JP2718078B2 - Liquid crystal electro-optical element - Google Patents

Liquid crystal electro-optical element

Info

Publication number
JP2718078B2
JP2718078B2 JP63198506A JP19850688A JP2718078B2 JP 2718078 B2 JP2718078 B2 JP 2718078B2 JP 63198506 A JP63198506 A JP 63198506A JP 19850688 A JP19850688 A JP 19850688A JP 2718078 B2 JP2718078 B2 JP 2718078B2
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
optical element
optically anisotropic
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63198506A
Other languages
Japanese (ja)
Other versions
JPH0247629A (en
Inventor
治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63198506A priority Critical patent/JP2718078B2/en
Publication of JPH0247629A publication Critical patent/JPH0247629A/en
Application granted granted Critical
Publication of JP2718078B2 publication Critical patent/JP2718078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/14Negative birefingence

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶電気光学素子に関する。Description: TECHNICAL FIELD The present invention relates to a liquid crystal electro-optical element.

[従来の技術] 従来のホモジニアス方式のECBモードは、液晶の複屈
折を制御して表示を行っているために、表示の色づきが
避けられない。この色づきを解消する目的で、表示を行
う液晶セルとは別に、光学的異方体を備えることが従来
から提案されている。
[Prior Art] In the conventional homogeneous ECB mode, display is performed by controlling birefringence of liquid crystal, so that coloring of display is inevitable. For the purpose of eliminating this coloring, it has been conventionally proposed to provide an optically anisotropic body in addition to a liquid crystal cell for performing display.

第6図に、従来の液晶電気光学素子の断面図を示す。
図中、1は上側偏光板、2は液晶セル、5は光学的異方
体、4は下側偏光板である。
FIG. 6 is a sectional view of a conventional liquid crystal electro-optical element.
In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell, 5 is an optically anisotropic body, and 4 is a lower polarizing plate.

液晶セルには、チッソ社製の液晶SS−4008(△n=0.
15)を用いて、2枚の透明電極基板間にホモジニアス配
向させた。また液晶層厚dは、リターデーションΔndが
0.90μmになるよう、6.0μmに設定した。一方、光学
的異方体には、住友化学工業社製の一軸延伸フィルムを
用いた。この一軸延伸フィルムはポリカーボネートを主
成分とする高分子フィルムであり、そのリターデーショ
ンは0.90μmである。
The liquid crystal cell includes a liquid crystal SS-4008 (△ n = 0.
Using (15), homogeneous alignment was performed between two transparent electrode substrates. The retardation Δnd of the liquid crystal layer thickness d is
The thickness was set to 6.0 μm so as to be 0.90 μm. On the other hand, a uniaxially stretched film manufactured by Sumitomo Chemical Co., Ltd. was used as the optically anisotropic body. This uniaxially stretched film is a polymer film containing polycarbonate as a main component, and has a retardation of 0.90 μm.

第7図には、従来の液晶電気光学素子の各軸の関係図
を示した。上側偏光板の偏光軸(吸収軸)方向11が液晶
セルの上基板のラビング方向12となす角度21を左45゜、
液晶セルの下基板のラビング方向13と一軸延伸フィルム
の延伸方向14とのなす角度22を90゜、下側偏光板の偏光
軸(吸収軸)方向15が14となす角度23を左45゜とした。
FIG. 7 shows a relation diagram of each axis of the conventional liquid crystal electro-optical element. The angle 21 between the polarization axis (absorption axis) direction 11 of the upper polarizer and the rubbing direction 12 of the upper substrate of the liquid crystal cell is 45 ° to the left,
The angle 22 between the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film is 90 °, and the angle 23 between the polarization axis (absorption axis) direction 15 of the lower polarizing plate and 14 is 45 ° on the left. did.

以上の条件のもとで作製した、従来の液晶電気光学素
子は、パネル面に垂直な方向から測定すると、第3図に
示すように極めて色づきの少ない電気光学特性が得られ
る。
A conventional liquid crystal electro-optical element manufactured under the above conditions can obtain electro-optical characteristics with very little coloring as shown in FIG. 3 when measured from a direction perpendicular to the panel surface.

