JP3715013B2 - Microscope and focus setting method thereof - Google Patents

Microscope and focus setting method thereof Download PDF

Info

Publication number
JP3715013B2
JP3715013B2 JP34408595A JP34408595A JP3715013B2 JP 3715013 B2 JP3715013 B2 JP 3715013B2 JP 34408595 A JP34408595 A JP 34408595A JP 34408595 A JP34408595 A JP 34408595A JP 3715013 B2 JP3715013 B2 JP 3715013B2
Authority
JP
Japan
Prior art keywords
objective lens
focus setting
light
focus
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34408595A
Other languages
Japanese (ja)
Other versions
JPH09184706A (en
Inventor
寛 浮草
茂 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Scube Co Ltd
Original Assignee
IHI Scube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Scube Co Ltd filed Critical IHI Scube Co Ltd
Priority to JP34408595A priority Critical patent/JP3715013B2/en
Publication of JPH09184706A publication Critical patent/JPH09184706A/en
Application granted granted Critical
Publication of JP3715013B2 publication Critical patent/JP3715013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、顕微鏡及びその焦点設定方法に係わり、特に顕微鏡用ガラス層厚み補正器を用いた共焦点走査方式レーザ顕微鏡及びその焦点設定の技術に関する。
【0002】
【従来の技術】
特開平7−140393号公報等に共焦点走査方式レーザ顕微鏡を用いた半導体製造用マスク(以下マスクという)の検査、及び該マスクを形成するガラス基板の厚さ偏差による検査精度の低下を顕微鏡用ガラス層厚み補正器(以下単に厚み補正器という)を用いて補正する技術が開示されている。
【0003】
このような厚み補正器を用いた共焦点走査方式レーザ顕微鏡において、該厚み補正器の光透過層の厚さ設定は、レーザマイクロメータ等の厚さ計測器を用いてガラス基板の厚さ等を実測することによって、光透過層とガラス基板とを合計した厚さが一定の基準厚となるように行われていた。また、マスクは厚さによっていくつかの種類に分類されており、従来の光透過層の厚さ設定はマスクの種類が変わると最初のマスクの計測を行う前に行われ、以後同一種類のマスクについてはこの設定のまま計測が行われる。そして、このように光透過層とガラス基板とを合計した厚さが基準厚となる状態で、共焦点走査方式レーザ顕微鏡の焦点がガラス基板の下端面に合うように設定されていた。
【0004】
【発明が解決しようとする課題】
しかし、上記光透過層の厚さ設定方法は、ガラス基板の厚さ等の物理的な計測に基づくものであり光学的な厚さに基づくものではないため、ガラス基板の材質の変化等による設定誤差が含まれるという問題点があった。また、マスクの種類が変わると最初のマスクの計測を行う前に1回だけ光透過層の厚さ設定が行われるので、以後の同一種類のマスクの計測時に温度変化等の要因によって光透過層とガラス基板とを合計した厚さが基準厚に対して変動するため、共焦点走査方式レーザ顕微鏡の焦点がずれるという問題があった。
【0005】
本発明は、上述する問題点に鑑みてなされたもので、以下の点を目的としている。
(1)計測対象物のガラス層の材質の違いによる計測精度の低下を押さえることが可能な顕微鏡を提供する。
