JPH04115224A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH04115224A
JPH04115224A JP2234814A JP23481490A JPH04115224A JP H04115224 A JPH04115224 A JP H04115224A JP 2234814 A JP2234814 A JP 2234814A JP 23481490 A JP23481490 A JP 23481490A JP H04115224 A JPH04115224 A JP H04115224A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarized light
parallel
homogeneous cell
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234814A
Other languages
Japanese (ja)
Inventor
Ken Sumiyoshi
研 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2234814A priority Critical patent/JPH04115224A/en
Publication of JPH04115224A publication Critical patent/JPH04115224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a black display and to obtain improved visual dependency by laminating a optically positive liquid crystal layer which is oriented in parallel and an optical negative optical compensating layer which has an optical axis in an in-surface direction parallel to the parallel orientation direction on a substrate. CONSTITUTION:The optical axes of a homogeneous cell 101 wherein optically positive liquid crystal molecules are oriented in parallel and the optically negative optical compensating layer 102 are set parallel. When incident linear polarized light 103 which is polarized at 45 deg. to the optical axis is made incident, (x)-axial linear polarized light 104 (shown in figure) is delayed behind (y)-axial linear polarized light 105 in the homogeneous cell 101. The optical compensating layer 102, however, is optically negative, so the (x)-axial linear polarized light leads the (y)-axial linear polarized light. The phase speed in the optical axis direction is faster than the phase speed in a direction crossing it at right angles in an optically negative medium, so birefringence quantities of the both become zero and light wavelength dispersion is eliminated, so that the black display can be made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a liquid crystal display device.

〔従来の技術〕[Conventional technology]

液晶表示装置の開発が各所において行われている。この
中で、電界制御複屈折モードと言われるモードがいくつ
か提案されている。これは、直交した偏光板間に液晶セ
ルを挿入し、印加電圧により液晶セルの複屈折を変化せ
しめて透過光量変化により表示を得るものである。しか
し、この電界制御複屈折モードは、垂直配向セル以外で
は、透過光量に波長分散を有しているため着色し黒表示
が得られなかった。また、垂直配向セルは、基板に垂直
に液晶分子を並べるものであるが、その配向方向が困難
であることが知られていた。
Development of liquid crystal display devices is being carried out in various places. Among these, several modes called electric field-controlled birefringence modes have been proposed. In this method, a liquid crystal cell is inserted between orthogonal polarizing plates, and the birefringence of the liquid crystal cell is changed by an applied voltage to obtain a display by changing the amount of transmitted light. However, in this electric field controlled birefringence mode, since the amount of transmitted light has wavelength dispersion in cells other than vertically aligned cells, the cells are colored and a black display cannot be obtained. Further, although a vertically aligned cell is one in which liquid crystal molecules are arranged perpendicularly to a substrate, it has been known that the direction of alignment is difficult.

電界制御複屈折モードの着色を打ち消し黒表示を得るた
め、同−構造の液晶セルを2層化することが行われた。
In order to cancel the coloring of the electric field controlled birefringence mode and obtain a black display, a liquid crystal cell having the same structure was formed into two layers.

この中でも特に、液晶分子を基板に平行配向させたホモ
ジニアスセルを2層積層した液晶表示装置が発表されて
いる(第37回応用物理学会関係連合講演会講演予稿集
 808頁。
Among these, a liquid crystal display device in which two layers of homogeneous cells in which liquid crystal molecules are aligned parallel to the substrate has been announced (Proceedings of the 37th Japan Society of Applied Physics Association Conference, p. 808).

斉藤、高橋「補償型ホモジニアス配向ネマチック(CH
ON)LCDによる無着色表示」)、これは、第2図(
a)に示すように、2層のホモジニアスセルの平行配向
方向を互いに直交させた構造のものである。このように
、補償したホモジニアスセルを用いることにより、着色
を補償し黒表示が得られるようになった。
Saito, Takahashi “Compensated homogeneously oriented nematic (CH
ON) Uncolored display by LCD"), this is shown in Figure 2 (
As shown in a), it has a structure in which the parallel orientation directions of two layers of homogeneous cells are orthogonal to each other. In this way, by using a compensated homogeneous cell, coloring can be compensated and a black display can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記の補償したホモジニアスセルは視角依存
性があり、斜めから見た場合表示を認識することが困難
であるという問題点を有していた。
However, the compensated homogeneous cell described above has a problem in that it is dependent on viewing angle, and it is difficult to recognize the display when viewed from an angle.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液晶表示装置は、基板に平行配向させた光学的
に正の゛液晶層と、前記平行配向方向と平行な表面内方
向に光学軸を有する光学的に負の光学補償層を積層する
ことから構成される。
The liquid crystal display device of the present invention has an optically positive liquid crystal layer aligned parallel to the substrate, and an optically negative optical compensation layer having an optical axis in the in-surface direction parallel to the parallel alignment direction. It consists of things.