[発明が解決しようとする課題] しかしながら、従来の液晶電気光学素子には、表示が
良好に視認できる視角範囲(以下、単に視角と呼ぶ)が
狭いという課題がある。
[Problem to be Solved by the Invention] However, the conventional liquid crystal electro-optical element has a problem that a viewing angle range (hereinafter, simply referred to as a viewing angle) in which a display can be viewed well is narrow.

第8図に、従来の液晶電気光学素子の視角特性を示
す。図の中心はパネル面に垂直な方向を、またその外側
の円は、内から順に垂直方向からの傾き角10゜、20゜、
30゜、40゜、50゜、60゜の方向を示している。また、図
中の上下左右の4方向は、第7図に示した4方向と一致
している。ここで41は、コントラスト比10の等コントラ
スト線である。
FIG. 8 shows viewing angle characteristics of a conventional liquid crystal electro-optical element. The center of the figure is the direction perpendicular to the panel surface, and the outer circles are the inclination angles 10 °, 20 °,
The directions of 30 ゜, 40 ゜, 50 ゜ and 60 ゜ are shown. The four directions of up, down, left, and right in the figure correspond to the four directions shown in FIG. Here, 41 is an iso-contrast line with a contrast ratio of 10.

第8図からもわかるように、従来の液晶電気光学素子
は、著しく視角が狭い。このように視角が狭い原因は、
主として非選択時、即ちオフ時の光量が、見る方向によ
って著しく変化するためである。
As can be seen from FIG. 8, the viewing angle of the conventional liquid crystal electro-optical element is extremely narrow. The cause of such a narrow viewing angle is
This is mainly because the amount of light at the time of non-selection, that is, at the time of off-state changes significantly depending on the viewing direction.

本発明はこのような課題を解決するもので、その目的
とするところは、視角が広く、かつ表示の色づきの少な
い液晶電気光学素子を提供するところにある。
The present invention solves such a problem, and an object of the present invention is to provide a liquid crystal electro-optical element having a wide viewing angle and little display coloration.

[課題を解決するための手段] 本発明の液晶電気光学素子は、一対の基板間に液晶を
挟持してなる液晶セルと、少なくとも一層の光学的異方
体と、一対の偏光板とを有し、前記一対の偏光板の間に
前記液晶セルと前記光学的異方体とが配置されてなる液
晶電気光学素子において、 前記液晶セルにはねじれのないホモジニアス配向した
液晶が挟持されてなり、 前記光学的異方体は、3方向にそれぞれ屈折率N1o、N
2o、及びN3eを有し、前記基板表面に対してほぼ水平な
方向の屈折率を示す前記屈折率N3eの値が他の屈折率N1
o、N2oの値よりも小さい特性を有することを特徴とす
る。
[Means for Solving the Problems] A liquid crystal electro-optical element according to the present invention includes a liquid crystal cell in which a liquid crystal is sandwiched between a pair of substrates, at least one optically anisotropic body, and a pair of polarizing plates. A liquid crystal electro-optical element in which the liquid crystal cell and the optically anisotropic body are arranged between the pair of polarizing plates, wherein the liquid crystal cell is provided with a liquid crystal that is homogeneously aligned without being twisted; Refractions N1o, N in three directions
2o, and N3e, the value of the refractive index N3e indicating a refractive index in a direction substantially horizontal to the substrate surface is another refractive index N1
It is characterized by having characteristics smaller than the values of o and N2o.

また、前記光学的異方体が延伸された高分子フィルム
からなり、前記N3eは前記高分子フィルムの延伸方向の
屈折率であり、前記N1oは前記延伸方向と直交し、前記
高分子フィルムの膜厚方向の屈折率であり、前記N2oは
前記延伸方向及び前記膜厚方向と直交する方向の屈折率
であることを特徴とする。
Further, the optically anisotropic material is formed of a stretched polymer film, wherein N3e is a refractive index in a stretching direction of the polymer film, and N1o is orthogonal to the stretching direction, and a film of the polymer film is formed. N2o is a refractive index in a direction orthogonal to the stretching direction and the film thickness direction.