(2)計測対象物のガラス層の光学的な厚さに基づく顕微鏡の焦点設定方法を提供する。
(3)周囲温度の変化に対して安定した顕微鏡の焦点設定方法を提供する。
【0006】
【課題を解決するための手段】
上述した目的を果たすために、第1の手段として、計測対象物のガラス層の厚さに応じて厚みが設定される光透過層を介して計測光を対物レンズによってガラス層の下端面に集光して照射するとともに、計測対象物からの反射光の強度を対物レンズを介して光検出器によって検出することにより、下端面上に形成された対象部の寸法を計測する顕微鏡において、
計測対象物を挟んで前記対物レンズと同一光軸上に対向配置されて対物レンズに対する光学的な位置関係が予め計測されるとともに、前記下端面に焦点設定入射光を集光して照射する焦点設定用対物レンズと、
前記下端面からの焦点設定反射光の強度を前記焦点設定用対物レンズを介して検出する焦点設定用光検出器と、
前記対物レンズの焦点設定時には前記焦点設定用対物レンズに焦点設定入射光のみを照射させ、計測時には前記対物レンズに入射光のみを照射させる光切換手段とを具備し、
焦点設定入射光の強度を前記光検出器及び焦点設定用光検出器によって検出することにより光透過層の厚さが調節されて対物レンズの焦点位置が設定されるという手段が採用される。
【0007】
第2の手段として、上記第1の手段において、光学的な位置関係として対物レンズの焦点と焦点設定用対物レンズの焦点とが一致したときの対物レンズと焦点設定用対物レンズとの距離が予め計測されるという手段が採用される。
【0008】
第3の手段として、上記第1または第2の手段において、光検出器及び焦点設定用光検出器によって検出される焦点設定入射光の強度が最大となるよう光透過層の厚さが設定されるという手段が採用される。
【0009】
第4の手段として、上記第1ないし第3の何れかの手段において、入射光と焦点設定入射光とは同一光源から供給されるという手段が採用される。
【0010】
第5の手段として、計測対象物のガラス層の厚さに応じて厚みが設定される光透過層を介して入射光を対物レンズによってガラス層の下端面に集光して照射するとともに、計測対象物からの反射光の強度を光透過層と対物レンズを介して検出することにより、下端面上に形成された対象部の寸法を計測する顕微鏡の焦点設定方法において、
a.前記対物レンズと同一光軸上にサンプルガラスを挟んで焦点設定用対物レンズを対向配置する行程と、
b.焦点設定用対物レンズを介してサンプルガラスの下端面に焦点設定入射光を照射して得られる焦点設定反射光の強度を焦点設定用対物レンズを介して検出することにより、該焦点設定用対物レンズを移動して焦点をサンプルガラスの下端面に合わせる行程と、
c.サンプルガラスを透過した焦点設定入射光の強度を対物レンズを介して検出することにより対物レンズを移動して焦点をサンプルガラスの下端面に合わせる行程と、
d.前記対物レンズと焦点設定用対物レンズとの間にサンプルガラスに代えて計測対象物及び光透過層を装着して入射光を、焦点設定用対物レンズの焦点が前記ガラス層の下端面に合うように焦点設定用対物レンズの位置を移動する行程と、
e.前記行程b、cにおける焦点設定用対物レンズと対物レンズとの位置関係に基づいてガラス層の下端面に焦点が合うように対物レンズの位置を合わせる行程と、
f.前記反射光の強度が最大となるように前記光透過層の厚みを調節する行程と、
を有する手段が採用される。
【0011】
【発明の実施の形態】
以下、図1及び図3を参照して、本発明に係わる顕微鏡及びその焦点設定方法の一実施形態について説明する。
【0012】
図1は、本実施形態における顕微鏡の光学系の構成図である。この図において、符号1はレーザ発振器(光源)であり、例えば波長325nm(ナノメートル)のシングルモードレーザ光を反射鏡2に向けて出力する。反射鏡2はレーザ光を反射鏡3に向けて反射させる。反射鏡3は、レーザ光を入射光としてビームスプリッタ4に向けて反射する。
【0013】
ビームスプリッタ4は、上記反射鏡3から入射された入射光の一部を計測光学系Aに向けて反射するとともに、残りのレーザ光を透過して焦点設定用光学系Bに伝搬させる。ここで、ビームスプリッタ4において反射されたレーザ光は入射光として計測光学系Aに導かれ、ビームスプリッタ4を透過したレーザ光は焦点設定入射光として焦点設定用光学系Bに導かれる。
【0014】
