JPH02111918A - Liquid crystal electrooptic element - Google Patents

Liquid crystal electrooptic element

Info

Publication number
JPH02111918A
JPH02111918A JP26529988A JP26529988A JPH02111918A JP H02111918 A JPH02111918 A JP H02111918A JP 26529988 A JP26529988 A JP 26529988A JP 26529988 A JP26529988 A JP 26529988A JP H02111918 A JPH02111918 A JP H02111918A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
optically anisotropic
cell
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26529988A
Other languages
Japanese (ja)
Inventor
Osamu Okumura
治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26529988A priority Critical patent/JPH02111918A/en
Publication of JPH02111918A publication Critical patent/JPH02111918A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/15Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the liquid crystal electrooptic element of a wide visual angle by forming an optically anisotropic substance in such a manner that, of the three main refractive indices possessed by this substance, certain one refractive index N is smaller than the other two refractive indices and the axis corresponding to this refractive index is in a direction nearly horizontal with the substrate surface of a liquid crystal cell. CONSTITUTION:The refractive index N3e of the extraordinary light of the optically anisotropic substance is smaller than the refractive indices N1o, N2o of ordinary light. The value of DELTAN (identicalNo-Ne) of the optically anisotropic substance decreases as Ne increases when the incident light from the direction inclined by a certain angle in the X-axis direction from, for example, the Z-axis direction of such refractive index ellipsoid 82 is considered. The difference in retardation between the liquid crystal cell and the optically anisotropic substance generated in the direction inclined from the Z-axis direction is minimized if the refractive index ellipsoid 82 of the optically anisotropic substance is made into a disk shape in such a manner. The similar compensation relation is the same with the incident light from all the other directions. The compensation in a wide visual field region is enabled in this way and the wider visual angle is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶電気光学素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a liquid crystal electro-optical device.

[従来の技術] 従来のニューツイステヅドネマチックモード(以下NT
Nモードと呼ぶ)は、従来のスーパーツィステッドネマ
チックモードに特有の表示の色づきを解消したもので、
特願昭62−121701号で提案されているように、
一対の偏光板の間に、表示を行う液晶セル(以下表示セ
ルと呼ぶ)と、それとは別に光学的異方体を備えている
[Conventional technology] Conventional New Twisted Nematic Mode (hereinafter referred to as NT)
(referred to as N mode) eliminates the display coloration characteristic of the conventional super twisted nematic mode.
As proposed in Japanese Patent Application No. 121701/1982,
A liquid crystal cell (hereinafter referred to as a display cell) that performs display and an optical anisotropic body are provided between a pair of polarizing plates.

第7図に、従来の液晶電気光学素子の断面図を示す。図
中、1は上側偏光板、2は液晶セル(表示セル)、5は
光学的異方体、4は下側偏光板である。表示セルには、
チッソ社製の液晶SS−4008(Δn=0.15)を
用い、セルギャップdが6.0μmのセルにねじれ配向
させた。この時、リターデーションΔndは0.90μ
mになる。一方、光学的異方体にも、ねじれ配向した液
晶セル(補償セル)を用い、やはりΔndを0゜90μ
mに設定した。
FIG. 7 shows a cross-sectional view of a conventional liquid crystal electro-optical element. In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell (display cell), 5 is an optically anisotropic body, and 4 is a lower polarizing plate. In the display cell,
A liquid crystal SS-4008 (Δn=0.15) manufactured by Chisso Corporation was used, and a cell with a cell gap d of 6.0 μm was twisted and oriented. At this time, the retardation Δnd is 0.90μ
It becomes m. On the other hand, for the optically anisotropic material, a twistedly oriented liquid crystal cell (compensation cell) is used, and Δnd is also set to 0°90μ.
It was set to m.

第8図には、従来の液晶電気光学素子の各軸の関係図を
示した。上側偏光板の偏光軸(吸収軸)方向20が表示
セルの上基板のラビング方向21となす角度40を左4
5° 表示セルのねじれ角41を左210° 表示セル
の下基板のラビング方向22と補償セルの上基板のラビ
ング方向23とがなす角度42を90° 補償セルのね
じれ角43を右210° 下側偏光板の偏光軸(吸収軸
)方向25が補償セルの下側基板のラビング方向24と
なす角度44を左45°とした。
FIG. 8 shows a relationship diagram of each axis of a conventional liquid crystal electro-optical element. The angle 40 that the polarization axis (absorption axis) direction 20 of the upper polarizing plate makes with the rubbing direction 21 of the upper substrate of the display cell is 4 to the left.
5° The twist angle 41 of the display cell is 210° to the left. The angle 42 formed by the rubbing direction 22 of the lower substrate of the display cell and the rubbing direction 23 of the upper substrate of the compensation cell is 90°. The twist angle 43 of the compensation cell is 210° to the right. The angle 44 between the polarization axis (absorption axis) direction 25 of the side polarizing plate and the rubbing direction 24 of the lower substrate of the compensation cell was set to 45° to the left.