〔作用〕[Effect]

始めに第2図を用いて、従来の補償したホモジニアスセ
ルについて説明する。
First, a conventional compensated homogeneous cell will be explained using FIG.

第2図(a)に示すように、ホモジニアスセル201.
202を平行配向方向が直交にするように配置する。い
ま、第2図(b)に示す直*@光203が第1ホモジニ
アスセルに垂直に入射する場合について考える。入射直
線偏光203方向が平行配向方向に45°傾いている場
合、この入射直線偏光203は、第2図(c)に示すよ
うに、X軸方向とy@左方向同位相の直線偏光20,4
205の組合せと考えることができる。この2つの直線
偏光が第1ホモジニアスセル201に侵入した場合、X
軸方向とy軸方向の位相速度が異なる。このため、第1
ホモジニアスセルを出射しなときには、第2図(d>に
示すように、2つの直線偏光206.207は、すでに
同位相ではなく位相差を有している。この位相差は、光
の波長とホモジニアスセルの特性によって決まる。従っ
て、ホモジニアスセル単層では、位相差の波長依存性の
ため着色する。
As shown in FIG. 2(a), a homogeneous cell 201.
202 are arranged so that their parallel orientation directions are orthogonal. Now, consider the case where the direct *@ light 203 shown in FIG. 2(b) is perpendicularly incident on the first homogeneous cell. When the direction of the incident linearly polarized light 203 is tilted by 45 degrees to the parallel alignment direction, the incident linearly polarized light 203 becomes the linearly polarized light 20 with the same phase in the X-axis direction and the y@left direction, as shown in FIG. 2(c). 4
It can be considered as 205 combinations. When these two linearly polarized lights enter the first homogeneous cell 201,
The phase velocities in the axial direction and the y-axis direction are different. For this reason, the first
When the light is not emitted from the homogeneous cell, the two linearly polarized lights 206 and 207 already have a phase difference, not the same phase, as shown in FIG. It is determined by the characteristics of the homogeneous cell. Therefore, in a single layer of a homogeneous cell, coloration occurs due to the wavelength dependence of the retardation.

ホモジニアス配向可能なネマチック液晶あるいはスメク
チック液晶は、光学的に正である。この光学的に正とは
、液晶長軸方向の位相速度がその垂直方向の位相速度よ
り遅いことである。従って、第2図(a)の第1ホモジ
ニアスセル207を出射した場合、X軸方向の直線偏光
206の位相はy軸方向207と比較して遅れることに
なる。
Nematic liquid crystals or smectic liquid crystals that can be homogeneously aligned are optically positive. This optically positive means that the phase velocity in the long axis direction of the liquid crystal is slower than the phase velocity in the vertical direction. Therefore, when emitted from the first homogeneous cell 207 in FIG. 2(a), the phase of the linearly polarized light 206 in the X-axis direction is delayed compared to the phase in the y-axis direction 207.

さらに第2図において、第2ホモジニアスセル202に
光が入射すれば、液晶長軸方向が90”回転しているた
め位相速度の遅い方向が、第1ホモジニアスセルと入れ
替わっていることが分かる。従って、第1ホモジニアス
セルで進んだy軸方向の直線偏光は第2ホモジニアスセ
ルで遅れ、第1ホモジニアスセルで遅れたX軸方向の直
線偏光は第2ホモジニアスセルで進むことになる。従っ
て、第1ホモジニアスセルと第2ホモジニアスセルがま
ったく同一のものであれば、第2ホモジニアスセルを出
射した光は、第2図(e)に示すように、第1ホモジニ
アスセル入射以前の直線偏光208,209の状態に戻
る。従って、2層の合計の複屈折量は零であり波長依存
性が無い、このため、着色せず、黒表示が得られる。
Furthermore, in FIG. 2, it can be seen that when light enters the second homogeneous cell 202, the direction of the slow phase velocity is swapped with that of the first homogeneous cell because the long axis direction of the liquid crystal is rotated by 90''. , the linearly polarized light in the y-axis direction that advances in the first homogeneous cell is delayed in the second homogeneous cell, and the linearly polarized light in the X-axis direction that is delayed in the first homogeneous cell advances in the second homogeneous cell. If the homogeneous cell and the second homogeneous cell are exactly the same, the light emitted from the second homogeneous cell will be the linearly polarized light 208 and 209 before entering the first homogeneous cell, as shown in FIG. 2(e). Therefore, the total amount of birefringence of the two layers is zero and has no wavelength dependence.Therefore, no coloring occurs and a black display is obtained.