計測光学系Aは、反射鏡a1〜a4、シャッタa5、ビームスプリッタa6、光検出器a7、集束レンズa8、ピンホールa9、1/4λ位相板a10、コリメータレンズa11、対物レンズa12、及び厚さ補正器a13から構成されている。
【0015】
反射鏡a1は、上記入射光を反射鏡a2に向けて反射し、該反射鏡a2は入射光をシャッタa5に向けて反射する。シャッタa5は入射光を通過あるいは遮蔽してビームスプリッタa6への入射光の伝搬をON/OFFする。ビームスプリッタa6は、入射光をを集束レンズa8に伝搬させるとともに、該集束レンズa8に伝搬させた入射光が以下に説明する計測対象物すなわちマスクXに反射して得られる反射光を反射鏡a3に向けて反射する。集束レンズa8は、入射光をピンホールa9に設けられた孔に向けて収束させるとともに、上記反射光を平行光にしてビームスプリッタa6に伝搬させる。
【0016】
ピンホールa9は、小径の孔が設けられた遮蔽板であり、入射光を回折させて1/4λ位相板a10に伝搬させるとともに、反射光のうち孔に入射された反射光のみを上記集束レンズa8に向けて通過させる。1/4λ位相板a10は、入射光の位相を1/4波長シフトさせてコリメータレンズa11に伝搬させるとともに、反射光を1/4波長シフトさせて上記ピンホールa9に伝搬させる。コリメータレンズa11は、ピンホールa9によって回折された入射光を平行光にして反射鏡a4に伝搬させるとともに、反射光をピンホールa9の孔に向けて収束させる。
【0017】
反射鏡a4は、入射光を全反射して対物レンズa12に向けて伝搬させるとともに、反射光を全反射して上記コリメータレンズa11に向けて伝搬させる。対物レンズa12は、入射光を収束させて以下に説明する光透過層a14を介して計測対象物であるマスクXに垂直に照射するとともに、反射光を平行光にして上記反射鏡a4に向けて伝搬させる。この対物レンズa12は、光軸P1に沿って移動可能に構成されており、その位置をサブミクロン・オーダーで高精度に検出する位置検出器が備えられている。
【0018】
厚さ補正器a13は、例えば特開平7−140393号公報に開示されたものであり、以下に説明するガラス基板(ガラス層)X1と同一の屈折率を有するとともにその厚さが可変可能な上記光透過層a14を備える。該光透過層a14は、ガラス基板X1の厚さと自らの厚さが常に一定の基準厚Vとなるようにその厚さが設定されるものである。
【0019】
マスクXは、図2の側断面図に示すように、一定の厚さを有するガラス基板X1の片面にエッチング等によってクロムパターン(対象部)X2が形成されたものであり、該クロムパターンX2の線幅L等が当該顕微鏡による計測対象とされる。この線幅Lの計測に当たりマスクXは、図示するようにガラス基板X2が対物レンズa12側とされて図示しないマスクホルダ上に載置される。
【0020】
マスクXに照射された入射光は該マスクXによって反射され、反射光として厚さ光透過層a14及び上述した各構成要素を経由してビームスプリッタa6によって反射鏡a3に向けて反射され光検出器a7に入射される。ここで、該反射光は、1/4λ位相板a10を2回通過することになるので1/2波長の位相シフトがなされるのでビームスプリッタa6において反射される。光検出器a7は、例えば光電子増倍管であり、このようにして入射された反射光の強度を電気信号として検出する。
【0021】
一方、焦点設定用光学系Bは、反射鏡b1〜b3、シャッb4、ビームスプリッタb5、焦点設定用光検出器b6、集束レンズb7、ピンホールb8、1/4λ位相板b9、コリメータレンズb10、及び焦点設定用対物レンズb11によって構成されている。
【0022】
上記ビームスプリッタ4から焦点設定用光学系Bに向けて伝搬された焦点設定入射光は、反射鏡b1によってシャッタb4に向けて反射される。シャッタb4は焦点設定入射光を通過/遮蔽してビームスプリッタb5に伝搬させる。ビームスプリッタb5は、上記シャッタb4から入射された焦点設定入射光を集束レンズb7に伝搬させるとともに、この集束レンズb7に伝搬させ焦点設定入射光がマスクXに反射して得られる焦点設定反射光を反射鏡b2に向けて反射する。集束レンズb7は焦点設定入射光をピンホールb8に設けられた孔に向けて収束させるとともに、焦点設定反射光を平行光にして上記ビームスプリッタb5に伝搬させる。
【0023】