以上の条件のもとで作製した、従来の液晶電気光学素子
は、パネル面に垂直な方向から測定すると、第3図に示
すように極めて色づきの少ない電気光学特性が得られる
A conventional liquid crystal electro-optical element manufactured under the above conditions exhibits electro-optical characteristics with extremely little coloring, as shown in FIG. 3, when measured in a direction perpendicular to the panel surface.

[発明が解決しようとする課題] しかしながら、従来のNTNモードを利用した液晶電気
光学素子には、表示が良好に視認できる視角範囲(以下
、単に視角と呼ぶ)が狭いという課題がある。
[Problems to be Solved by the Invention] However, the conventional liquid crystal electro-optical device using the NTN mode has a problem that the viewing angle range (hereinafter simply referred to as viewing angle) in which the display can be clearly recognized is narrow.

第9図に、従来の液晶電気光学素子の視角特性を示す。FIG. 9 shows viewing angle characteristics of a conventional liquid crystal electro-optical element.

図の中心はパネル面に垂直な方向を、またその外側の円
は、内から順にそれぞれ垂直方向からの傾き角10° 
20’  30° 40゜50° 60°の方向を示し
ている。また、図中の上下左右の4方向は、第8図に示
した4方向と一致している。ここで70.71.72.
73は、それぞれコントラスト比1.5.10.20の
等コントラスト線である。また、斜線で示した部分は、
コントラスト比が1以下になって、表示が反転する領域
である。
The center of the figure is perpendicular to the panel surface, and the outer circles are each at an angle of inclination of 10° from the vertical direction, starting from the inside.
20' 30° 40° 50° 60° directions are shown. Further, the four directions of top, bottom, left and right in the figure correspond to the four directions shown in FIG. Here 70.71.72.
73 are equal contrast lines with contrast ratios of 1.5, 10.20, respectively. Also, the shaded area is
This is an area where the contrast ratio becomes 1 or less and the display is inverted.

このように、従来のNTNモードを利用した液晶電気光
学素子は、特に上方向の視角が狭い。これは非選択時の
光量が視角方向によって大きく変化して、表示の反転が
起こるためである。この表示の反転は、心理的に視角を
狭く感じさせる大きな要因となっている。
As described above, the conventional liquid crystal electro-optical device using the NTN mode has a particularly narrow viewing angle in the upward direction. This is because the amount of light when not selected changes greatly depending on the viewing angle direction, causing the display to be reversed. This inversion of the display is a major factor in psychologically making the viewing angle seem narrower.

本発明はこのような課題を解決するもので、その目的と
するところは、視角の広い液晶電気光学素子を提供する
ところにある。
The present invention is intended to solve these problems, and its purpose is to provide a liquid crystal electro-optical element with a wide viewing angle.

[課題を解決するための手段] 本発明の液晶電気光学素子は、対向する2枚の電極基板
間にねじれ配向した液晶を挟持してなる液晶セルと、前
記液晶以外に少なくとも一層の光学的異方体と、それら
を挟んで両側に配置された一対の偏光板とを備えた液晶
電気光学素子において、前記光学的異方体が有する3つ
の主要な屈折率N1o、  N2o、  N3eの内、
ある1つの屈折率N 32が他の2つの屈折率N1o、
N2oよりも小さく、かつその屈折率N3eに対応する
軸が、前記液晶セルの基板表面に対してほぼ水平な方向
にあることを特徴とする。
[Means for Solving the Problems] The liquid crystal electro-optical device of the present invention includes a liquid crystal cell comprising a twistedly oriented liquid crystal sandwiched between two opposing electrode substrates, and at least one optically different layer in addition to the liquid crystal. In a liquid crystal electro-optical element comprising a parallelepiped and a pair of polarizing plates disposed on both sides of the parallelepiped, the optically anisotropic body has three main refractive indices N1o, N2o, N3e,
One refractive index N32 is the other two refractive index N1o,
It is characterized in that an axis smaller than N2o and corresponding to its refractive index N3e is in a direction substantially horizontal to the substrate surface of the liquid crystal cell.

また、前記光学的異方体が、少なくとも2枚の高分子延
伸フィルムを積層したものであることを特徴とする。
Further, the optically anisotropic body is characterized in that at least two polymer stretched films are laminated.

また、前記光学的異方体が、2枚の基板間に光学的に負
の一軸性を有し、ねじれ配向した液晶を挟持してなる液
晶セルであることを特徴とする。
Further, the optically anisotropic body is a liquid crystal cell formed by sandwiching a twistedly oriented liquid crystal having optically negative uniaxiality between two substrates.

[作用] 従来の液晶電気光゛字素子における色づき補償用。[Effect] For color compensation in conventional liquid crystal electro-optical elements.

の光学的異方体は、パネル面に垂直な方向の補償を主眼
として設計されたものであって、それ以外の方向の補償
については考慮されていない。
The optically anisotropic body was designed with a focus on compensation in the direction perpendicular to the panel surface, and compensation in other directions was not considered.