また、光学的異方体は一対の基板間に光学的に負の一
軸性を有する液晶を挟持してなる液晶セルからなり、前
記N1oはセル厚方向の屈折率であり、前記N3eは前記基板
に対して水平方向の屈折率であり、前記N2oは前記N1o及
び前記N3eと直交する方向の屈折率であることを特徴と
する。
Further, the optically anisotropic body is composed of a liquid crystal cell in which a liquid crystal having optically negative uniaxial property is sandwiched between a pair of substrates, wherein N1o is a refractive index in a cell thickness direction, and N3e is the substrate. And N2o is a refractive index in a direction orthogonal to N1o and N3e.

[作用] 従来の液晶電気光学素子における色づき補償用の光学
的異方体は、パネル面に垂直な方向の補償を主眼として
設計されたものであって、それ以外の方向の補償につい
ては考慮されていない。
[Operation] The optically anisotropic body for color compensation in the conventional liquid crystal electro-optical element is designed mainly for compensation in a direction perpendicular to the panel surface, and compensation in other directions is considered. Not.

第9図は、従来の液晶電気光学素子の光学補償のしく
みを示す図である。液晶セルの屈折率楕円体51と、色づ
き補償用の光学的異方体の屈折率楕円体53とは、いずれ
も葉巻型の回転楕円体である。液晶セルの屈折率楕円体
51は、3つの主要な屈折率n1o、n2o、n3eを有するが、
この内n3eは液晶分子の長軸方向の屈折率、n2oはパネル
面内でこれに垂直な方向の屈折率、n1oはパネル面に垂
直な方向の屈折率である。一方の光学的異方体の屈折率
楕円体53も、3つの主要な屈折率N1o、N2o、N3eを有す
るが、この内N3eは一軸延伸フィルムの延伸方向の屈折
率、N2oはフィルム面内でこれに垂直な方向の屈折率、N
1oはフィルムの膜厚方向の屈折率である。
FIG. 9 is a diagram showing a mechanism of optical compensation of a conventional liquid crystal electro-optical element. The refractive index ellipsoid 51 of the liquid crystal cell and the refractive index ellipsoid 53 of an optically anisotropic body for coloring compensation are both cigar spheroids. Index ellipsoid of liquid crystal cell
51 has three main refractive indices n1o, n2o, n3e,
Among them, n3e is the refractive index in the major axis direction of the liquid crystal molecule, n2o is the refractive index in the direction perpendicular to the panel surface, and n1o is the refractive index in the direction perpendicular to the panel surface. The refractive index ellipsoid 53 of one optically anisotropic body also has three main refractive indices N1o, N2o, and N3e, of which N3e is the refractive index in the stretching direction of the uniaxially stretched film, and N2o is in the film plane. The refractive index perpendicular to this, N
1o is the refractive index in the thickness direction of the film.

51及び53の2つの屈折率楕円体は、その光学的な異常
軸が互いに直角になるように積み重ねられているので、
パネル面に垂直な方向(図ではZ軸方向)から入射した
光は、液晶セルと光学的異方体とで、常光、異常光が入
れ替わり、そのままの状態で出射する。従って、例えば
クロスニコル下では表示が真黒になって、全ての色の光
について完全な補償がなされるのである。
Since the two index ellipsoids 51 and 53 are stacked such that their optical anomalous axes are perpendicular to each other,
Light incident from a direction perpendicular to the panel surface (the Z-axis direction in the figure) is switched between ordinary light and extraordinary light between the liquid crystal cell and the optically anisotropic body, and is emitted as it is. Thus, for example, under crossed Nicols, the display becomes black, and light of all colors is completely compensated.

ところが、Z軸方向以外の方向から入射した光に対し
ては、光学的異方体の補償は充分ではない。例えば、Z
軸方向から液晶セルの液晶の長軸方向(図ではX軸方
向)に、ある角度だけ傾いた方向から入射する光を考え
てみよう。この方向からは、液晶セルの異常光の屈折率
neが見かけ上小さくなるために、液晶セルの屈折率異方
性Δnの値も小さくなる。ところが、一方の光学的異方
体の常光、異常光の屈折率No、Neの値は入射角とは関係
なく一定であるため、液晶セルと光学的異方体とでリタ
ーデーションに差が生じ、充分な補償ができなくなる。
However, for light incident from a direction other than the Z-axis direction, compensation of the optically anisotropic body is not sufficient. For example, Z
Consider light incident from a direction inclined by a certain angle from the axial direction to the major axis direction of the liquid crystal of the liquid crystal cell (the X-axis direction in the figure). From this direction, the refractive index of the extraordinary light of the liquid crystal cell
Since ne is apparently small, the value of the refractive index anisotropy Δn of the liquid crystal cell is also small. However, since the refractive index No and Ne of ordinary light and extraordinary light of one optical anisotropic substance are constant irrespective of the angle of incidence, there is a difference in retardation between the liquid crystal cell and the optical anisotropic substance. , Sufficient compensation cannot be achieved.

