JPH02238436A - Liquid crystal electrooptical element - Google Patents
Liquid crystal electrooptical elementInfo
- Publication number
- JPH02238436A JPH02238436A JP5891189A JP5891189A JPH02238436A JP H02238436 A JPH02238436 A JP H02238436A JP 5891189 A JP5891189 A JP 5891189A JP 5891189 A JP5891189 A JP 5891189A JP H02238436 A JPH02238436 A JP H02238436A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optically anisotropic
- refractive index
- anisotropic body
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 229920000642 polymer Polymers 0.000 claims description 3
- 210000002858 crystal cell Anatomy 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract 3
- 230000010287 polarization Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は液晶電気光学素子に関する.
[従来の技術]
従来のホモジニアス方式のECBモードは、液晶の複屈
折を制御して表示を行っているために、表示の色付きが
大きく、視角も狭かった.この問題を解決する目的で、
表示を行う液晶セルとは別に、光学的に負の一軸性を有
する光学的異方体を備えることが、特願昭63−198
506号で提案されている.
第5図に、従来の液晶電気光学素子の断面図を示す.図
中、1は上側偏光板、2は液晶セル、3は光学的異方体
、4は下側偏光板である.液晶セルに用いた液晶は、チ
ッソ社製のSS一5003 (Δn=0.080)であ
り、2枚の透明電極基板間にホモジニアス配向させた.
液晶層厚dは6.0μmに設定し、リターデーションΔ
ndを0.48μmとした.一方、光学的異方体には、
ポリメタクリル酸メチル(PMMA)を主成分とする高
分子フィルムを一軸方向に延伸したフィルムを用いた.
通常の高分子フィルムは、延伸を行うと延伸方向の屈折
率が増加する性質があるが、PMMAやボリスチレン等
は、逆に延伸方向の屈折率が減少する性質を持っている
.このフィルムの屈折率は、延伸方向の屈折率N3e=
1.4974、フィルム面内でこれに垂直な方向の屈折
率N2o=1. 4978、フィルムの膜厚方向の屈
折率N1o=1.4977であり、光学的に負の一軸性
を有している.またその膜厚は、リターデーションの値
が液晶セルのそれとほぼ等しいかあるいはわずかに小さ
めになるように設定する.ここでは膜厚1100μm、
リターデーション0.44μmとした.
第2図には、従来の液晶電気光学素子の各軸の関係図を
示した.上側偏光板の偏光軸(吸収軸)方向11が液晶
セルの上基板のラビング方向12となす角度21を左4
5@、液晶セルの下基板のラビング方向13と一軸延伸
フィルムの延伸方向14とのなす角度22を08 下側
偏光板の偏光軸(吸収軸)方向15が14となす角度2
3を右45′ とした.
以上の条件のもとで作製した、従来の液晶電気光学素子
は、パネル面に垂直な方向から測定すると、第3図に示
すように極めて色づきの少ない電気光学特性が得られる
.また第4図に示したように視角特性も非常に良好であ
る.
[発明が解決しようとする課題]
しかしながら、従来の液晶電気光学素子は、通常のツイ
ステッドネマチック方式(以下TN方式と呼ぶ)の液晶
電気光学素子よりも、一軸延伸フィルムー枚分だけ貼合
わせの工程が増えるという課題があった.
また光学的に負の一軸性を有する延伸フィルムは複屈折
率の絶対値が小さく、しかも膜の均一性が良くないので
、通常の延伸フィルムよりも厚くなりがちである.小型
の携帯用パネルの場合にはこの厚みと重量の増加も大き
な課題であった.本発明はこのような課題を解決するも
ので、その目的とするところは、液晶電気光学素子の製
造工程を簡略化し、さらに素子を薄型化、軽量化するこ
とにある.
[課題を解決するための手段]
本発明の液晶電気光学素子は、対向する2枚の透明基板
間にホモジニアス配向した液晶を挟持してなる液晶電気
光学素子において、前記一対の透明基板の少なくとも一
方が光学的異方体であり、その光学的異方体が有する3
つの主要な屈折率N1o, N 2o%N 3eの内
、ある1つの屈折率N3eが他の2つの屈折率N1o、
N2oよりも小さく、かつその屈折率N3eに対応する
軸が、基板面に対してほぼ水平な方向にあることを特徴
とする.また、前記光学的異方体が、延伸された高分子
であることを特徴とする.
