JPH02238382A - Positioning method of probe and circuit to be measured - Google Patents

Positioning method of probe and circuit to be measured

Info

Publication number
JPH02238382A
JPH02238382A JP1057786A JP5778689A JPH02238382A JP H02238382 A JPH02238382 A JP H02238382A JP 1057786 A JP1057786 A JP 1057786A JP 5778689 A JP5778689 A JP 5778689A JP H02238382 A JPH02238382 A JP H02238382A
Authority
JP
Japan
Prior art keywords
probe
circuit
under test
light
circuit under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1057786A
Other languages
Japanese (ja)
Other versions
JP2655716B2 (en
Inventor
Tadao Nagatsuma
忠夫 永妻
Tatsuo Sato
達夫 佐藤
Kinya Kato
欣也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nikon Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Telegraph and Telephone Corp filed Critical Nikon Corp
Priority to JP1057786A priority Critical patent/JP2655716B2/en
Publication of JPH02238382A publication Critical patent/JPH02238382A/en
Application granted granted Critical
Publication of JP2655716B2 publication Critical patent/JP2655716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To enable execution of measurement without disturbance and with excellent reproducibility by an electric-field probe positioned with high precision, by conducting optical positioning by using an objective lens having different focal distances with respect to lights of two wavelengths. CONSTITUTION:In a state wherein an electric-field probe 5 is withdrawn, a first- wavelength light sent by a first interference filter through an objective lens 1 is focused on a circuit 6 to be measured, by adjusting the position in the vertical direction of a stage 7 in accordance with a focal distance f1 of the first wavelength light. Next, the probe 5 is inserted into an optical path and a second-wavelength light is made incident by a second interference filter. Then the light is imaged at a different focal distance f2, since the lens 1 has chromatic aberration on the optical axis with respect to lights having different wavelengths. When the second-wavelength light is imaged on a dielectric multilayer film 4 reflecting lights, which is provided in a part of an electrooptic crystal 3 on a transparent substrate 2 of the probe 5, accordingly, the probe 5 and the circuit 6 are positioned precisely at a minute distance of a focal distance difference f1 - f2 from each other, and an electric field generated by the circuit 6 is measured without disturbance and with excellent reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プローブと被測定回路との離間距離を決める
、位置決め方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a positioning method for determining the separation distance between a probe and a circuit under test.

?従来の技術〕 集積回路やデバイスの評価および試験を行なう手段とし
て、電気光学結晶を電界プローブとして被測定回路の近
傍に配置し、パルス幅が狭いレーザ光パルスを上記結晶
に照射すると被測定回路内の電気信号の大きさに応じて
照射した光の偏光状態が変化するという原理を利用する
方法が知られている。この方法においては、測定感度が
電気光学結晶と被測定回路との離間距離に大きく依存し
、一般に間隙が狭いほど感度は高くなる。一方、回路へ
の擾乱は間隙を狭くするほど大きくなり,例えば、代表
的な電気光学結晶であるL i T a O■をコプレ
ーナ構造の配線に密着させると、結晶の誘電率が大きい
ために配線の特性インピーダンスは約50%減少する。
? [Prior art] As a means of evaluating and testing integrated circuits and devices, an electro-optic crystal is placed near the circuit under test as an electric field probe, and when the crystal is irradiated with a laser beam pulse with a narrow pulse width, the inside of the circuit under test is detected. A method is known that utilizes the principle that the polarization state of irradiated light changes depending on the magnitude of the electrical signal. In this method, measurement sensitivity largely depends on the distance between the electro-optic crystal and the circuit under test, and generally the narrower the gap, the higher the sensitivity. On the other hand, the disturbance to the circuit becomes larger as the gap becomes narrower. For example, when L i T a O ■, a typical electro-optic crystal, is brought into close contact with wiring in a coplanar structure, the wiring becomes difficult due to the high dielectric constant of the crystal. The characteristic impedance of is reduced by about 50%.