ピンホールb8は、例えば小径の孔が設けられた光遮蔽板であり、焦点設定入射光を回折させて1/4λ位相板b9に通過させるとともに、焦点設定反射光のうち孔に入射された焦点設定反射光のみを上記ビームスプリッタb5に向けて通過させる。1/4λ位相板b9は、焦点設定入射光の位相を1/4波長シフトさせてコリメータレンズb10に伝搬させるとともに、焦点設定反射光の位相を1/4波長シフトさせて上記ピンホールb8に伝搬させる。コリメータレンズb10は、ピンホールb8によって回折された焦点設定入射光を平行光にして反射鏡b3に伝搬させるとともに、焦点設定反射光をピンホールb8の孔に向けて収束させる。
【0024】
反射鏡b3は、焦点設定入射光を全反射して焦点設定用対物レンズb11に向けて伝搬させるとともに、焦点設定反射光を上記コリメータレンズb10に向けて伝搬させる。焦点設定用対物レンズb11は、焦点設定入射光を収束させてマスクXに照射するとともに、焦点設定反射光を平行光にして上記反射鏡b3に向けて伝搬させる。この焦点設定用対物レンズb11は、その光軸P2が上述した対物レンズa12の光軸P1と同一軸となるように位置設定されており、また以下に説明する手順によって対物レンズa12との位置関係が光学的に予め計測されたものである。
【0025】
マスクXに照射された焦点設定入射光は該マスクXによって反射され、焦点設定反射光として上述した各構成要素を経由してビームスプリッタb5によって反射され、さらに反射鏡b2によって反射されて焦点設定用光検出器b6に入射される。焦点設定用光検出器b6は、上述した光検出器a7と同様の光電子増倍管であり、焦点設定反射光の強度を電気信号として検出する。
【0026】
次に、図3を参照して、マスクXの計測に先立って行われる対物レンズa12の焦点の設定方法について説明する。
【0027】
まず、この図に示すように、マスクXに代えてサンプルガラスZが上記マスクホルダ上に載置されるとともに光透過層12aが光路から除かれる。このサンプルガラスZは、ガラス基板X1と同一材質のガラスで形成され上記基準厚Vを有するものである。
【0028】
この状態において、シャッタa5が閉じられて焦点設定入射光のみがサンプルガラスZに照射され、該サンプルガラスZの下端面Z1(光軸P2に沿った位置Y0)に焦点が合うように焦点設定用対物レンズb12が移動させられる。そして、このとき対物レンズb12に備えられた位置検出器によって計測される焦点設定用対物レンズb11の位置Ybが記憶される。
【0029】
このとき、焦点設定用光検出器b6で検出される焦点設定反射光の強度が最大、すなわちピンホールb8を通過する焦点設定反射光の光量が最大となることが検出されることにより、焦点設定用対物レンズb11の焦点が下端面Z1に合ったことが判断される。
【0030】
このように焦点設定用対物レンズb11の焦点が下端面Z1に合わされると、対物レンズa12を移動させることにより該対物レンズa12の焦点を下端面Z1に合わせる。そして、このとき焦点設定用対物レンズb11の位置Yaが該焦点設定用対物レンズb11に備えられた位置検出器の出力に基づいて記憶される。この場合には、光検出器a7の出力が最大すなわちピンホールa9を通過する光の光量が最大になったことが検出されることにより対物レンズa12の焦点が下端面Z1に合わされたことが判断される。
【0031】
以上の手順によって、対物レンズa12の焦点と焦点設定用対物レンズb11の焦点が一致したときの焦点設定用対物レンズb11の位置に対する対物レンズa12の位置関係、すなわち対物レンズa12と焦点設定用対物レンズb11との距離Rが求められた。
【0032】
続いて光学系を図1の状態に戻し、マスクXについて対物レンズa12の焦点を以下のように下端面X3に合わせる。まず、上述したと同様にして焦点設定用対物レンズb11の焦点を下端面X3に合わせる。そして、距離Rを満足する位置に対物レンズa12を移動する。この場合、対物レンズa12の位置検出器及び焦点設定用対物レンズb11の位置検出器の各検出値に基づいて高精度に対物レンズa12の位置が設定される。以上の手順によって、対物レンズa12の焦点は光学的に高精度で下端面X3に一致されたことになる。
【0033】
この状態において、シャッタb4が閉じられるとともにシャッタa5が開けられてマスクXに入射光が照射され、光検出器a7の出力が最大となるように厚さ補正器a13の光透過層a14の厚さが設定される。すなわち、ガラス基板X1の厚さに厚さ補正器a13の厚さ加えた厚さがサンプルガラスZの厚さつまり基準厚Vとなるように厚さ補正器a13の厚さが設定される。
【0034】