本発明では、光学的異方体の屈折率楕円体を円盤型に
することによって、より広い視野角での補償を可能にし
た。第5図は本発明の液晶電気光学素子の光学補償のし
くみを示す図である。ここでは従来と異なり、光学的異
方体の異常光の屈折率N3eが、常光の屈折率N1o、N2oよ
りも小さくなっている。このような屈折率楕円体52は、
Z軸方向から見る限り、従来と全く等価である。ところ
が、例えばZ軸方向からX軸方向にある角度だけ傾いた
方向から入射した光を考えた場合、入射角に応じて液晶
セルのneは小さくなってΔn(≡ne−no)を小さくする
のに対し、光学的異方体のNeはそれを補償するように大
きくなってΔN(≡No−Ne)を小さくする。このような
補償関係は他のあらゆる方向から入射した光についても
同様である。従って、本発明によれば、従来よりも広い
領域での補償が可能になり、より広い視角が得られるこ
とになる。
In the present invention, compensation is possible at a wider viewing angle by making the refractive index ellipsoid of the optically anisotropic body into a disk shape. FIG. 5 is a diagram showing a mechanism of optical compensation of the liquid crystal electro-optical element of the present invention. Here, unlike the conventional case, the refractive index N3e of the extraordinary light of the optically anisotropic body is smaller than the refractive indexes N1o and N2o of the ordinary light. Such an index ellipsoid 52,
As seen from the Z-axis direction, it is completely equivalent to the conventional one. However, for example, when considering light incident from a direction inclined at a certain angle in the X-axis direction from the Z-axis direction, ne of the liquid crystal cell decreases according to the incident angle, and Δn (≡ne−no) decreases. On the other hand, Ne of the optically anisotropic body increases to compensate for it, and ΔN (ΔNo−Ne) decreases. Such a compensation relationship is the same for light incident from all other directions. Therefore, according to the present invention, it is possible to perform compensation in a wider area than before, and a wider viewing angle can be obtained.

[実施例] 以下、実施例により本発明の詳細を示す。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.

(実施例1) 第1図に、本発明の実施例1における液晶電気光学素
子の断面図を示す。図中、1は上側偏光板、2は液晶セ
ル、3は光学的異方体、4は下側偏光板である。液晶セ
ルには、チッソ社製の液晶SS−4008(△n=0.15)を用
いて、2枚の透明電極基板間にはホモジニアス配向させ
た。また液晶層厚dは、リターデーションΔndが0.90μ
mになるよう、6.0μmに設定した。一方、光学的異方
体には、ポリα−フルオロアクリル酸メチル(PMFA)
を、シリコンオイル中100℃で延伸して得た一軸延伸フ
ィルムを用いた。通常の高分子フィルムは、延伸を行う
と延伸方向の屈折率が増加する性質があるが、PMFAやポ
リメタクリル酸メチル(PMMA)等は、逆に延伸方向の屈
折率が減少する性質を持っている。この一軸延伸フィル
ムの屈折率は、N1o=1.534、N2o=1.538、N3e=1.502で
ある。膜厚は25μmであるので、リターデーションは、
0.90μmとなる。
Example 1 FIG. 1 shows a sectional view of a liquid crystal electro-optical element according to Example 1 of the present invention. In the figure, 1 is an upper polarizing plate, 2 is a liquid crystal cell, 3 is an optically anisotropic body, and 4 is a lower polarizing plate. For the liquid crystal cell, a liquid crystal SS-4008 (Δn = 0.15) manufactured by Chisso was used, and a homogeneous alignment was performed between the two transparent electrode substrates. The retardation Δnd of the liquid crystal layer thickness d is 0.90 μm.
m was set to 6.0 μm. On the other hand, optically anisotropic materials include poly-α-methyl fluoroacrylate (PMFA)
Was used at 100 ° C. to obtain a uniaxially stretched film. Ordinary polymer films have the property of increasing the refractive index in the stretching direction when stretched, whereas PMFA and polymethyl methacrylate (PMMA) have the property of decreasing the refractive index in the stretching direction. I have. The refractive index of this uniaxially stretched film is N1o = 1.534, N2o = 1.538, and N3e = 1.502. Since the film thickness is 25 μm, the retardation is
0.90 μm.