第10図で、従来の液晶電気光学素子の光学補償のしく
みを説明する。ここでは簡単のために液晶セルのねじれ
角が0″の場合を考える。表示用の液晶セルの屈折率楕
円体81と、色づき補償用の光学的異方体の屈折率楕円
体83とは、いずれも菓巻型の回転楕円体である。液晶
セルの屈折率楕円体81は、3つの主要な屈折率n1o
、n2o、n3eを有するが、この内n3eは液晶分子
の長軸方向の屈折率、n2oはパネル面内でこれに重直
な方向の屈折率、nloはパネル面に垂直な方向の屈折
率である。一方の光学的異方体の屈折率楕円体83も、
3つの主要な屈折1Nio、N2o、N5ef!:有す
る。ここで光学的異方体が一軸延伸フィルムの場合には
、N3eが一軸延伸フイルムの延伸方向の屈折率、N2
oがフィルム面内でこれに垂直な方向の屈折率、Nlo
がフィルムの膜厚方向の屈折率である。また光学的異方
体が液晶セルの場合には、N3eが液晶分子の長軸方向
の屈折率、N2oはパネル面内でこれに垂直な方向の屈
折率、N10はパネル面に垂直な方向の屈折率である。
The optical compensation mechanism of a conventional liquid crystal electro-optical element will be explained with reference to FIG. Here, for simplicity, we will consider the case where the twist angle of the liquid crystal cell is 0''.The refractive index ellipsoid 81 of the liquid crystal cell for display and the refractive index ellipsoid 83 of the optically anisotropic body for color compensation are as follows. Both are confectionery-shaped spheroids.The refractive index ellipsoid 81 of the liquid crystal cell has three main refractive indices n1o
, n2o, and n3e, of which n3e is the refractive index in the long axis direction of the liquid crystal molecule, n2o is the refractive index in the direction perpendicular to this within the panel surface, and nlo is the refractive index in the direction perpendicular to the panel surface. be. One optically anisotropic refractive index ellipsoid 83 is also
Three major refractions 1Nio, N2o, N5ef! :Have. In the case where the optically anisotropic material is a uniaxially stretched film, N3e is the refractive index in the stretching direction of the uniaxially stretched film, N2
o is the refractive index in the direction perpendicular to the film plane, Nlo
is the refractive index in the thickness direction of the film. In addition, when the optically anisotropic body is a liquid crystal cell, N3e is the refractive index in the long axis direction of the liquid crystal molecules, N2o is the refractive index in the direction perpendicular to this within the panel surface, and N10 is the refractive index in the direction perpendicular to the panel surface. It is the refractive index.

81及び83の2つの屈折率楕円体は、その光学的な異
常軸が互いに直角になるように積み重ねられているので
、パネル面に垂直な方向(図ではZ軸方向)から入射し
た光は、液晶セルと光学的異方体とで、常光、異常光が
入れ替わり、そのままの状態で出射する。従って、例え
ばクロスニコル下では表示が真黒になって、全ての色の
光について完全な補償がなされるのである。
The two index ellipsoids 81 and 83 are stacked so that their optical axes are perpendicular to each other, so light incident from the direction perpendicular to the panel surface (Z-axis direction in the figure) is Ordinary light and extraordinary light are exchanged between the liquid crystal cell and the optically anisotropic body, and are emitted as they are. Therefore, for example, under crossed Nicol conditions, the display becomes pitch black, and all colors of light are completely compensated.

ところが、Z軸方向以外の方向から入射した光に対して
は、光学的異方体の補償は充分ではない。
However, the compensation of the optical anisotropic body is not sufficient for light incident from directions other than the Z-axis direction.

例えば、Z軸方向から液晶セルの液晶の長軸方向(図で
はX軸方向)に、ある角度だけ傾いた方向から入射する
光を考えてみよう。この方向からは、液晶セルの異常光
の屈折率neが見かけ上小さくなるために、液晶セルの
屈折率異方性Δnの値が小さくなる。ところが、一方の
光学的異方体の常光、異常光の屈折率N01NeO値は
入射角とは関係なく一定であるため、液晶セルと光学的
異方体とでリターデーションに差が生じ、充分な補償が
できなくなる。
For example, consider light incident from a direction inclined at a certain angle from the Z-axis direction to the long axis direction of the liquid crystal of the liquid crystal cell (X-axis direction in the figure). From this direction, the refractive index ne of the extraordinary light of the liquid crystal cell becomes apparently small, so the value of the refractive index anisotropy Δn of the liquid crystal cell becomes small. However, since the refractive index N01NeO value of the ordinary light and extraordinary light of one optically anisotropic body is constant regardless of the incident angle, there is a difference in retardation between the liquid crystal cell and the optically anisotropic body, and a sufficient Compensation will not be possible.