このように焦点調整された顕微鏡によりクロムパターンX2の線幅Lは以下のように計測される。すなわち、対物レンズ11はガラス基板X1の下端面(クロムパターンX2との接合面)X3に焦点が合うように光軸P1に沿って移動させられて光検出器13によって検出され反射光の強度が最大となる位置に設定される。この場合、クロムパターンX2の有無によって反射光の強度が異なるので該強度変化に基づいて線幅Lが計測される。
【0035】
【発明の効果】
以上説明したように、本発明によれば以下のような効果を奏する。
(1)計測対象物を挟んで対物レンズと同一光軸上に対向配置されて対物レンズに対する光学的な位置関係が予め計測されるとともに、下端面に焦点設定入射光を集光して照射する焦点設定用対物レンズと、ガラス層の底面からの焦点設定反射光の強度を焦点設定用対物レンズを介して検出する焦点設定用光検出器と、対物レンズの焦点設定時には焦点設定用対物レンズに焦点設定入射光のみを伝搬させ、計測時には対物レンズに入射光のみを伝搬させる光切換手段とを具備するので、計測対象物のガラス層の光学的な厚さに基づいて高精度に対物レンズの焦点位置が設定される。
(2)計測対象物のガラス層の光学的な厚さに基づいて高精度に対物レンズの焦点位置が設定されるので、計測対象物のガラス層の材質の違いによる計測精度の低下を押さえることができる。
(3)周囲温度の変化に対して計測対象物の計測を安定して行うことができる。
(4)計測対象物の計測時に物理的に該計測対象物の厚さを計測する厚さ計測器を用いる必要がない。
【図面の簡単な説明】
【図1】本発明に係わる顕微鏡及びその焦点設定方法において、顕微鏡の光学系の一実施形態を示す構成図である。
【図2】本発明に係わる顕微鏡及びその焦点設定方法において、対物レンズの焦点調整時における光学系の構成図である。
【図3】本発明に係わる顕微鏡及びその焦点設定方法において計測対象とされるマスクの構成を示す側断面図である。
【符号の説明】
1 レーザ発振器
2,a5,b4 シャッタ
3,a1〜a4,b1〜b3 反射鏡
4,a6,b5 ビームスプリッタ
A 計測光学系
B 焦点設定用光学系
a7 光検出器
a8,b7 集束レンズ
a9,b8 ピンホール
a10,b9 1/4λ位相板
a11,b10 コリメータレンズ
a12 対物レンズ
a13 厚さ補正器
a14 光透過層
b6 焦点設定用光検出器
b11 焦点設定用対物レンズ
L クロムパターンの線幅
P1 対物レンズの光軸
P2 焦点設定用対物レンズの光軸
R 対物レンズと焦点設定用対物レンズとの距離
X マスク
X1 ガラス基板
X2 クロムパターン
X3 マスクの下端面
Y0 光軸に沿ったサンプルガラスの下端の位置
Ya 光軸に沿った対物レンズの位置
Yb 光軸に沿った焦点設定用対物レンズの位置
Z サンプルガラス
Z1 サンプルガラスの下端面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microscope and its focus setting method, and more particularly to a confocal scanning laser microscope using a microscope glass layer thickness corrector and its focus setting technique.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 7-140393 and the like describe a test for a semiconductor manufacturing mask (hereinafter referred to as a mask) using a confocal scanning laser microscope and a reduction in inspection accuracy due to a thickness deviation of a glass substrate on which the mask is formed. A technique for correcting using a glass layer thickness corrector (hereinafter simply referred to as a thickness corrector) is disclosed.