第2図には、各軸の関係図を示した。上側偏光板の偏
光軸(吸収軸)方向11が液晶セルの上基板のラビング方
向12となす角度21を左45゜、液晶セルの下基板のラビン
グ方向13と一軸延伸フィルムの延伸方向14とのなす角度
22を0゜、下側偏光板の偏光軸(吸収軸)方向15が14と
なす角度23を右45゜とした。
FIG. 2 shows a relationship diagram of each axis. The angle 21 between the polarization axis (absorption axis) direction 11 of the upper polarizer and the rubbing direction 12 of the upper substrate of the liquid crystal cell is 45 ° to the left, and the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film. Eggplant
22 was set to 0 °, and the angle 23 between the polarization axis (absorption axis) direction 15 of the lower polarizing plate and 14 was set to 45 ° to the right.

本発明の液晶電気光学素子は、パネル面に垂直な方向
から見る限り、第3図に示したように、従来の液晶電気
光学素子と同様の特性を示す。
As shown in FIG. 3, the liquid crystal electro-optical element of the present invention exhibits the same characteristics as those of the conventional liquid crystal electro-optical element as seen from the direction perpendicular to the panel surface.

第4図に、実施例1における液晶電気光学素子の視角
特性を示した。ここで41は、コントラスト比10の等コン
トラスト線を示している。第4図を第8図と比較する
と、特に左右方向の視角が大きく広がっていることがわ
かる。
FIG. 4 shows the viewing angle characteristics of the liquid crystal electro-optical element in Example 1. Here, reference numeral 41 denotes an iso-contrast line having a contrast ratio of 10. Comparing FIG. 4 with FIG. 8, it can be seen that the viewing angle in the left-right direction is particularly large.

(実施例2) 実施例1では、光学的異方体として高分子の延伸フィ
ルムを用いたが、液晶セルを用いることもできる。光学
的異方体に第5図に示すような円盤型の屈折率楕円体を
もたせるためには、光学的に負の一軸性を有する(即ち
Ne<Noとなる)液晶を、光軸が基板に対して水平な方向
を向くように配向させればよい。光学的に負の一軸性を
有する液晶としては、例えばディスコティック液晶やコ
レステリック液晶等が考えられるが、ディスコティック
液晶を用いる方が配向の点で容易である。
(Example 2) In Example 1, a polymer stretched film was used as the optically anisotropic body, but a liquid crystal cell can also be used. In order for the optically anisotropic body to have a disk-shaped refractive index ellipsoid as shown in FIG.
The liquid crystal may be oriented so that the optical axis is oriented in a direction parallel to the substrate. As the liquid crystal having optically negative uniaxiality, for example, a discotic liquid crystal or a cholesteric liquid crystal can be considered, but it is easier to use a discotic liquid crystal in terms of alignment.

第1図と第2図に、それぞれ本発明の実施例2におけ
る液晶電気光学素子の断面図と軸関係図を示す。実施例
2で得られる光学特性、並びに視角特性は、第3図、第
4図に示した実施例1の場合と同様である。実施例2の
特徴は、実施例1のように一軸延伸フィルムを用いる場
合に比べて、光学的異方体の層厚を均一にしやすい点に
ある。
1 and 2 show a sectional view and an axial relation diagram of a liquid crystal electro-optical element according to Example 2 of the present invention, respectively. Optical characteristics and viewing angle characteristics obtained in the second embodiment are the same as those in the first embodiment shown in FIGS. The feature of Example 2 is that the thickness of the optically anisotropic body is easily made uniform as compared with the case of using a uniaxially stretched film as in Example 1.

