈折率分布の変動を抑
制した事を特徴とする光透過体用石英ガラス母材 2)前記OH基濃度と仮想温度を母材中心域から周縁域
に移行するに連れ順次高くなるような曲線状の分布に、
又Cl濃度を母材中心域から周縁域に移行するに連れ順
次低くなるような曲線状の分布に夫々設定したことを特
徴とする請求項1)記載の光透過体用石英ガラス母材 3)前記OH基濃度とCl濃度及び仮想温度を、母材中
心域から周縁域に移行するに連れ順次高くなるような曲
線状の分布に夫々設定したことを特徴とする請求項1)
記載の光透過体用石英ガラス母材 4)前記OH基濃度とCl濃度を母材中心域から周縁域
に移行するに連れ順次低くなるような曲線状の分布に、
又仮想温度を母材中心域から周縁域に移行するに連れ順
次高くなるような曲線状の分布に夫々設定したことを特
徴とする請求項1)記載の光透過体用石英ガラス母材 5)前記OH基濃度とCl濃度を、極小点又は極大点が
母材中心域にある略軸対称の曲線状の分布に設定するこ
とを特徴とする請求項1)記載の光透過体用石英ガラス
母材 6)OH基とCl基を含有する合成石英ガラスからなり
、該ガラス体の選択された一又は複数の断面におけるO
H基濃度とCl濃度を母材中心域から周縁域に移行する
に連れ変曲点が生じることなく順次変化させ、これによ
り前記断面内における屈折率分布を母材中心域から周縁
域に移行するに連れ順次低くなるような曲線状の分布に
設定したことを特徴とする石英ガラス素塊 7)OH基濃度を、母材中心域から周縁域に移行するに
連れ順次高くなるような曲線状の分布に形成し、かつC
l濃度を母材中心域から周縁域に移行するに連れ順次低
くなるような曲線状の分布に形成するか、 又はOH基濃度とCl濃度のいずれも母材中心域から周
縁域に移行するに連れ順次高くなるような曲線状の分布
に形成するか、 若しくはOH基濃度とCl濃度のいずれも母材中心域か
ら周縁域に移行するに連れ順次低くなるような曲線状の
分布に設定したことを特徴とする石英ガラス素塊 8)光の反射、屈折もしくは直進を生じせしめる光透過
体をOH基とCl基を含有する石英ガラスを用いて形成
し、その入射面と直交する面内における最少濃度領域か
ら最大濃度領域に至るOH基濃度曲線及びCl濃度曲線
を変曲点をもつことなく順次大きい値になるように設定
しつつ、該透過体の光使用領域における屈折率分布変動
幅(Δn)を2×10^−^6以下に設定したことを特
徴とする光透過体 9)前記入射面と直交する面内における最少濃度領域か
ら最大濃度領域に至るOH基濃度分布差とCl濃度分布
差を各々60ppm以下に設定した請求項8)記載の光
透過体
[Scope of Claims] 1) Quartz for a light transmitting body formed by heating a synthetic quartz glass ingot containing an OH group and a Cl group, then cooling it, and then grinding its peripheral portion as necessary. In the glass base material, the OH group concentration distribution and Cl concentration distribution formed along at least one predetermined cross-sectional direction, and the fictive temperature distribution formed along the cross-sectional direction by the heating and then cooling treatment are effectively controlled. By combining them, the refractive index fluctuations caused by each of these distributions can be canceled out,
2) The OH group concentration and the fictive temperature are changed sequentially as the OH group concentration and fictive temperature are shifted from the center region of the base material to the peripheral region. In a curved distribution that increases,
3) The quartz glass base material for a light transmitting body according to claim 1), wherein the Cl concentration is set in a curved distribution such that it gradually decreases as it moves from the center region of the base material to the peripheral region. Claim 1) characterized in that the OH group concentration, the Cl concentration, and the fictive temperature are each set in a curved distribution that increases sequentially from the center region of the base material to the peripheral region.
4) A curved distribution in which the OH group concentration and Cl concentration gradually decrease from the central region of the matrix to the peripheral region, as described in 4)
5) The quartz glass base material for a light transmitting body according to claim 1), wherein the fictive temperature is set in a curved distribution such that it gradually increases as it moves from the center region of the base material to the peripheral region. The quartz glass matrix for a light transmitting body according to claim 1, wherein the OH group concentration and the Cl concentration are set in a substantially axially symmetrical curved distribution with a minimum point or maximum point in the center region of the matrix. Material 6) Made of synthetic quartz glass containing OH groups and Cl groups, O in one or more selected cross sections of the glass body
The H group concentration and Cl concentration are sequentially changed as they move from the center region of the base material to the peripheral region without an inflection point occurring, thereby shifting the refractive index distribution in the cross section from the center region of the base material to the peripheral region. 7) A quartz glass mass having a curved distribution in which the OH group concentration gradually decreases as it moves from the center region to the peripheral region. formed into a distribution, and C
Either the L concentration is formed into a curved distribution that gradually decreases as it moves from the center region of the base material to the peripheral region, or the OH group concentration and the Cl concentration are both distributed as they move from the center region of the base material to the peripheral region. Either the OH group concentration and the Cl concentration are set to a curved distribution that gradually increases as the concentration increases, or the OH group concentration and the Cl concentration are set to a curved distribution that gradually decreases as the concentration moves from the center region of the base material to the peripheral region. 8) A light transmitting body that causes light to reflect, refract, or go straight is formed using silica glass containing OH groups and Cl groups, and the minimum amount of light in a plane orthogonal to the plane of incidence is formed using quartz glass containing OH and Cl groups. While setting the OH group concentration curve and the Cl concentration curve from the concentration region to the maximum concentration region so that they become successively larger values without having an inflection point, the refractive index distribution variation width (Δn ) is set to 2×10^-^6 or less 9) OH group concentration distribution difference and Cl concentration distribution from the minimum concentration region to the maximum concentration region in a plane perpendicular to the incident plane The light transmitting body according to claim 8), wherein each difference is set to 60 ppm or less.
JP5606489A 1989-03-10 1989-03-10 Quartz glass base material for light transmissive body, quartz glass ingot mainly for manufacturing the base material, and light transmissive body formed using the base material Expired - Lifetime JPH075332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5606489A JPH075332B2 (en) 1989-03-10 1989-03-10 Quartz glass base material for light transmissive body, quartz glass ingot mainly for manufacturing the base material, and light transmissive body formed using the base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5606489A JPH075332B2 (en) 1989-03-10 1989-03-10 Quartz glass base material for light transmissive body, quartz glass ingot mainly for manufacturing the base material, and light transmissive body formed using the base material