次に、第3図を用いてホモジニアスセル301の視角依
存性について説明する。液晶層の複屈折量は光線方向と
液晶分子長軸方向のなす角度によって決まる。光線方向
と液晶分子長軸方向が平行であれば複屈折量は零である
。また、光線方向と液晶分子長軸方向が直交したとき、
複屈折量は最大となる。従って、第3図(a)に示すよ
うに、光線302がホモジニアスセル301の基板法線
方向303から傾いていくに従い、第3図(b)に示す
ように複屈折量は減少する。
Next, the viewing angle dependence of the homogeneous cell 301 will be explained using FIG. The amount of birefringence of the liquid crystal layer is determined by the angle between the direction of the light beam and the long axis direction of the liquid crystal molecules. If the direction of the light beam and the long axis direction of the liquid crystal molecules are parallel, the amount of birefringence is zero. Also, when the light beam direction and the long axis direction of liquid crystal molecules are perpendicular to each other,
The amount of birefringence becomes maximum. Therefore, as the light ray 302 is inclined from the normal direction 303 of the substrate of the homogeneous cell 301 as shown in FIG. 3(a), the amount of birefringence decreases as shown in FIG. 3(b).

次に、補償した2層のホモジニアスセルの視角依存性に
ついて第4図を用いて説明する。第4図(a)に示すよ
うに、光線404がホモジニアスセルの基板法線方向4
03から傾けば、第4図(b)に示すように、第1ホモ
ジニアスセル401からの複屈折量4i0は第3図のよ
うに変化する。一方、第2ホモジニアスセル402では
、液晶分子長軸と光線間の角度は変化しないため、光線
が傾いても複屈折量411はほとんど変化しない、従っ
て、第4図(b)に示すように、2層の合計の複屈折量
412は視角依存性を示すこととなる。
Next, the viewing angle dependence of the compensated two-layer homogeneous cell will be explained using FIG. 4. As shown in FIG. 4(a), the light ray 404 is directed in the normal direction 4
03, the amount of birefringence 4i0 from the first homogeneous cell 401 changes as shown in FIG. 3, as shown in FIG. 4(b). On the other hand, in the second homogeneous cell 402, since the angle between the long axis of the liquid crystal molecules and the light beam does not change, the amount of birefringence 411 hardly changes even if the light beam is tilted. Therefore, as shown in FIG. 4(b), The total birefringence amount 412 of the two layers shows viewing angle dependence.

次に第1図を用いて本発明の液晶表示装置について説明
する0本発明の液晶表示装置は、光学的に正の液晶分子
を平行配向させたホモジニアスセル101と光学的に負
の光学補償層102とから構成される。但し、両者の光
学軸は平行でなければならない。本発明において、光学
軸から45゜傾いた方向に偏光した入射直線偏光103
(第1図(b))を入射させると、ホモジニアスセル1
01では、第1図(c)に示すX軸方向の直線偏光10
4はy軸方向の直M偏光105に対して遅れることにな
り、第1図(d)のようになる。しかし、光学補償層1
02においては、光学的に負のためX軸方向の直線偏光
はy軸方向の直線偏光に対して進むこととなり、第1図
(e)のようになる。これは光学的に負の媒体において
は、光学軸方向の位相速度がそれに直交する方向の位相
速度より速いためである。従って、両者の複屈折量は零
となり光波長分散が無くなり、黒表示が可能である。
Next, the liquid crystal display device of the present invention will be explained with reference to FIG. 102. However, both optical axes must be parallel. In the present invention, the incident linearly polarized light 103 is polarized in a direction tilted by 45 degrees from the optical axis.
(Fig. 1(b)), homogeneous cell 1
01, linearly polarized light 10 in the X-axis direction shown in FIG. 1(c)
4 lags behind the direct M polarized light 105 in the y-axis direction, as shown in FIG. 1(d). However, optical compensation layer 1
02, since it is optically negative, the linearly polarized light in the X-axis direction travels relative to the linearly polarized light in the y-axis direction, as shown in FIG. 1(e). This is because in an optically negative medium, the phase velocity in the direction of the optical axis is faster than the phase velocity in the direction orthogonal thereto. Therefore, the amount of birefringence of both becomes zero, optical wavelength dispersion disappears, and black display is possible.