なお、本発明の液晶電気光学素子は、電圧−透過率特
性の急峻性が悪いために、単純マトリクス方式による大
容量表示には適していない。しかしながら、各画素に能
動素子を設けるアクティブ・マトリクス方式を用いれ
ば、従来のTNモードを用いた場合よりも、視角の広い表
示が可能になる。
It should be noted that the liquid crystal electro-optical element of the present invention is not suitable for large-capacity display by a simple matrix method because the steepness of the voltage-transmittance characteristic is poor. However, if an active matrix method in which an active element is provided in each pixel is used, display with a wider viewing angle can be performed than in the case where a conventional TN mode is used.

[発明の効果] 以上述べたように、本発明は、3方向にそれぞれ屈折
率N1o、N2o、及びN3eを有し、基板表面に対してほぼ水
平な方向の屈折率を示す屈折率N3eの値が他の屈折率N1
o、N2oの値よりも小さい特性を有する光学的異方体、す
なわち光学的に負の特性を有する光学的異方体を配置し
たことにより、液晶セルの色つきを前記光学的異方体に
より補償することができる。また、視野角の広い液晶電
気光学素子を得ることができる。
[Effects of the Invention] As described above, the present invention has refractive indices N1o, N2o, and N3e in three directions, respectively, and indicates the value of the refractive index N3e indicating the refractive index in a direction substantially horizontal to the substrate surface. Is another refractive index N1
o, an optical anisotropic body having characteristics smaller than the value of N2o, that is, by arranging an optical anisotropic body having an optically negative characteristic, the coloring of the liquid crystal cell by the optical anisotropic body. Can compensate. Further, a liquid crystal electro-optical element having a wide viewing angle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の液晶電気光学素子の断面図である。 第2図は、本発明の液晶電気光学素子の各軸の関係を示
す図である。 第3図は、本発明及び従来の液晶電気光学素子の電気光
学特性を示す図である。 第4図は、本発明の液晶電気光学素子の視角特性を示す
図である。 第5図は、本発明の液晶電気光学素子の光学補償のしく
みを示す図である。 第6図は、従来の液晶電気光学素子の断面図である。 第7図は、従来の液晶電気光学素子の各軸の関係を示す
図である。 第8図は、従来の液晶電気光学素子の視角特性を示す図
である。 第9図は、従来の液晶電気光学素子の光学補償のしくみ
を示す図である。 1……上側偏光板 2……液晶セル 3……光学的異方体(N3e<N2o〜N1o) 4……下側偏光板 5……光学的異方体(N3e>N2o〜N1o) 6……上基板 7……下基板 8……透明電極 9……ホモジニアス配向した液晶 11……上側偏光板1の偏光軸(吸収軸)の方向 12……液晶セルの上基板6のラビング方向 13……液晶セルの下基板7のラビング方向 14……一軸延伸フィルムの延伸方向(実施例2において
はディスコティック液晶の光軸方向) 15……下側偏光板4の偏光軸(吸収軸)の方向 21……上側偏光板の偏光軸の方向11が、液晶セルの上基
板のラビング方向12となす角度。 22……液晶セルの下基板のラビング方向13と一軸延伸フ
ィルムの延伸方向14とのなす角度。 23……下側偏光板の偏光軸の方向15が一軸延伸フィルム
の延伸方向14となす角度。 31……波長450nmの光(青色光)に対する電圧透過率曲
線。 32……波長550nmの光(緑色光)に対する電圧透過率曲
線。 33……波長650nmの光(赤色光)に対する電圧透過率曲
線。 41……コントラスト比10の等コントラスト線 51……液晶セルの屈折率楕円体 52……本発明の光学的異方体の屈折率楕円体 53……従来の光学的異方体の屈折率楕円体
FIG. 1 is a sectional view of a liquid crystal electro-optical element according to the present invention. FIG. 2 is a diagram showing the relationship between each axis of the liquid crystal electro-optical element of the present invention. FIG. 3 is a view showing the electro-optical characteristics of the present invention and the conventional liquid crystal electro-optical element. FIG. 4 is a view showing viewing angle characteristics of the liquid crystal electro-optical element of the present invention. FIG. 5 is a diagram showing a mechanism of optical compensation of the liquid crystal electro-optical element of the present invention. FIG. 6 is a sectional view of a conventional liquid crystal electro-optical element. FIG. 7 is a diagram showing a relationship between axes of a conventional liquid crystal electro-optical element. FIG. 8 is a diagram showing viewing angle characteristics of a conventional liquid crystal electro-optical element. FIG. 9 is a diagram showing a mechanism of optical compensation of a conventional liquid crystal electro-optical element. DESCRIPTION OF SYMBOLS 1 ... Upper polarizing plate 2 ... Liquid crystal cell 3 ... Optical anisotropic body (N3e <N2o-N1o) 4 ... Lower polarizing plate 5 ... Optical anisotropic body (N3e> N2o-N1o) 6 ... … Upper substrate 7… Lower substrate 8… Transparent electrode 9… Homogeneously aligned liquid crystal 11… Direction of polarization axis (absorption axis) of upper polarizer 1 12… Rubbing direction of upper substrate 6 of liquid crystal cell 13… The rubbing direction of the lower substrate 7 of the liquid crystal cell 14 The stretching direction of the uniaxially stretched film (the optical axis direction of the discotic liquid crystal in Example 2) 15 The direction of the polarization axis (absorption axis) of the lower polarizing plate 4 21: Angle formed by the direction 11 of the polarization axis of the upper polarizer and the rubbing direction 12 of the upper substrate of the liquid crystal cell. 22 ... The angle between the rubbing direction 13 of the lower substrate of the liquid crystal cell and the stretching direction 14 of the uniaxially stretched film. 23 ... The angle between the direction 15 of the polarization axis of the lower polarizing plate and the stretching direction 14 of the uniaxially stretched film. 31: Voltage transmittance curve for light with a wavelength of 450 nm (blue light). 32: Voltage transmittance curve for light with a wavelength of 550 nm (green light). 33: Voltage transmittance curve for light with a wavelength of 650 nm (red light). 41: Isocontrast line with a contrast ratio of 10 51: Index ellipsoid of liquid crystal cell 52: Index ellipsoid of optically anisotropic body of the present invention 53: Index ellipse of conventional optically anisotropic body body