また、直接密着させることで被測定回路自身を物理的に
破壊する危険性は極めて高い. 〔発明が解決しようとする課題〕 従って、従来技術のように回路に擾乱を与えず、且つ十
分な測定感度を得るためには、数マイクロメートルのオ
ーダで両者の離間距離を保つことが不可欠である。さら
に,測定の再現性や較正の精度を得るためには,1マイ
クロメートル以内の離間距離精度が要求される。しかし
ながら,従来までにこのような要求を満たす技術は無く
,上記原理に基づく回路試験方法を実用に供する上で大
きな問題となっていた, 本発明は、上記の問題点を解決し、集積回路あるいはデ
バイスを無擾乱で且つ再現性良く測定するために、被測
定回路とブローブ間の距離を高精度に位置決めする方法
を得ることを目的とする。
Furthermore, there is an extremely high risk of physically destroying the circuit under test if it is brought into close contact with it. [Problem to be solved by the invention] Therefore, in order to avoid disturbing the circuit as in the prior art and to obtain sufficient measurement sensitivity, it is essential to maintain a separation distance between the two on the order of several micrometers. be. Furthermore, in order to obtain measurement reproducibility and calibration accuracy, separation distance accuracy of within 1 micrometer is required. However, until now, there has been no technology that satisfies these requirements, and this has been a major problem in putting circuit testing methods based on the above principles into practical use.The present invention solves the above problems and The object of the present invention is to obtain a method for positioning the distance between a circuit under test and a probe with high precision in order to measure a device without disturbance and with good reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明では、2つの波長の
光に対し光軸上の色収差を有する顕微対物レンズを用い
、上記レンズを通して、第1の波長の光を被測定回路に
第2の波長の光をプローブを構成する電気光学結晶の先
端に各々照射し,各々被測定回路および電気光学結晶か
ら反射してきた第1の波長の光と第2の波長の光が、双
方とも像を結ぶように被測定回路およびプローブを微動
させて焦点合わせを行なうことにより,両者の離間距離
を一定の大きさに設定することとした。特に,上記プロ
ーブの結晶表面には上記第1の波長の光を透過し、上記
第2の波長の光を反射するように選択された誘電体多層
膜のコーティングが施されており、上記コーティング部
をプローブ位置決め時のマーカとして用い、且つ電気信
号の測定時においてはパルスレーザ光の反射膜として用
いることができる。
In order to achieve the above object, the present invention uses a microscope objective lens having chromatic aberration on the optical axis for light of two wavelengths, and passes light of a first wavelength to a circuit under test through the lens. A wavelength of light is irradiated onto the tips of the electro-optic crystals that make up the probe, and both the first wavelength light and the second wavelength light reflected from the circuit under test and the electro-optic crystal form an image. By slightly moving the circuit under test and the probe to focus, we set the distance between them to a constant value. In particular, the crystal surface of the probe is coated with a dielectric multilayer film selected to transmit light of the first wavelength and reflect light of the second wavelength, and the coating portion It can be used as a marker during probe positioning, and as a reflective film for pulsed laser light when measuring electrical signals.

〔作用〕[Effect]

2つの波長の光で焦点距離が違う対物レンズを用いて光
学的に位置決めを行なうことにより、被測定回路とプロ
ーブとを数マイクロメートルの間隙まで近づけることが
でき、且つ離間距離精度として1マイクロメートル以内
の高精度化が達成される。このように間隙を数マイクロ
メートルに設定できることは、電気信号の測定において
十分の測定感度を得ることを可能にし、また高精度に設
定できることは良い再現性を得ることを可能にする.そ
して,従来問題であったような被測定回路の破壊や特性
インピーダンスの変化等の回路への擾乱を生じさせるこ
ともない, 〔実施例〕 つぎに本発明の実施例を図面とともに説明する。
By performing optical positioning using an objective lens with two wavelengths of light and different focal lengths, it is possible to bring the circuit under test and the probe close to a gap of several micrometers, and the distance accuracy is 1 micrometer. Accuracy within the range achieved is achieved. Being able to set the gap to several micrometers in this way makes it possible to obtain sufficient measurement sensitivity in measuring electrical signals, and being able to set it with high precision makes it possible to obtain good reproducibility. Furthermore, there is no disturbance to the circuit such as destruction of the circuit under test or change in characteristic impedance, which has been a problem in the past. [Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例を示す説明図、第2図は位置決
めの手順を示す説明図である。図において、1は顕微対
物レンズ、2は透明基板、3は電気光学結晶、4は誘電
体多層膜で、これら透明基板2,電気光学結晶3、誘電
体多暦膜4はプローブ5を構成している。6は被測定回
路、7はステージである。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a positioning procedure. In the figure, 1 is a microscope objective lens, 2 is a transparent substrate, 3 is an electro-optic crystal, and 4 is a dielectric multilayer film, and these transparent substrate 2, electro-optic crystal 3, and dielectric multilayer film 4 constitute a probe 5. ing. 6 is a circuit under test, and 7 is a stage.