以下、実施例により本発明の詳細を示す.[実施例]
第1図に、本発明の実施例における液晶電気光学素子の
断面図を示す.図中、1は上側偏光板、2は液晶セル、
4は下側偏光板である.液晶セルに用いた液晶は、チッ
ソ社製の33−5003 (Δn=0.080)であり
、2枚の透明電極基板間にホモジニアス配向させた.液
晶層厚は6.0μmに設定し、リターデーションを0.
48μmとした.
液晶セルの上基板5、下基板7はいずれもプラスチック
基板である.上基板には光学的な異方性の無いポリエー
テルスルホン(PES)を用いた。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal electro-optical device. [Prior Art] In the conventional homogeneous ECB mode, display was performed by controlling the birefringence of the liquid crystal, so the display was heavily colored and the viewing angle was narrow. In order to solve this problem,
In addition to the liquid crystal cell that performs display, it is proposed in Japanese Patent Application No. 63-198 to provide an optically anisotropic body having optically negative uniaxiality.
Proposed in No. 506. Figure 5 shows a cross-sectional view of a conventional liquid crystal electro-optical element. In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell, 3 is an optically anisotropic body, and 4 is a lower polarizing plate. The liquid crystal used in the liquid crystal cell was SS-5003 (Δn=0.080) manufactured by Chisso Corporation, and was homogeneously aligned between two transparent electrode substrates.
The liquid crystal layer thickness d was set to 6.0 μm, and the retardation Δ
nd was set to 0.48 μm. On the other hand, for optically anisotropic materials,
A uniaxially stretched polymer film containing polymethyl methacrylate (PMMA) as the main component was used.
Ordinary polymer films have the property that their refractive index increases in the stretching direction when they are stretched, but PMMA, polystyrene, and the like have the property that their refractive index decreases in the stretching direction. The refractive index of this film is the refractive index in the stretching direction N3e=
1.4974, refractive index N2o in the direction perpendicular to this within the film plane = 1. 4978, the refractive index N1o in the thickness direction of the film is 1.4977, and it has optically negative uniaxiality. The film thickness is also set so that the retardation value is approximately equal to or slightly smaller than that of the liquid crystal cell. Here, the film thickness is 1100 μm,
The retardation was set to 0.44 μm. Figure 2 shows the relationship between each axis of a conventional liquid crystal electro-optical element. The angle 21 between the polarization axis (absorption axis) direction 11 of the upper polarizing plate and the rubbing direction 12 of the upper substrate of the liquid crystal cell is 4 to the left.
5@, the angle 22 formed by the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film is 08, the angle 2 formed by the polarization axis (absorption axis) direction 15 of the lower polarizing plate with 14
3 is set to 45' to the right. A conventional liquid crystal electro-optical element manufactured under the above conditions exhibits electro-optical characteristics with extremely little coloration, as shown in Figure 3, when measured from a direction perpendicular to the panel surface. Furthermore, as shown in Figure 4, the viewing angle characteristics are also very good. [Problems to be Solved by the Invention] However, conventional liquid crystal electro-optical elements require a lamination process for the number of uniaxially stretched films than ordinary twisted nematic type (hereinafter referred to as TN type) liquid crystal electro-optical elements. There was an issue of increasing numbers. Furthermore, a stretched film with optically negative uniaxiality has a small absolute value of birefringence and has poor film uniformity, so it tends to be thicker than a normal stretched film. In the case of small portable panels, this increase in thickness and weight was also a major issue. The present invention is intended to solve these problems, and its purpose is to simplify the manufacturing process of a liquid crystal electro-optic device and to make the device thinner and lighter. [Means for Solving the Problems] A liquid crystal electro-optical element of the present invention is a liquid crystal electro-optical element in which a homogeneously aligned liquid crystal is sandwiched between two opposing transparent substrates, in which at least one of the pair of transparent substrates is is an optical anisotropic body, and the optical anisotropic body has 3
Among the two main refractive indexes N1o, N2o%N3e, one refractive index N3e is the other two refractive indexes N1o,
It is characterized in that the axis thereof, which is smaller than N2o and corresponds to its refractive index N3e, is in a direction substantially horizontal to the substrate surface. Further, the optically anisotropic body is a stretched polymer. The details of the present invention will be shown below with reference to Examples. [Example] FIG. 1 shows a cross-sectional view of a liquid crystal electro-optical element in an example of the present invention. In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell,
4 is the lower polarizing plate. The liquid crystal used in the liquid crystal cell was 33-5003 (Δn=0.080) manufactured by Chisso Corporation, and was homogeneously aligned between two transparent electrode substrates. The liquid crystal layer thickness was set to 6.0 μm, and the retardation was set to 0.