本発明では、色づき補償用の光学的異方体の屈折率楕円
体を円盤型にすることによって、より広い視野角での補
償を可能にした。第6図は本発明の液晶電気光学素子の
光学補償のしくみを示す図である。ここでは従来と異な
り、光学的異方体の異常光の屈折率N3eが、常光の屈
折率N1o、N2゜よりも小さくなっている。このよう
な屈折率楕円体82は、Z軸方向から見る限り従来と全
く等価であるが、それ以外の方向については異なる性質
を有する。例えばZ軸方向からX軸方向にある角度だけ
傾いた方向から入射した光を考えた場合を考えてみよう
。この方向からは、前述したように、液晶セルのneが
見かけ上小さくなるために、Δn(=ne−no)の値
が小さくなる。これに対して光学的異方体のΔN(=N
o−Ne)の値も、Neが大きくなるために、同様に小
さくなる。このように光学的異方体の屈折率楕円体を円
盤型にすると、Z軸方向から傾いた方向において生じる
液晶セルと光学的異方体のりタープ−ジョンの差を、最
小限に抑えることができる。同じような補償関係はX軸
方向に傾いた方向についてのみならず、他のあらゆる方
向から入射した光についても同様である。従って、本発
明によれば従来よりも広い視野領域での補償が可能にな
り、より広い視角が得られることになる。
In the present invention, by making the refractive index ellipsoid, which is an optically anisotropic object for color compensation, into a disk shape, it is possible to perform compensation over a wider viewing angle. FIG. 6 is a diagram showing the optical compensation mechanism of the liquid crystal electro-optical element of the present invention. Here, unlike the conventional case, the refractive index N3e of the extraordinary light of the optically anisotropic body is smaller than the refractive index N1o and N2° of the ordinary light. Although such a refractive index ellipsoid 82 is completely equivalent to the conventional one as far as it is viewed from the Z-axis direction, it has different properties in other directions. For example, consider a case where light is incident from a direction tilted by a certain angle from the Z-axis direction to the X-axis direction. From this direction, as described above, since ne of the liquid crystal cell appears to be smaller, the value of Δn (=ne−no) becomes smaller. In contrast, ΔN (=N
The value of o−Ne) similarly decreases because Ne increases. By making the refractive index ellipsoid of the optically anisotropic body into a disk shape in this way, it is possible to minimize the difference between the liquid crystal cell and the optically anisotropic body's turbulence, which occurs in a direction tilted from the Z-axis direction. can. A similar compensation relationship holds not only for the direction inclined to the X-axis direction but also for light incident from all other directions. Therefore, according to the present invention, compensation can be performed in a wider viewing area than in the past, and a wider viewing angle can be obtained.

液晶セルにねじれ角がある場合も、補償の原理はこれと
全く同様である。その場合は、第7図と第5図に示され
るように、光学的異方体の側も液晶セルとは逆方向のね
じれ角を有する。そして、液晶セルと光学的異方体との
接面に対称な2つの層(図中矢印17で対応関係を示し
た)が、上記の補償関係にある。従って、ねじれ角があ
る場合にも、光学的異方体の屈折率楕円体が円盤型の形
状を有している方が、視角が広くなる。
Even when the liquid crystal cell has a twist angle, the compensation principle is exactly the same. In that case, as shown in FIGS. 7 and 5, the side of the optically anisotropic body also has a twist angle in the opposite direction to that of the liquid crystal cell. The two layers (correspondence indicated by arrow 17 in the figure) that are symmetrical to the plane of contact between the liquid crystal cell and the optically anisotropic body have the above-mentioned compensatory relationship. Therefore, even when there is a twist angle, the viewing angle is wider when the refractive index ellipsoid of the optically anisotropic body has a disk shape.

[実施例] 以下、実施例により本発明の詳細を示す。[Example] Hereinafter, the details of the present invention will be shown by examples.

(実施例1) 第1図に、本発明の実施例1における液晶電気光学素子
の断面図を示す。図中、1は上側偏光板、2は液晶セル
(表示セル)、3は光学的異方体、4は下側偏光板であ
る。表示セルには、チッソ社製の液晶5S−4008(
Δn=0.15)を用い、セルギャップdが6.0μm
のセルにねじれ配向させた。この時、リターデーション
Δndは0.90μmになる。
(Example 1) FIG. 1 shows a cross-sectional view of a liquid crystal electro-optical element in Example 1 of the present invention. In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell (display cell), 3 is an optically anisotropic body, and 4 is a lower polarizing plate. The display cell is a liquid crystal 5S-4008 manufactured by Chisso Corporation (
Δn=0.15), cell gap d is 6.0 μm
The cells were twisted and oriented. At this time, the retardation Δnd becomes 0.90 μm.