さらに、第5図を用いて本発明の視角依存性について説
明する。第5図(a)に示すように、光線504がホモ
ジニアスセルの基板法線503から傾いた場合、第5図
(b)に示すようにホモジニアスセル501からの複屈
折量510は第3図と同様に減少する。一方、光学補償
層502からの複屈折量511は、基板に垂直入射した
場合負であり、光線が傾いていくに従い零に近づく。従
って、2層の合計の複屈折量512は、光線方向からの
傾きに対して大きな変化を示さなくなる。
Furthermore, the viewing angle dependence of the present invention will be explained using FIG. As shown in FIG. 5(a), when the light ray 504 is tilted from the substrate normal 503 of the homogeneous cell, the amount of birefringence 510 from the homogeneous cell 501 is as shown in FIG. 3 as shown in FIG. 5(b). decrease as well. On the other hand, the amount of birefringence 511 from the optical compensation layer 502 is negative when the light is incident perpendicularly to the substrate, and approaches zero as the light ray becomes more inclined. Therefore, the total amount of birefringence 512 of the two layers does not show a large change with respect to the inclination from the light beam direction.

上記の光学的に負の光学補償層として、例えば方解石や
ポリスチレンを基本骨格とするポリマーフィルムなどを
挙げることができる。
Examples of the above-mentioned optically negative optical compensation layer include a polymer film having a basic skeleton of calcite or polystyrene.

以上述べたように、本発明の液晶表示装置は黒表示が可
能であり改善された視角依存性を有する。
As described above, the liquid crystal display device of the present invention is capable of displaying black and has improved viewing angle dependence.

〔実施例〕〔Example〕

以下では初めに本発明の実施例に用いた液晶セルの作製
工程について述べる。ガラス基板を界面活性剤により洗
浄した。また平行配向処理は、ガラス基板上にポリイミ
ド腹をスピン塗布後200℃で焼成しラビング処理を施
した。前記工程を経た2枚の平行配向処理基板を5μm
径のガラス球のスペーサを介して、熱硬化接着剤をシー
ル剤として用いて貼り合わせた。但し、シール剤のパタ
ーンの一部に開口部を用意し液晶注入孔とした。
First, the manufacturing process of the liquid crystal cell used in the examples of the present invention will be described below. The glass substrate was cleaned with a surfactant. Further, the parallel alignment treatment was performed by spin-coating a polyimide layer on a glass substrate, baking it at 200° C., and performing a rubbing treatment. The two parallel-aligned substrates that have gone through the above steps have a thickness of 5 μm.
They were bonded together using a thermosetting adhesive as a sealing agent via a glass bulb spacer of the same diameter. However, an opening was prepared in a part of the sealant pattern to serve as a liquid crystal injection hole.

前記工程の後、貼り合わせた基板を真空槽内に搬入した
。真空排気後、液晶を液晶注入孔より基板間に注入した
。前記工程の後、大気外に搬出し液晶注入孔を熱硬化接
着剤により封止して液晶セル(ボモジニアスセル〉が完
成する。ここて注入した液晶は、へn−01のネマチッ
ク液晶を用いた。
After the above step, the bonded substrates were carried into a vacuum chamber. After evacuation, liquid crystal was injected between the substrates through the liquid crystal injection hole. After the above step, the liquid crystal cell is carried out to the atmosphere and the liquid crystal injection hole is sealed with a thermosetting adhesive to complete a liquid crystal cell (bomogeneous cell).The liquid crystal injected here was a Henn-01 nematic liquid crystal.

以上の工程により作製した液晶セル(ホモジニアスセル
)を第6図に示す測定系を用いて視角依存性を測定した
。光源のHe−Neレーザ601からの光が偏光板60
2を通過後、回転ステージ603上の試料604に入射
する。光は試料を通過後検光子605を通過し、シリコ
ンフォトディテクタ606で検出される。ここで、偏光
子602と検光子605は直交している。以上のような
設定後、回転ステージ603を回転させることにより試
料604への光の入射角を変化させて、シリコンフォト
ディテクタ606の信号を記録した。
The viewing angle dependence of the liquid crystal cell (homogeneous cell) produced through the above steps was measured using the measurement system shown in FIG. The light from the He-Ne laser 601 as a light source passes through the polarizing plate 60.
2, the light enters a sample 604 on a rotation stage 603. After passing through the sample, the light passes through an analyzer 605 and is detected by a silicon photodetector 606. Here, the polarizer 602 and the analyzer 605 are orthogonal to each other. After the above settings, the angle of incidence of light on the sample 604 was changed by rotating the rotation stage 603, and the signal from the silicon photodetector 606 was recorded.