It was set to 48 μm. The upper substrate 5 and lower substrate 7 of the liquid crystal cell are both plastic substrates. Polyether sulfone (PES) without optical anisotropy was used for the upper substrate.
一方下基板には、PMMAを主成分とした高分子を一軸
方向に延伸したフィルムを用いた.このー軸延伸フィル
ムの屈折率は、N1o=1.4977、N2o=1.4
978、N3e=1. 4 9 7 3である.膜厚
が1100μmであるので、リターデーションは、0.
44μmとなる.なお、これらのプラスチック基板はそ
のガラス転移温度TgがPESの場合で約150°C,
PMMAの場合で約12010であるので、透明電極の
スバッタや、配向膜の焼成といった工程は全て100°
C以下で行った.
第2図には、各軸の関係図を示す.上側偏光板の偏光軸
(吸収軸)方向11が液晶セルの上基板のラビング方向
12となす角度21を左45°液晶セルの下基板のラビ
ング方向13と一軸延伸フィルムの延伸方向14とのな
す角度22を06下側偏光板の偏光軸(吸収軸)方向1
5が14となす角度23を右45°とした.
本発明の液晶電気光学素子は、第3図及び第4図に示し
たように、従来の液晶電気光学素子と同様の優れた特性
を示す.
なお、以上の実施倒では、一対のプラスチック基板の一
方のみを光学的異方体としたが、両方の基板を光学的異
方体とすることによって、電気光学特性の改善を図るこ
とも可能である.また、本発明の液晶電気光学素子は、
従来広く応用されているTN方式よりも、電圧一透過率
特性の急峻性が良いために、1/16から1/32とい
った従来よりも大きなデューティ比で駆動することがで
きる.こうした中容量の表示素子は、携帯用の情報機器
に最適であって、本発明により薄型化、軽量化できるメ
リットは大きい.[発明の効果]
以上述べたように、本発明によれば、液晶セルの透明基
板が光学的異方体を兼ねることによって、液晶電気光学
素子の製造工程を簡略化し、かつ素子を薄型化、軽食化
することが可能になる.On the other hand, for the lower substrate, a film made of a polymer mainly composed of PMMA stretched in a uniaxial direction was used. The refractive index of this -axially stretched film is N1o=1.4977, N2o=1.4
978, N3e=1. 4 9 7 3. Since the film thickness is 1100 μm, the retardation is 0.
It becomes 44μm. In addition, the glass transition temperature Tg of these plastic substrates is approximately 150°C in the case of PES,
In the case of PMMA, it is approximately 12010°, so all processes such as sputtering of the transparent electrode and baking of the alignment film are performed at 100°.
I went below C. Figure 2 shows a diagram of the relationship between each axis. The angle 21 between the polarization axis (absorption axis) direction 11 of the upper polarizing plate and the rubbing direction 12 of the upper substrate of the liquid crystal cell is 45 degrees to the left between the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film. Angle 22 is 06 Polarization axis (absorption axis) direction of lower polarizing plate 1
The angle 23 that 5 makes with 14 is set to 45° to the right. As shown in FIGS. 3 and 4, the liquid crystal electro-optical device of the present invention exhibits excellent characteristics similar to those of conventional liquid crystal electro-optic devices. In the above implementation, only one of the pair of plastic substrates was made optically anisotropic, but it is also possible to improve the electro-optic characteristics by making both substrates optically anisotropic. be. Furthermore, the liquid crystal electro-optical element of the present invention includes:
Since the voltage-transmittance characteristic has a better steepness than the conventionally widely used TN method, it can be driven at a duty ratio larger than conventional methods, such as 1/16 to 1/32. Such medium-capacity display elements are ideal for portable information devices, and the present invention has the great advantage of being thinner and lighter. [Effects of the Invention] As described above, according to the present invention, the transparent substrate of the liquid crystal cell also serves as an optically anisotropic body, thereby simplifying the manufacturing process of the liquid crystal electro-optical element, and making the element thinner. It becomes possible to make it a light meal.