一方、光学的異方体には、ポリメタクリル酸メチル(P
MMA)を、シリコンオイル中1000Cで延伸して得
た一軸延伸フィルムを10層積層したものを用いた。通
常の高分子フィルムは、延伸を行うと延伸方向の屈折率
が増加する性質があるが、PMMAやポリα−フルオロ
アクリル酸メチル(PMFA)等は、逆に延伸方向の屈
折率が減少する性質を持っている。この−軸延伸フィル
ムの屈折率は、N1o=1. 516、N2o=1. 
518、N5e=1.509である。−層あたりの層厚
は10μm、リターデーションは、0.09μmである
On the other hand, polymethyl methacrylate (P
A stack of 10 uniaxially stretched films obtained by stretching MMA) in silicone oil at 1000C was used. Normal polymer films have the property that their refractive index increases in the stretching direction when stretched, but PMMA, poly-α-methyl fluoroacrylate (PMFA), etc. have the property that their refractive index decreases in the stretching direction. have. The refractive index of this -axially stretched film is N1o=1. 516, N2o=1.
518, N5e=1.509. - The layer thickness per layer is 10 μm, the retardation is 0.09 μm.

第2図には、各軸の関係図を示した。上側偏光板の偏光
軸(吸収軸)方向20が表示セルの上基板のラビング方
向21となす角度40を左45゜表示セルのねじれ角4
1を左210° 光学的異方体の1層目の一軸延伸フィ
ルムの延伸方向30が、表示セルの下基板のラビング方
向22となす角度45を右10.5° 光学的異方体の
n+1層目の一軸延伸フィルムの延伸方向がn層目の一
軸延伸フィルムの延伸方向となす角度を右21゜上側偏
光板の偏光軸(吸収軸)方向20と下側偏光板の偏光軸
(吸収軸)方向25がなす角度46を90° (即ちク
ロスニコル)とした。
FIG. 2 shows a diagram of the relationship between each axis. The angle 40 that the polarization axis (absorption axis) direction 20 of the upper polarizing plate makes with the rubbing direction 21 of the upper substrate of the display cell is 45 degrees to the left.The twist angle of the display cell is 4.
1 to the left 210° Angle 45 that the stretching direction 30 of the first layer of uniaxially stretched film of the optically anisotropic body makes with the rubbing direction 22 of the lower substrate of the display cell is 10.5° to the right n+1 of the optically anisotropic body The angle between the stretching direction of the uniaxially stretched film of the layer 1 and the stretching direction of the uniaxially stretched film of the nth layer is 21° to the right. ) The angle 46 formed by the direction 25 was 90° (that is, crossed Nicols).

本発明の液晶電気光学素子は、パネル面に垂直な方向か
ら見る限り、第3図に示したように、従来の液晶電気光
学素子とほぼ同様の特性を示す。
As shown in FIG. 3, the liquid crystal electro-optical element of the present invention exhibits almost the same characteristics as the conventional liquid crystal electro-optical element, as long as it is viewed from the direction perpendicular to the panel surface.

第4図に、実施例1における液晶電気光学素子の視角特
性を示した。ここで70.71.72.73は、それぞ
れコントラスト比1.5.10.20の等コントラスト
線を示している。本発明は、従来よりも非選択時の光量
変化が少ないために、来の第9図と比較すると、特に上
方向の視角が広くなっている。
FIG. 4 shows the viewing angle characteristics of the liquid crystal electro-optical element in Example 1. Here, 70, 71, 72, and 73 indicate equal contrast lines with a contrast ratio of 1.5, 10.20, respectively. In the present invention, since there is less change in the amount of light during non-selection than in the conventional case, the viewing angle in the upward direction is particularly wider compared to the conventional one shown in FIG.

(実施例2) 実施例1では、光学的異方体として高分子の延伸フィル
ムを用いたが、液晶セルを用いることもできる。光学的
異方体に第6図に示すような円盤型の屈折率楕円体をも
たせるためには、光学的に負の一軸性を有する(即ちN
e<Noとなる)液晶を用いればよい。光学的に負の一
軸性を有する液晶としては、例えばディスコティック液
晶やコレステリック液晶等が考えられるが、ディスコテ
ィック液晶を用いる方が、配向の容易さという点で有利
である。そこでディスコティック液晶を、第5図の15
に示すように、光軸が基板に対して水平な方向を向き、
かつ基板に垂直な方向にねじれをもつように、ラビング
法により配向させた。
(Example 2) In Example 1, a stretched polymer film was used as the optically anisotropic body, but a liquid crystal cell may also be used. In order to make an optically anisotropic body have a disc-shaped refractive index ellipsoid as shown in FIG.
A liquid crystal (e<No) may be used. Examples of liquid crystals having optically negative uniaxiality include discotic liquid crystals and cholesteric liquid crystals, but the use of discotic liquid crystals is advantageous in terms of ease of alignment. Therefore, we installed a discotic liquid crystal at 15 in Figure 5.
As shown in , the optical axis is oriented horizontally to the substrate,
And it was oriented by a rubbing method so that it had a twist in the direction perpendicular to the substrate.