以下では本発明の実施例について述べる。前記の工程に
より作製したホモジニアスセルを第7図(a>に示すよ
うに配置して液晶表示装置とした。第7図(a)におい
ては、ホモジニアスセル701とポリスチレンフィルム
702を光学軸が平行になるように積層・設置しである
。ここで光学補償層に用いたポリスチレンフィルム70
2は、ローラーにより1軸延伸したものである。ここで
、ポリスチレンフィルムの複屈折量△ndはホモジニア
スセルと同じ0.1になるように調整している。
Examples of the present invention will be described below. The homogeneous cell produced by the above steps was arranged as shown in FIG. 7(a) to form a liquid crystal display device. In FIG. Here, the polystyrene film 70 used as the optical compensation layer is
No. 2 was uniaxially stretched using a roller. Here, the amount of birefringence Δnd of the polystyrene film is adjusted to be 0.1, which is the same as that of the homogeneous cell.

第7図(a)に示した液晶表示装置を第6図の測定系に
設置し、光の入射角変化に対する透過光量変化を測定し
た。結果を第7図(b)に示す。
The liquid crystal display device shown in FIG. 7(a) was installed in the measurement system shown in FIG. 6, and changes in the amount of transmitted light with respect to changes in the incident angle of light were measured. The results are shown in FIG. 7(b).

比較のために第2図に示した従来の補償したホモジニア
スセルについての測定結果についても第7図(b)に示
した0本発明の実施例においては、視角依存性が改善さ
れていることが分かる。
For comparison, the measurement results for the conventional compensated homogeneous cell shown in FIG. 2 also show that the viewing angle dependence is improved in the embodiment of the present invention shown in FIG. 7(b). I understand.

〔発明の効果〕〔Effect of the invention〕

以上示したように本発明の液晶表示装置を用いれば、黒
表示可能な視野角依存性の少ない液晶表示装置を得るこ
とができる。
As shown above, by using the liquid crystal display device of the present invention, it is possible to obtain a liquid crystal display device that can display black and has less viewing angle dependence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための図、第2図第3図、第
4図は従来例を説明するための図、第5図は本発明を説
明するための図、第6図、第7図は本発明の詳細な説明
するための図である。 101・・・ホモジニアスセル、102・・・光学補償
層、103・・入射直線偏光、104・・・X軸方向の
直線偏光、105・・・y軸方向の直線偏光、201・
・・第1ホモジニアスセル、202・・・第2ホモジニ
アスセル、203・・・入射直線偏光、204・・・X
軸方向の直線偏光、205・・・y軸方向の直線偏光、
206・・・X軸方向の直線偏光、207・・・y軸方
向の直線偏光、208・・・X軸方向の直線偏光、20
9・・・Y軸方向の直線偏光、301・・・ホモジニア
スセル、401・・・第1ホモジニアスセル、402・
・第2ホモジニアスセル、501・・・ホモジニアスセ
ル、502・・・光学補償層、601・・・HeNeレ
ーザ、602・・偏光板、603・回転ステージ、60
4・・・試料、605・検光子、606・、シリコンフ
ォトディテクター 701・・ホモジニアスセル、70
2・・・ポリスチレンフィルム。
FIG. 1 is a diagram for explaining the present invention, FIG. 2, FIG. 3, and FIG. 4 are diagrams for explaining a conventional example. FIG. 5 is a diagram for explaining the present invention. FIG. 7 is a diagram for explaining the present invention in detail. 101... Homogeneous cell, 102... Optical compensation layer, 103... Incident linearly polarized light, 104... Linearly polarized light in the X-axis direction, 105... Linearly polarized light in the y-axis direction, 201...
...First homogeneous cell, 202...Second homogeneous cell, 203...Incoming linearly polarized light, 204...X
Linearly polarized light in the axial direction, 205... linearly polarized light in the y-axis direction,
206...Linearly polarized light in the X-axis direction, 207...Linearly polarized light in the y-axis direction, 208...Linearly polarized light in the X-axis direction, 20
9... Linearly polarized light in the Y-axis direction, 301... Homogeneous cell, 401... First homogeneous cell, 402...
- Second homogeneous cell, 501 - Homogeneous cell, 502 - Optical compensation layer, 601 - HeNe laser, 602 - Polarizing plate, 603 - Rotation stage, 60
4...Sample, 605.Analyzer, 606., Silicon photodetector 701..Homogeneous cell, 70
2...Polystyrene film.