[0003]
In a confocal scanning laser microscope using such a thickness corrector, the thickness of the light transmission layer of the thickness corrector is set using the thickness measuring instrument such as a laser micrometer. By performing actual measurement, the total thickness of the light transmission layer and the glass substrate is set to a constant reference thickness. Also, the masks are classified into several types according to the thickness, and the conventional thickness setting of the light transmission layer is performed before the first mask measurement when the mask type is changed, and thereafter the same type of mask is set. Is measured with this setting. Then, in this state where the total thickness of the light transmission layer and the glass substrate becomes the reference thickness, the confocal scanning laser microscope is set so that the focal point is aligned with the lower end surface of the glass substrate.
[0004]
[Problems to be solved by the invention]
However, since the light transmission layer thickness setting method is based on physical measurement such as the thickness of the glass substrate and not on the optical thickness, it is set by changing the material of the glass substrate. There was a problem that errors were included. In addition, when the mask type changes, the thickness of the light transmission layer is set only once before the first mask measurement, and therefore the light transmission layer is caused by factors such as temperature change during the subsequent measurement of the same type of mask. Since the total thickness of the glass substrate and the glass substrate fluctuates with respect to the reference thickness, there is a problem that the focal point of the confocal scanning laser microscope is shifted.
[0005]
The present invention has been made in view of the above-described problems, and has the following objects.
(1) To provide a microscope capable of suppressing a decrease in measurement accuracy due to a difference in material of a glass layer of a measurement object.
(2) A microscope focus setting method based on the optical thickness of the glass layer of the measurement object is provided.
(3) To provide a microscope focus setting method that is stable against changes in ambient temperature.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described purpose, as a first means, the measurement light is collected on the lower end surface of the glass layer by the objective lens through the light transmission layer whose thickness is set according to the thickness of the glass layer of the measurement object. In the microscope that measures the dimension of the target portion formed on the lower end surface by irradiating with light and detecting the intensity of the reflected light from the measurement object by the photodetector through the objective lens,
A focal point that is disposed oppositely on the same optical axis as the objective lens with the measurement object interposed therebetween, and the optical positional relationship with respect to the objective lens is measured in advance, and the focus setting incident light is condensed and irradiated on the lower end surface. An objective lens for setting;
A focus setting light detector for detecting the intensity of the focus setting reflected light from the lower end surface via the focus setting objective lens;
A light switching means for irradiating only the focus setting incident light to the focus setting objective lens when setting the focus of the objective lens, and irradiating only the incident light to the objective lens during measurement;
By detecting the intensity of the focus setting incident light with the photodetector and the focus setting photodetector, the thickness of the light transmission layer is adjusted to set the focus position of the objective lens.
[0007]
As a second means, in the first means, the distance between the objective lens and the focus setting objective lens when the focal point of the objective lens coincides with the focal point of the focus setting objective lens as an optical positional relationship in advance. A measure is taken.
[0008]
As a third means, in the first or second means, the thickness of the light transmission layer is set so that the intensity of the focus setting incident light detected by the photodetector and the focus setting photodetector is maximized. Is adopted.
[0009]
As a fourth means, in any one of the first to third means, the means that the incident light and the focus setting incident light are supplied from the same light source is adopted.
[0010]
As a fifth means, the incident light is condensed and irradiated on the lower end surface of the glass layer by the objective lens through the light transmission layer whose thickness is set according to the thickness of the glass layer of the measurement object, and the measurement is performed. In the focus setting method of the microscope for measuring the dimension of the target portion formed on the lower end surface by detecting the intensity of the reflected light from the target object through the light transmission layer and the objective lens,
a. A step of opposingly placing a focus setting objective lens across a sample glass on the same optical axis as the objective lens;
b. The focus setting objective lens is detected by detecting the intensity of the focus setting reflected light obtained by irradiating the lower end surface of the sample glass with the focus setting incident light through the focus setting objective lens. To move the focus to the lower end surface of the sample glass,
c. The process of moving the objective lens to detect the intensity of the focus setting incident light transmitted through the sample glass through the objective lens and adjusting the focal point to the lower end surface of the sample glass;
d. In place of the sample glass, a measurement object and a light transmission layer are attached between the objective lens and the focus setting objective lens so that incident light can be focused, and the focus setting objective lens is focused on the lower end surface of the glass layer. A process of moving the position of the focus setting objective lens,
e. A step of aligning the position of the objective lens so that the lower end surface of the glass layer is focused based on the positional relationship between the focus setting objective lens and the objective lens in the steps b and c;
f. Adjusting the thickness of the light transmission layer so that the intensity of the reflected light is maximized;
A means having the following is adopted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a microscope and its focus setting method according to the present invention will be described with reference to FIGS.