第5図と第8図にそれぞれ本発明の実施例2における液
晶電気光学素子の断面図と軸関係図を示す。実施例2で
得られる光学特性、並びに視角特性は、第3図、第4図
に示した実施例1の場合と同様である。実施例2の特徴
は、実施例1のように一軸延伸フィルムを用いる場合に
比べて、光学的異方体の層厚を均一にしやすく、また多
数のフィルムを貼り合わせる工程が不要になる点にある
FIG. 5 and FIG. 8 respectively show a cross-sectional view and an axial relationship diagram of a liquid crystal electro-optical element in Example 2 of the present invention. The optical characteristics and viewing angle characteristics obtained in Example 2 are the same as those in Example 1 shown in FIGS. 3 and 4. The characteristics of Example 2 are that, compared to the case of using a uniaxially stretched film as in Example 1, it is easier to make the layer thickness of the optically anisotropic body uniform, and the process of laminating multiple films is not required. be.

[発明の効果] 以上述べたように、本発明によれば、光学的異方体とし
て、光学的に負の一軸性を有する高分子の延伸フィルム
、あるいは液晶セルを用いることによって、視角を広く
するという効果を有する。
[Effects of the Invention] As described above, according to the present invention, the viewing angle can be widened by using a stretched polymer film or a liquid crystal cell having optically negative uniaxiality as the optically anisotropic body. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1における液晶電気光学素子
の断面図である。 第2図は、本発明の実施例1における液晶電気光学素子
の各軸の関係を示す図である。 第3図は、本発明及び従来の液晶電気光学素子の電気光
学特性を示す図である。 第4図は、本発明の液晶電気光学素子の視角特性を示す
図である。 第5図は、本発明の実施例2における液晶電気光学素子
の断面図である。 第6図は、本発明の液晶電気光学素子の光学補償のしく
みを示す図である。 第7図は、従来の液晶電気光学素子の断面図である。 第8図は、本発明の実施例2及び従来の液晶電気光学素
子の各軸の関係を示す図である。 第9図は、従来の液晶電気光学素子の視角特性を示す図
である。 第10図は、従来の液晶電気光学素子の光学補償のしく
みを示す図である。 1、上側偏光板 2、液晶セル(表示セル) 3、光学的異方体(N 3e< N 2o 〜N lo
)4゜ 5゜ 6゜ 7゜ 8゜ 9゜ 10゜ 11゜ 12゜ 13゜ 14゜ 15゜ り液晶 16゜ 17゜ 20゜ 21゜ 22゜ 23゜ 24゜ 下側偏光板 光学的異方体(N 3e> N 2o 〜N lo)表
示セルの上基板 表示セルの下基板 補償セルの上基板 補償セルの下基板 透明電極 左回りのねじれ配向をしたネマチック液晶1層目の一軸
延伸フィルム 2N目の一軸延伸フィルム 10層目の一軸延伸フィルム 右回りのねじれ配向をしたディスコティッ右回りのねじ
れ配向をしたネマチック液晶補償関係にある2つの層の
対応を示す矢印上側偏光板1の偏光軸(吸収ね)の方向
表示セルの上基板6のラビング方向 表示セルの下基板7のラビング方向 補償セルの上基板8のラビング方向 補償セルの下基板9のラビング方向 25、下側偏光板4の偏光軸(吸収軸)の方向30、I
JiJ目の一軸延伸フィルム12の延伸方向31.27
!目の一軸延伸フィルム13の延伸方向32〜38.3
〜9層目の一軸延伸フィルムの延伸方向 39、lOJ!J目の一軸延伸フィルム14の延伸方向 40、上側偏光板の偏光軸の方向20が、表示セルの上
基板のラビング方向21となす角度41、表示セルのね
じれ角 42、表示セルの下基板のラビング方向22と補償セル
の上基板のラビング方向23とがなす角度43、補償セ
ルのねじれ角 44、下側偏光板の偏光軸の方向25が、補イにセルの
下基板のラビング方向24となす角度45.1薄目の一
軸延伸フィルムの延伸方向30が、表示セルの下基板の
ラビング方向22となす角度 46、上側偏光板の偏光軸の方向20と下側偏光板の偏
光軸の方向25とがなす角度 50.2層目の一軸延伸フイルムの延伸方向31が、I
N目の一軸延伸フィルムの延伸方向30となす角度 51〜58.n+1層目の一軸延伸フイルムの延伸方向
が、nJiJ目の一軸延伸フィルムの延伸方向となす角
度 60、波長450nmの光(青色光)に対する電圧透過
率曲線 61、波長550nmの光(緑色光)に対する電圧透過
率曲線 62、波長650nmの光(赤色光)に対する電圧透過
率曲線 70、コントラスト比1の等コントラスト線71、コン
トラスト比5の等コントラスト線72、コントラスト比
10の等コントラスト線73、コントラスト比20の等
コントラスト線81、液晶セルの屈折率楕円体 82、本発明の光学的異方体の屈折率楕円体83、従来
の光学的異方体の屈折率楕円体数  上 上 4も 第2図 2.0 2、S トν ナロ @ F己 (\)′ン 第30 第5図 4斗 君8図 第7図 下 第9図
FIG. 1 is a cross-sectional view of a liquid crystal electro-optical element in Example 1 of the present invention. FIG. 2 is a diagram showing the relationship between the respective axes of the liquid crystal electro-optical element in Example 1 of the present invention. FIG. 3 is a diagram showing electro-optical characteristics of the present invention and a conventional liquid crystal electro-optical element. FIG. 4 is a diagram showing viewing angle characteristics of the liquid crystal electro-optical element of the present invention. FIG. 5 is a cross-sectional view of a liquid crystal electro-optical element in Example 2 of the present invention. FIG. 6 is a diagram showing the optical compensation mechanism of the liquid crystal electro-optical element of the present invention. FIG. 7 is a cross-sectional view of a conventional liquid crystal electro-optical element. FIG. 8 is a diagram showing the relationship between the axes of Example 2 of the present invention and a conventional liquid crystal electro-optical element. FIG. 9 is a diagram showing viewing angle characteristics of a conventional liquid crystal electro-optical element. FIG. 10 is a diagram showing the optical compensation mechanism of a conventional liquid crystal electro-optical element. 1. Upper polarizing plate 2. Liquid crystal cell (display cell) 3. Optical anisotropic body (N 3e < N 2o ~N lo