Publications (2)

Publication Number Publication Date
JPH02239127A true JPH02239127A (en) 1990-09-21
JPH075332B2 JPH075332B2 (en) 1995-01-25

Family

ID=13016654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5606489A Expired - Lifetime JPH075332B2 (en) 1989-03-10 1989-03-10 Quartz glass base material for light transmissive body, quartz glass ingot mainly for manufacturing the base material, and light transmissive body formed using the base material

Country Status (1)

Country Link
JP (1) JPH075332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
US6761951B2 (en) 2001-12-11 2004-07-13 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank

Also Published As

Publication number Publication date
JPH075332B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
JP3064857B2 (en) Optical member for optical lithography and method for producing synthetic quartz glass
EP1129998B1 (en) Method for producing quartz glass member
JP4763877B2 (en) Synthetic quartz glass optical material and optical member for F2 excimer laser
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
JP5412027B2 (en) Low expansion glass and element with reduced striae and method for producing the same
JPH03109233A (en) Synthetic silica glass optical body for ultraviolet laser beam and its production
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
EP1233005B2 (en) Method for producing synthetic quartz glass members for excimer lasers and synthetic quartz glass members for excimer laser optics produced by the same
JPH02239127A (en) Quartz glass base material for light transmission body, quartz glass lump for mainly producing this base material and light transmission body formed by using this base material
JPH02102139A (en) Quartz glass matrix for light transmitter, quartz glass raw block for mainly producing same matrix and light transmitter formed with same matrix
JPH08259255A (en) Quartz glass for photolithography, optical member including the same, exposing device using the same and its production
JP4114039B2 (en) Synthetic quartz glass
JPH0952722A (en) Optical synthetic quartz glass preform, its production and synthetic quartz glass product using the same
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JPH0558667A (en) Optical member
JP3274955B2 (en) Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
JP3274954B2 (en) Synthetic quartz glass material for optics and method for producing the same
JPH06166527A (en) Production of quartz glass
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JPH05186234A (en) Production of quartz glass member for excimer laser
JP2003176139A (en) Method of reacting hydrogen with rock crystal glass to improve refractive index uniformity and laser intensity keeping prescribed stress birefringence and rock crystal glass manufactured by this method
JP2824877B2 (en) Method for producing quartz glass compact for ultraviolet laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15