第1図は、本発明の液晶電気光学素子の断面図である,
第2図は、本発明及び従来のの液晶電気光学素子の各軸
の関係を示す図である.
第3図は、本発明及び従来の液晶電気光学素子の電気光
学特性を示す図である.
第4図は、本発明及び従来のの液晶電気光学素子の視角
特性を示す図である.
第5図は、従来の液晶電気光学素子の断面図である.
1.上側偏光板
2.液晶セル
3.光学的異方体(一軸延伸フィルム)4、下側偏光板
5.上基板
6.下基板
7.光学的異方体を兼ねた下基板(一軸延伸フィルム)
8.透明電極
9.ホモジニアス配向した液晶
11.上側偏光板1の偏光軸(吸収軸)の方向12.液
晶セルの上基板5のラビング方向13.液晶セルの下基
板6あるいは7のラビング方向
14・ 一軸延伸フイルム3あるいは7の延伸方向15
.下側偏光板4の偏光軸(吸収軸)の方向21.上側偏
光板の偏光軸の方向11が、液晶セルの上基板のラビン
グ方向12となす角度.22.液晶セルの下基板のラビ
ング方向13と一軸延伸フイルムの延伸方向14とのな
す角度.23.下側偏光板の偏光軸の方向15がゴ軸延
伸フイルムの延伸方向14となす角度.
31.fi長450nm(7)光(青色光)ニ対スル電
圧透過率曲線.
32.波長550nmの光(緑色光)に対する電圧透過
率曲線.
33.波長650nmの光(赤色光)に対する電圧透過
率曲線.
41.コントラスト比1の等コントラストカーブ42,
コントラスト比3の等コントラストカーブ43.コント
ラスト比10の等コントラストカーブ
44.コントラスト比30の等コントラストカーブ
45.コントラスト比100の等コントラス6トカーブ
以上
出願人 セイコーエプソン株式会社
代理人−弁理士 鈴木喜三郎(他1名)印加電圧(V)
第3図
上
第2図FIG. 1 is a cross-sectional view of a liquid crystal electro-optical device according to the present invention. FIG. 2 is a diagram showing the relationship between the axes of the present invention and a conventional liquid crystal electro-optical device. FIG. 3 is a diagram showing the electro-optical characteristics of the present invention and a conventional liquid crystal electro-optical element. FIG. 4 is a diagram showing the viewing angle characteristics of the present invention and a conventional liquid crystal electro-optical element. FIG. 5 is a cross-sectional view of a conventional liquid crystal electro-optical element. 1. Upper polarizing plate 2. Liquid crystal cell 3. Optically anisotropic body (uniaxially stretched film) 4, lower polarizing plate 5. Upper substrate 6. Lower board 7. Lower substrate (uniaxially stretched film) that also serves as an optically anisotropic body 8. Transparent electrode9. Homogeneously aligned liquid crystal 11. Direction of the polarization axis (absorption axis) of the upper polarizing plate 1 12. Rubbing direction 13 of upper substrate 5 of liquid crystal cell. Rubbing direction 14 of the lower substrate 6 or 7 of the liquid crystal cell Stretching direction 15 of the uniaxially stretched film 3 or 7
.. Direction of the polarization axis (absorption axis) of the lower polarizing plate 4 21. An angle between the direction 11 of the polarization axis of the upper polarizing plate and the rubbing direction 12 of the upper substrate of the liquid crystal cell. 22. An angle between the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film. 23. An angle between the direction 15 of the polarization axis of the lower polarizing plate and the stretching direction 14 of the Go-axis stretched film. 31. fi length 450 nm (7) Light (blue light) vs. voltage transmittance curve. 32. Voltage transmittance curve for light with a wavelength of 550 nm (green light). 33. Voltage transmittance curve for light with a wavelength of 650 nm (red light). 41. Equal contrast curve 42 with contrast ratio 1,
Equal contrast curve 43 with contrast ratio 3. Equal contrast curve 44 with a contrast ratio of 10. Equal contrast curve 45 with contrast ratio 30. Contrast ratio 100 equal contrast 6 to curve or more Applicant Seiko Epson Co., Ltd. agent - Patent attorney Kisaburo Suzuki (and 1 other person) Applied voltage (V) Figure 3, Figure 2
Claims (2)
た液晶を挟持してなる液晶電気光学素子において、前記
一対の透明基板の少なくとも一方が光学的異方体であり
、その光学的異方体が有する3つの主要な屈折率N1o
、N2o、N3eの内、ある1つの屈折率N3eが他の