対物レンズ1は2つの波長の光に対して意図的に光軸上
の色収差を有する,即ち、第1と第2の波長の光に対し
焦点距離がわずかに異なるように設計されている。また
、被測定回路6から電気光学結晶3にカップルする微小
電界を測定するためのレーザ光である第3の波長の光に
対しても、わずかな色収差を有するが、集光されるビー
ム径を大きく変えない程度であることが望ましい。プロ
ーブ5は薄膜の電気光学結晶3とそれを支える透明基板
2を主体とし、上記電気光学結晶3の表面には適当な形
状の誘電体多層膜4が部分的に施されている。この誘電
体多層膜においては、被測定回路6に照射して焦点を合
わせる第1の波長の光に対しては,透過特性を示して被
測定回路の観察を可能ならしめると共に、プローブ表面
に照射して焦点を合わせる第2の波長の光に対しては、
反射特性を示してプローブ表面の11察を可能ならしめ
るように各層の膜厚が設定されている。また、この誘電
体多暦膜は第3の波長の光に対しても高反射膜となるよ
うに設計する必要がある。
The objective lens 1 is designed to intentionally have chromatic aberration on the optical axis for light of two wavelengths, that is, to have a slightly different focal length for light of the first and second wavelengths. Furthermore, although there is a slight chromatic aberration for the light of the third wavelength, which is the laser light for measuring the minute electric field coupled from the circuit under test 6 to the electro-optic crystal 3, the diameter of the condensed beam is It is desirable that it does not change significantly. The probe 5 mainly consists of a thin electro-optic crystal 3 and a transparent substrate 2 supporting it, and a dielectric multilayer film 4 of an appropriate shape is partially applied to the surface of the electro-optic crystal 3. In this dielectric multilayer film, the light of the first wavelength that is irradiated and focused on the circuit under test 6 exhibits a transmission characteristic, making it possible to observe the circuit under test, and also irradiates the probe surface. For the light of the second wavelength that is focused by
The thickness of each layer is set so as to exhibit reflection characteristics and enable observation of the probe surface. Further, this dielectric polygon film must be designed to be a highly reflective film even for light of the third wavelength.

第2図は位置決めの手順例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a positioning procedure.

まず、始めに干渉フィルタ■8を用いて第1の波長の光
、例えばg線(波長0.4358マイクロメートル)を
被測定回路6に照射し、焦点が合うようにステージ7を
微動させて焦点距離fエの位置に被測定回路6を固定す
る。その際、プローブ5は被測定回路6と接触しないよ
うに上方に退避させておくことが望ましい。次に干渉フ
ィルタ■8を干渉フィルタ■9に交換し、第2の波長の
光、例え?e線(波長0.5461マイクロメートル)
をプローブ5表面の誘電体コーティング部4に照射し、
焦点が合うようにプローブ5を少しずつ下げながら焦点
距離f2の位置にプローブ5の先端部の位置決めを行な
う。以上の手順により被測定回路6とプローブ5の先端
との離間距離hは、 h=f■−f2 の値に一意的に設定ことができる。また,第1の波長あ
るいは第2の波長を上記干渉フィルタ8および9等を用
いて変えることにより、対物レンズ1の色収差に応じた
任意の離間距離設定が可能である。
First, light of the first wavelength, e.g., g-line (wavelength 0.4358 micrometers), is irradiated onto the circuit under test 6 using the interference filter ■8, and the stage 7 is moved slightly to bring it into focus. The circuit to be measured 6 is fixed at a position at a distance f. At this time, it is desirable that the probe 5 be retracted upward so as not to come into contact with the circuit under test 6. Next, replace the interference filter ■8 with the interference filter ■9, and use the light of the second wavelength. e-line (wavelength 0.5461 micrometer)
irradiate the dielectric coating portion 4 on the surface of the probe 5,
The tip of the probe 5 is positioned at the focal length f2 while lowering the probe 5 little by little so that the probe 5 is in focus. By the above procedure, the distance h between the circuit under test 6 and the tip of the probe 5 can be uniquely set to the value h=f - f2. Further, by changing the first wavelength or the second wavelength using the interference filters 8 and 9, etc., it is possible to set an arbitrary separation distance according to the chromatic aberration of the objective lens 1.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によるプローブと被測定回路との位
置決め方法は、プローブを被測定回路に近接させるブロ
ーブと被測定回路との位置決め方法において、2つの波
長の光に対し光軸上の色収差を有する1の顕微興対物レ
ンズを介して、第1の波長の光を被測定回路に、第2の
波長の光をプローブ先端に各々照射する工程と、前記被
測定回路から反射する第2の波長の光を結像する工程と
により、前記被測定回路と前記プローブとの離間距離を
定めることにより,被測定回路と電気光学結晶を有する
プローブとの離間距離を数マイクロメートルまで,1マ
イクロメートル以下の精度で設定することが可能になり
、被測定回路から電気光学結晶にカップルする電気信号
を高感度で、且つ再現性良く測定できることは勿論、被
測定回路に対する擾乱や破壊の問題が解決される。
As described above, the method of positioning the probe and the circuit under test according to the present invention is a method of positioning the probe and the circuit under test in which the probe is brought close to the circuit under test. a step of irradiating light of a first wavelength to the circuit under test and light of a second wavelength to the tip of the probe through a microscope objective lens having a second wavelength, and a second wavelength reflected from the circuit under test; By determining the distance between the circuit under test and the probe, the distance between the circuit under test and the probe having an electro-optic crystal can be set to several micrometers or less than 1 micrometer. This not only makes it possible to measure the electrical signals coupled from the circuit under test to the electro-optic crystal with high sensitivity and good reproducibility, but also solves the problem of disturbance and destruction of the circuit under test. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図、第2図は本発明
による位置決め法の手順を示す説明図である。 1・・・対物レンズ    2・・・透明基板3・・・
電気光学結晶   4・・・誘電体多層膜5・・・プロ
ーブ     6・・・被謂定回路7・・・ステージ 
    8・・・干渉フィルタの9・・・干渉フィルタ
■ 代理人弁理士  中 村 純之助
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the procedure of the positioning method according to the present invention. 1... Objective lens 2... Transparent substrate 3...
Electro-optic crystal 4... Dielectric multilayer film 5... Probe 6... Target circuit 7... Stage
8...Interference filter 9...Interference filter■ Representative patent attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】[Claims] (1)プローブを被測定回路に近接させるプローブと被
測定回路との位置決め方法において、2つの波長の光に
対し光軸上の色収差を有する1つの顕微対物レンズを介
して、第1の波長の光を被測定回路に、第2の波長の光
をプローブ先端に各々照射する工程と、前記被測定回路
から反射する第1の波長の光および前記プローブ先端か
ら反射する第2の波長の光を結像させる工程とにより、
前記被測定回路と前記プローブとの離間距離を定めるこ
とを特徴とするプローブと被測定回路との位置決め方法
(1) In a method of positioning the probe and the circuit under test, in which the probe is brought close to the circuit under test, the light of the first wavelength is irradiating the circuit under test with light and the tip of the probe with light of a second wavelength; and irradiating the light of the first wavelength reflected from the circuit under test and the light of a second wavelength reflected from the tip of the probe. By the step of forming an image,
A method for positioning a probe and a circuit under test, comprising determining a distance between the circuit under test and the probe.
JP1057786A 1989-03-13 1989-03-13 Positioning method between probe and circuit under test Expired - Lifetime JP2655716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057786A JP2655716B2 (en) 1989-03-13 1989-03-13 Positioning method between probe and circuit under test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057786A JP2655716B2 (en) 1989-03-13 1989-03-13 Positioning method between probe and circuit under test