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の基板間に液晶を挟持してなる液晶セ
ルと、少なくとも一層の光学的異方体と、一対の偏光板
とを有し、前記一対の偏光板の間に前記液晶セルと前記
光学的異方体とが配置されてなる液晶電気光学素子にお
いて、 前記液晶セルにはねじれのないホモジニアス配向した液
晶が挟持されてなり、 前記光学的異方体は、3方向にそれぞれ屈折率N1o、N2
o、及びN3eを有し、前記基板表面に対してほぼ水平な方
向の屈折率を示す前記屈折率N3eの値が他の屈折率N1o、
N2oの値よりも小さい特性を有することを特徴とする液
晶電気光学素子。
1. A liquid crystal cell having a liquid crystal sandwiched between a pair of substrates, at least one optically anisotropic body, and a pair of polarizing plates, wherein the liquid crystal cell and the polarizing plate are interposed between the pair of polarizing plates. In a liquid crystal electro-optical element having an optically anisotropic body disposed therein, a liquid crystal having a homogeneous orientation without twist is sandwiched in the liquid crystal cell, and the optically anisotropic body has a refractive index N1o in each of three directions. , N2
o, and N3e, the value of the refractive index N3e indicating a refractive index in a direction substantially horizontal to the substrate surface is another refractive index N1o,
A liquid crystal electro-optical element having characteristics smaller than the value of N2o.
【請求項2】前記光学的異方体が延伸された高分子フィ
ルムからなり、前記N3eは前記高分子フィルムの延伸方
向の屈折率であり、前記N1oは前記延伸方向と直交し、
前記高分子フィルムの膜厚方向の屈折率であり、前記N2
oは前記延伸方向及び前記膜厚方向と直交する方向の屈
折率であることを特徴とする請求項1記載の液晶電気光
学素子。
2. The optically anisotropic material comprises a stretched polymer film, wherein N3e is a refractive index in a stretching direction of the polymer film, N1o is orthogonal to the stretching direction,
The refractive index in the thickness direction of the polymer film, the N2
2. The liquid crystal electro-optical element according to claim 1, wherein o is a refractive index in a direction orthogonal to the stretching direction and the film thickness direction.
【請求項3】光学的異方体は一体の基板間に光学的に負
の一軸性を有する液晶を挟持してなる液晶セルからな
り、前記N1oはセル厚方向の屈折率であり、前記N3eは前
記基板に対して水平方向の屈折率であり、前記N2oは前
記N1o及び前記N3eと直交する方向の屈折率であることを
特徴とする請求項1記載の液晶電気光学素子。
3. The optically anisotropic body comprises a liquid crystal cell in which liquid crystal having optically negative uniaxial property is sandwiched between integral substrates, wherein N1o is a refractive index in a cell thickness direction, and N3e is a liquid crystal cell. The liquid crystal electro-optical device according to claim 1, wherein is a refractive index in a horizontal direction with respect to the substrate, and N2o is a refractive index in a direction orthogonal to the N1o and the N3e.
JP63198506A 1988-08-09 1988-08-09 Liquid crystal electro-optical element Expired - Lifetime JP2718078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198506A JP2718078B2 (en) 1988-08-09 1988-08-09 Liquid crystal electro-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198506A JP2718078B2 (en) 1988-08-09 1988-08-09 Liquid crystal electro-optical element