[0012]
FIG. 1 is a configuration diagram of an optical system of a microscope in the present embodiment. In this figure, reference numeral 1 denotes a laser oscillator (light source), which outputs, for example, a single mode laser beam having a wavelength of 325 nm (nanometer) toward the reflecting mirror 2. The reflecting mirror 2 reflects the laser light toward the reflecting mirror 3. The reflecting mirror 3 reflects laser light as incident light toward the beam splitter 4.
[0013]
The beam splitter 4 reflects part of the incident light incident from the reflecting mirror 3 toward the measurement optical system A and transmits the remaining laser light to propagate to the focus setting optical system B. Here, the laser light reflected by the beam splitter 4 is guided to the measurement optical system A as incident light, and the laser light transmitted through the beam splitter 4 is guided to the focus setting optical system B as focus setting incident light.
[0014]
The measurement optical system A includes reflecting mirrors a1 to a4, shutter a5, beam splitter a6, photodetector a7, focusing lens a8, pinhole a9, 1 / 4λ phase plate a10, collimator lens a11, objective lens a12, and thickness. It comprises a corrector a13.
[0015]
The reflecting mirror a1 reflects the incident light toward the reflecting mirror a2, and the reflecting mirror a2 reflects the incident light toward the shutter a5. The shutter a5 passes or shields the incident light to turn on / off the propagation of the incident light to the beam splitter a6. The beam splitter a6 propagates incident light to the converging lens a8, and reflects reflected light obtained by reflecting the incident light propagated to the converging lens a8 to a measurement object, that is, a mask X described below, as a reflecting mirror a3. Reflect towards The converging lens a8 converges the incident light toward the hole provided in the pinhole a9, and propagates the reflected light to the beam splitter a6 as parallel light.
[0016]
The pinhole a9 is a shielding plate provided with a small-diameter hole, diffracts incident light and propagates it to the ¼λ phase plate a10, and only reflects the reflected light incident on the hole out of the reflected light. Pass toward a8. The ¼λ phase plate a10 shifts the phase of incident light by ¼ wavelength and propagates it to the collimator lens a11, and shifts reflected light by ¼ wavelength and propagates it to the pinhole a9. The collimator lens a11 converts incident light diffracted by the pinhole a9 into parallel light and propagates it to the reflecting mirror a4, and converges the reflected light toward the hole of the pinhole a9.
[0017]
The reflecting mirror a4 totally reflects the incident light and propagates it toward the objective lens a12, and totally reflects the reflected light and propagates it toward the collimator lens a11. The objective lens a12 converges the incident light and irradiates the mask X, which is a measurement object, vertically through a light transmission layer a14 described below, and converts the reflected light into parallel light toward the reflecting mirror a4. Propagate. The objective lens a12 is configured to be movable along the optical axis P1, and is provided with a position detector that detects the position of the objective lens a12 with high accuracy on the order of submicrons.
[0018]
The thickness corrector a13 is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-140393. The thickness corrector a13 has the same refractive index as that of a glass substrate (glass layer) X1 described below and the thickness thereof can be varied. A light transmission layer a14 is provided. The thickness of the light transmission layer a14 is set so that the thickness of the glass substrate X1 and its own thickness are always a constant reference thickness V.
[0019]
As shown in the side sectional view of FIG. 2, the mask X has a chrome pattern (target portion) X2 formed on one surface of a glass substrate X1 having a certain thickness by etching or the like. The line width L or the like is a measurement target by the microscope. In measuring the line width L, the mask X is placed on a mask holder (not shown) with the glass substrate X2 on the objective lens a12 side as shown.