Publications (2)

Publication Number Publication Date
JPH02238382A true JPH02238382A (en) 1990-09-20
JP2655716B2 JP2655716B2 (en) 1997-09-24

Family

ID=13065567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057786A Expired - Lifetime JP2655716B2 (en) 1989-03-13 1989-03-13 Positioning method between probe and circuit under test

Country Status (1)

Country Link
JP (1) JP2655716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357472A (en) * 1991-03-01 1992-12-10 Nippon Telegr & Teleph Corp <Ntt> Probe for measuring electric field
US5552716A (en) * 1993-03-15 1996-09-03 Hamamatsu Photonics K.K. Method of positioning an electrooptic probe of an apparatus for the measurement of voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357472A (en) * 1991-03-01 1992-12-10 Nippon Telegr & Teleph Corp <Ntt> Probe for measuring electric field
US5552716A (en) * 1993-03-15 1996-09-03 Hamamatsu Photonics K.K. Method of positioning an electrooptic probe of an apparatus for the measurement of voltage

Also Published As

Publication number Publication date
JP2655716B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
KR101539489B1 (en) Test device for testing a bonding layer between wafer-shaped samples and test process for testing the bonding layer
US8279447B2 (en) Method for measuring thickness
CN107561007B (en) Thin film measuring device and method
CN110702614B (en) Ellipsometer device and detection method thereof
US4072422A (en) Apparatus for interferometrically measuring the physical properties of test object
CN108490375B (en) In-situ measurement method for sample magnetism
KR101036455B1 (en) Ellipsometer using Half Mirror
JP2655716B2 (en) Positioning method between probe and circuit under test
JPH0580083A (en) Method and apparatus for testing integrated circuit
JP2947288B2 (en) Semiconductor integrated circuit test apparatus and probe position control method for the apparatus
JP2542754B2 (en) Positioning method and apparatus for probe for electric field measurement of integrated circuit
US5929992A (en) Compact interferometric test system for ellipses
JP2588965B2 (en) Electric field measurement probe
JPH04310836A (en) Method for measure distribution of refractive index
US20060023225A1 (en) Microscope and method of measurement of a surface topography
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JP3381018B2 (en) Electric field detector
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
JPH08335613A (en) Wafer inspecting apparatus
JP3220252B2 (en) EO probe
JP3715013B2 (en) Microscope and focus setting method thereof
JP4580579B2 (en) Surface shape measuring method and surface shape measuring apparatus
SU737817A1 (en) Interference method of measuring refraction coefficient of dielectric films of variable thickness
JP2002014131A (en) Method and device for inspecting circuit board
JPH0445082B2 (en)