Publications (2)

Publication Number Publication Date
JPH0247629A JPH0247629A (en) 1990-02-16
JP2718078B2 true JP2718078B2 (en) 1998-02-25

Family

ID=16392267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198506A Expired - Lifetime JP2718078B2 (en) 1988-08-09 1988-08-09 Liquid crystal electro-optical element

Country Status (1)

Country Link
JP (1) JP2718078B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2675158B2 (en) * 1988-12-07 1997-11-12 シャープ株式会社 Liquid crystal display
JP2612196B2 (en) * 1988-12-14 1997-05-21 富士写真フイルム株式会社 Phase difference film and method of manufacturing the same
JP2892101B2 (en) * 1990-04-19 1999-05-17 スタンレー電気株式会社 Full color liquid crystal display
JPH04115224A (en) * 1990-09-05 1992-04-16 Nec Corp Liquid crystal display device
JP2856942B2 (en) * 1991-05-28 1999-02-10 株式会社東芝 Liquid crystal display element and optically anisotropic element
US5491001A (en) * 1991-09-03 1996-02-13 Nippon Oil Company, Limited Method for producing viewing angle compensator for liquid crystal display
JP2952449B2 (en) * 1992-06-03 1999-09-27 日石三菱株式会社 Manufacturing method of compensator for liquid crystal display element
US6624858B2 (en) 1997-08-01 2003-09-23 Citizen Watch Co., Ltd. Light scattering type liquid crystal display panel for timepiece
JP2005283612A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Liquid crystal display device
KR100830341B1 (en) * 2005-09-30 2008-05-16 삼성에스디아이 주식회사 liquid crystal display
JP5514410B2 (en) * 2008-07-29 2014-06-04 株式会社ジャパンディスプレイ Liquid crystal display

Also Published As

Publication number Publication date
JPH0247629A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US7330232B2 (en) Vertically aligned liquid crystal display having negative compensation film
US20060176426A1 (en) Vertically aligned liquid crytal display having positive compensation film
EP0498614B1 (en) A liquid crystal display device
JP2718078B2 (en) Liquid crystal electro-optical element
TW557396B (en) Liquid crystal display device
US6351299B2 (en) Liquid crystal display device
US6144431A (en) Liquid crystal display device having at least one phase-different plate between LC element and a polarizer wherein the principal refractive indices of said phase-different plate satisfies na=nc&gt;nb
JP3292591B2 (en) Liquid crystal display device
JPH04138424A (en) Liquid crystal display device
JP3289386B2 (en) Color liquid crystal display
JPH10239683A (en) Reflective-type liquid crystal; display device
JPH02111918A (en) Liquid crystal electrooptic element
JP2779822B2 (en) Liquid crystal electro-optical element
JPH0836174A (en) Liquid crystal display element and laminated phase difference plate used for the same
JPH08101381A (en) Liquid crystal display element
JP2898501B2 (en) Liquid crystal display
JPH02306217A (en) Liquid crystal electrooptical element
JP2805511B2 (en) Liquid crystal display device
JPH0895032A (en) Elliptically polarizing plate and color liquid crystal display device
JP2805885B2 (en) Liquid crystal display
JP3556653B2 (en) Manufacturing method of liquid crystal display device
JPH09258212A (en) Liquid crystal display device
JPH0369915A (en) Liquid crystal electrooptical element
JPH02197816A (en) Liquid crystal display device
JPH0611714A (en) Liquid crystal display element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11