2つの屈折率N1o、N2oよりも小さく、かつその屈
折率N3eに対応する軸が、基板面に対してほぼ水平な
方向にあることを特徴とする液晶電気光学素子。(1) In a liquid crystal electro-optical element in which a homogeneously aligned liquid crystal is sandwiched between two opposing transparent substrates, at least one of the pair of transparent substrates is an optically anisotropic body, and the optically anisotropic body is an optically anisotropic body. has three main refractive indices N1o
, N2o, and N3e, one refractive index N3e is smaller than the other two refractive indexes N1o and N2o, and the axis corresponding to the refractive index N3e is in a direction substantially horizontal to the substrate surface. A liquid crystal electro-optical device featuring:
とを特徴とする請求項1記載の液晶電気光学素子。(2) The liquid crystal electro-optical element according to claim 1, wherein the optically anisotropic body is a stretched polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5891189A JPH02238436A (en) | 1989-03-10 | 1989-03-10 | Liquid crystal electrooptical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5891189A JPH02238436A (en) | 1989-03-10 | 1989-03-10 | Liquid crystal electrooptical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02238436A true JPH02238436A (en) | 1990-09-20 |
Family
ID=13098000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5891189A Pending JPH02238436A (en) | 1989-03-10 | 1989-03-10 | Liquid crystal electrooptical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02238436A (en) |
-
1989
- 1989-03-10 JP JP5891189A patent/JPH02238436A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0089493B1 (en) | Display device having organic polymer film as substrate | |
JPH02124532A (en) | Liquid crystal display device | |
JPH09105958A (en) | Visual angle varying element and visual angle variable liquid crystal display device using the same | |
JP2933261B2 (en) | Liquid crystal display | |
JP2718078B2 (en) | Liquid crystal electro-optical element | |
JPH0313916A (en) | Phase difference plate and liquid crystal electro-optical device using this plate | |
JPH10239683A (en) | Reflective-type liquid crystal; display device | |
US5179458A (en) | Liquid crystal electro-optic device with particular relationship between retardation film drawing direction and substrate edge | |
JPH02111918A (en) | Liquid crystal electrooptic element | |
JP2779822B2 (en) | Liquid crystal electro-optical element | |
JPH02306217A (en) | Liquid crystal electrooptical element | |
JPH02238436A (en) | Liquid crystal electrooptical element | |
JPH06230368A (en) | Phase difference plate and liquid crystal display device formed by using the same | |
JPH0313917A (en) | Phase difference plate and liquid crystal electrooptical device using this plate | |
JP2813222B2 (en) | Liquid crystal display device | |
JPH06250166A (en) | Optical phase element and liquid crystal display device | |
JP2858142B2 (en) | LCD color display | |
JP3074805B2 (en) | Display element | |
JPH02197816A (en) | Liquid crystal display device | |
JPH03175417A (en) | Liquid crystal device | |
JP2860806B2 (en) | LCD color display | |
JPH0455817A (en) | Liquid crystal display panel | |
JPH02308219A (en) | Liquid crystal electrooptical element | |
EP0418758A2 (en) | Liquid crystal electro-optical device | |
JPH01282519A (en) | Liquid crystal element |