Claims (1)

【特許請求の範囲】[Claims] 基板に平行配向させた光学的に正の液晶層と、前記平行
配向方向に平行な面内方向に光学軸を有する光学的に負
の光学補償層とを互いの光学軸を平行にして積層したこ
とを特徴とする液晶表示装置。
An optically positive liquid crystal layer aligned parallel to the substrate and an optically negative optical compensation layer having an optical axis in an in-plane direction parallel to the parallel alignment direction are laminated with their optical axes parallel to each other. A liquid crystal display device characterized by:
JP2234814A 1990-09-05 1990-09-05 Liquid crystal display device Pending JPH04115224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234814A JPH04115224A (en) 1990-09-05 1990-09-05 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234814A JPH04115224A (en) 1990-09-05 1990-09-05 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH04115224A true JPH04115224A (en) 1992-04-16

Family

ID=16976809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234814A Pending JPH04115224A (en) 1990-09-05 1990-09-05 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH04115224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622656A1 (en) * 1993-04-30 1994-11-02 Rockwell International Corporation Optical compensator for liquid crystal display
JPH0915586A (en) * 1995-06-29 1997-01-17 Nec Corp Liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247629A (en) * 1988-08-09 1990-02-16 Seiko Epson Corp Liquid crystal electrooptic element
JPH0267518A (en) * 1988-09-02 1990-03-07 Seiko Epson Corp Liquid crystal display body
JPH02253233A (en) * 1989-03-28 1990-10-12 Seiko Epson Corp Electro-optical liquid crystal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247629A (en) * 1988-08-09 1990-02-16 Seiko Epson Corp Liquid crystal electrooptic element
JPH0267518A (en) * 1988-09-02 1990-03-07 Seiko Epson Corp Liquid crystal display body
JPH02253233A (en) * 1989-03-28 1990-10-12 Seiko Epson Corp Electro-optical liquid crystal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622656A1 (en) * 1993-04-30 1994-11-02 Rockwell International Corporation Optical compensator for liquid crystal display
US5986733A (en) * 1993-04-30 1999-11-16 Rockwell International Corporation Negative optical compensator tilted in respect to liquid crystal cell for liquid crystal display
JPH0915586A (en) * 1995-06-29 1997-01-17 Nec Corp Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3452621B2 (en) Method of forming alignment film for liquid crystal display element
TWI287646B (en) Vertically aligned liquid crystal display
CN100371804C (en) IPS mode liquid crystal display
JPH085837A (en) Optical compensation sheet, its production and liquid crystal display device using the same
JPH04371903A (en) Polarization plate and liquid crystal display device
JPH11160198A (en) Liquid crystal initial alignment angle measuring method and device thereof
US5231522A (en) Liquid crystal panel capable of indicating black without dependency of visual angle
JPH1172791A (en) Optical aligning device and method
JP2003015134A (en) Liquid crystal display device
JP3156178B2 (en) Polymer thin film alignment method, liquid crystal alignment method, liquid crystal cell manufacturing method, liquid crystal cell and alignment film
KR100782017B1 (en) Contrast ratio improving method for liquid crystal projector
JPH04115224A (en) Liquid crystal display device
US6429915B1 (en) Tilted polarizers for liquid crystal displays
JPH024212A (en) Liquid crystal shutter element
JPH10268313A (en) Liquid crystal element and its manufacture
JP3108938B2 (en) Method for measuring tilt angle of liquid crystal molecules
KR100206576B1 (en) Phase difference film and its manufactuaring method for lcd
JPH0498221A (en) Liquid crystal element
JPH05303099A (en) Liquid crystal display panel and liquid crystal display device
JPH08106093A (en) Liquid crystal light valve
JPH0498222A (en) Liquid crystal display
JP3006806B2 (en) Cell thickness measurement method for liquid crystal cell
JP2649389B2 (en) Phase compensator
JP2000321546A (en) Liquid crystal display device, device and method to measure cell thickness of the device, and phase difference plate
JP2847186B2 (en) Liquid crystal display device