) 4゜5゜6゜7゜8゜9゜10゜11゜12゜13゜14゜15゜Liquid crystal 16゜17゜20゜21゜22゜23゜24゜Lower polarizer optically anisotropic (N 3e> N 2o ~ N lo) Upper substrate of display cell Lower substrate of display cell Upper substrate of compensation cell Lower substrate of compensation cell Transparent electrode Counterclockwise twisted oriented nematic liquid crystal 1st layer uniaxially stretched film 2Nth The 10th layer of the uniaxially stretched film is a uniaxially stretched film with clockwise twisted orientation.Nematic liquid crystal with clockwise twisted orientation. Rubbing direction 25 of the lower substrate 9 of the rubbing direction compensation cell of the upper substrate 8 of the rubbing direction compensation cell of the upper substrate 8 of the rubbing direction display cell of the upper substrate 6, and the polarization axis of the lower polarizing plate 4 (absorption axis) direction 30, I
Stretching direction of JiJ-th uniaxially stretched film 12 31.27
! Stretching direction 32 to 38.3 of the uniaxially stretched film 13
~Stretching direction 39 of the 9th layer uniaxially stretched film, lOJ! The stretching direction 40 of the J-th uniaxially stretched film 14, the angle 41 between the direction 20 of the polarization axis of the upper polarizing plate and the rubbing direction 21 of the upper substrate of the display cell, the twist angle 42 of the display cell, and the angle 41 of the direction of the polarization axis of the upper polarizing plate with the rubbing direction 21 of the upper substrate of the display cell, The angle 43 between the rubbing direction 22 and the rubbing direction 23 of the upper substrate of the compensation cell, the twist angle 44 of the compensation cell, and the direction 25 of the polarization axis of the lower polarizing plate are complementary to the rubbing direction 24 of the lower substrate of the cell. Angle 45.1 Angle 46 that the stretching direction 30 of the thin uniaxially stretched film makes with the rubbing direction 22 of the lower substrate of the display cell, A direction 20 of the polarization axis of the upper polarizing plate and a direction 25 of the polarization axis of the lower polarizing plate. The angle 50.The stretching direction 31 of the second layer uniaxially stretched film is I
The angle formed with the stretching direction 30 of the Nth uniaxially stretched film is 51 to 58. An angle 60 between the stretching direction of the n+1th layer uniaxially stretched film and the stretching direction of the nJiJth uniaxially stretched film, a voltage transmittance curve 61 for light with a wavelength of 450 nm (blue light), and a voltage transmittance curve 61 for light with a wavelength of 550 nm (green light). Voltage transmittance curve 62, voltage transmittance curve 70 for light with a wavelength of 650 nm (red light), isocontrast line 71 with contrast ratio 1, isocontrast line 72 with contrast ratio 5, isocontrast line 73 with contrast ratio 10, contrast ratio 20 isocontrast line 81, refractive index ellipsoid 82 of the liquid crystal cell, refractive index ellipsoid 83 of the optically anisotropic body of the present invention, refractive index ellipsoid number of the conventional optically anisotropic body. Figure 2.0 2, S To ν Naro @ F Self (\)'n No. 30 Figure 5 4 Dokun 8 Figure 7 Lower Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)対向する2枚の電極基板間にねじれ配向した液晶
を挟持してなる液晶セルと、前記液晶以外に少なくとも
一層の光学的異方体と、それらを挟んで両側に配置され
た一対の偏光板とを備えた液晶電気光学素子において、
前記光学的異方体が有する3つの主要な屈折率N1_o
、N2_o、N3_eの内、ある1つの屈折率N3_e
が他の2つの屈折率N1_o、N2_oよりも小さく、
かつその屈折率N3_eに対応する軸が、前記液晶セル
の基板表面に対してほぼ水平な方向にあることを特徴と
する液晶電気光学素子。
(1) A liquid crystal cell consisting of a twistedly oriented liquid crystal sandwiched between two opposing electrode substrates, at least one layer of optically anisotropic material other than the liquid crystal, and a pair of liquid crystal cells disposed on both sides with the liquid crystal interposed therebetween. In a liquid crystal electro-optical element equipped with a polarizing plate,
Three main refractive indices N1_o that the optically anisotropic body has
, N2_o, N3_e, one refractive index N3_e
is smaller than the other two refractive indices N1_o and N2_o,
A liquid crystal electro-optical element, wherein the axis corresponding to the refractive index N3_e is in a direction substantially horizontal to the substrate surface of the liquid crystal cell.
(2)前記光学的異方体が、少なくとも2枚の高分子延
伸フィルムを積層したものであることを特徴とする請求
項1記載の液晶電気光学素子。
(2) The liquid crystal electro-optical element according to claim 1, wherein the optically anisotropic body is a laminate of at least two stretched polymer films.
JP26529988A 1988-10-21 1988-10-21 Liquid crystal electrooptic element Pending JPH02111918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26529988A JPH02111918A (en) 1988-10-21 1988-10-21 Liquid crystal electrooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26529988A JPH02111918A (en) 1988-10-21 1988-10-21 Liquid crystal electrooptic element

Publications (1)

Publication Number Publication Date
JPH02111918A true JPH02111918A (en) 1990-04-24

Family

ID=17415275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26529988A Pending JPH02111918A (en) 1988-10-21 1988-10-21 Liquid crystal electrooptic element

Country Status (1)

Country Link
JP (1) JPH02111918A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275416A (en) * 1989-04-17 1990-11-09 Sharp Corp Liquid crystal display device
JPH02285324A (en) * 1989-04-27 1990-11-22 Asahi Glass Co Ltd Liquid crystal display element
JPH02291519A (en) * 1989-05-01 1990-12-03 Asahi Glass Co Ltd Liquid crystal display element
JPH07281028A (en) * 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd Optical anisotropic sheet and liquid crystal display element using it
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
EP0710869A3 (en) * 1994-10-07 1996-11-27 Seiko Instr Inc Liquid crystal display panel
US5923392A (en) * 1989-03-28 1999-07-13 Asahi Glass Company Ltd. Liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923392A (en) * 1989-03-28 1999-07-13 Asahi Glass Company Ltd. Liquid crystal display device
JPH02275416A (en) * 1989-04-17 1990-11-09 Sharp Corp Liquid crystal display device
JPH02285324A (en) * 1989-04-27 1990-11-22 Asahi Glass Co Ltd Liquid crystal display element
JPH02291519A (en) * 1989-05-01 1990-12-03 Asahi Glass Co Ltd Liquid crystal display element
JPH07281028A (en) * 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd Optical anisotropic sheet and liquid crystal display element using it
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
EP0710869A3 (en) * 1994-10-07 1996-11-27 Seiko Instr Inc Liquid crystal display panel
US5956110A (en) * 1994-10-07 1999-09-21 Seiko Instruments Inc. Liquid crystal display panel and display device

Similar Documents

Publication Publication Date Title
US8294860B2 (en) Liquid crystal display device
EP0498614B1 (en) A liquid crystal display device
US6351299B2 (en) Liquid crystal display device
JP2718078B2 (en) Liquid crystal electro-optical element
JPH04138424A (en) Liquid crystal display device
JPH02111918A (en) Liquid crystal electrooptic element
JPH0915586A (en) Liquid crystal display device
JPH10239683A (en) Reflective-type liquid crystal; display device
US5179458A (en) Liquid crystal electro-optic device with particular relationship between retardation film drawing direction and substrate edge
JP2779822B2 (en) Liquid crystal electro-optical element
JPH03215826A (en) Liquid crystal display device
JP2898501B2 (en) Liquid crystal display
JPH02306217A (en) Liquid crystal electrooptical element
JPH03134622A (en) Liquid crystal electrooptical element
JPH06230368A (en) Phase difference plate and liquid crystal display device formed by using the same
JPH01304422A (en) Liquid crystal device
JP2605064B2 (en) Liquid crystal display device
JPH0369915A (en) Liquid crystal electrooptical element
JPH03134623A (en) Liquid crystal electrooptical element
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JPH09222601A (en) Liquid crystal display element and optically anisotropic element
JPH0519251A (en) Liquid crystal display device
JPH03175417A (en) Liquid crystal device
JPH0243515A (en) Optical compensating liquid crystal display element
JPH1073799A (en) Liquid crystal display element