[0020]
Incident light applied to the mask X is reflected by the mask X, reflected as a reflected light toward the reflecting mirror a3 by the beam splitter a6 via the thickness light transmission layer a14 and the above-described components, and a photodetector. Incident on a7. Here, since the reflected light passes through the ¼λ phase plate a10 twice, a phase shift of ½ wavelength is made, so that it is reflected by the beam splitter a6. The photodetector a7 is, for example, a photomultiplier tube, and detects the intensity of the reflected light thus entered as an electrical signal.
[0021]
On the other hand, the focus setting optical system B includes reflecting mirrors b1 to b3, shutter b4, beam splitter b5, focus setting light detector b6, focusing lens b7, pinhole b8, 1 / 4λ phase plate b9, collimator lens b10, And a focus setting objective lens b11.
[0022]
The focus setting incident light propagated from the beam splitter 4 toward the focus setting optical system B is reflected by the reflecting mirror b1 toward the shutter b4. The shutter b4 transmits / shields the focus setting incident light and propagates it to the beam splitter b5. The beam splitter b5 propagates the focus setting incident light incident from the shutter b4 to the focusing lens b7, and transmits the focus setting reflected light obtained by propagating to the focusing lens b7 and reflecting the focus setting incident light to the mask X. Reflected toward the reflecting mirror b2. The converging lens b7 converges the focus setting incident light toward a hole provided in the pinhole b8, and makes the focus setting reflected light parallel light and propagates it to the beam splitter b5.
[0023]
The pinhole b8 is, for example, a light shielding plate provided with a small-diameter hole, diffracts the focus setting incident light to pass through the ¼λ phase plate b9, and the focus incident on the hole of the focus setting reflected light. Only the set reflected light is allowed to pass toward the beam splitter b5. The quarter-wave phase plate b9 shifts the phase of the focus setting incident light by a quarter wavelength and propagates it to the collimator lens b10, and shifts the phase of the focus setting reflected light by a quarter wavelength and propagates it to the pinhole b8. Let The collimator lens b10 converts the focus setting incident light diffracted by the pinhole b8 into parallel light and propagates it to the reflecting mirror b3, and converges the focus setting reflected light toward the hole of the pinhole b8.
[0024]
The reflecting mirror b3 totally reflects the focus setting incident light and propagates it toward the focus setting objective lens b11, and propagates the focus setting reflected light toward the collimator lens b10. The focus setting objective lens b11 converges the focus setting incident light to irradiate the mask X, and makes the focus setting reflected light parallel light to propagate toward the reflecting mirror b3. The focus setting objective lens b11 is positioned so that its optical axis P2 is the same as the optical axis P1 of the objective lens a12 described above, and the positional relationship with the objective lens a12 by the procedure described below. Are optically measured in advance.
[0025]
The focus setting incident light irradiated on the mask X is reflected by the mask X, reflected by the beam splitter b5 as the focus setting reflected light through the above-described components, and further reflected by the reflecting mirror b2 for focus setting. The light enters the photodetector b6. The focus setting photodetector b6 is a photomultiplier tube similar to the photodetector a7 described above, and detects the intensity of the focus setting reflected light as an electric signal.
[0026]
Next, a method for setting the focus of the objective lens a12 performed prior to the measurement of the mask X will be described with reference to FIG.
[0027]
First, as shown in this figure, instead of the mask X, the sample glass Z is placed on the mask holder and the light transmission layer 12a is removed from the optical path. The sample glass Z is formed of the same material as the glass substrate X1 and has the reference thickness V.
[0028]
In this state, the shutter a5 is closed and only the focus setting incident light is irradiated onto the sample glass Z, and the focus is set so that the lower end surface Z1 (position Y0 along the optical axis P2) of the sample glass Z is in focus. The objective lens b12 is moved. At this time, the position Yb of the focus setting objective lens b11 measured by the position detector provided in the objective lens b12 is stored.
[0029]
At this time, it is detected that the intensity of the focus setting reflected light detected by the focus setting light detector b6 is the maximum, that is, the amount of the focus setting reflected light passing through the pinhole b8 is the maximum, thereby setting the focus. It is determined that the objective lens b11 is focused on the lower end surface Z1.
[0030]
When the focus of the focus setting objective lens b11 is thus focused on the lower end surface Z1, the objective lens a12 is moved to focus the objective lens a12 on the lower end surface Z1. At this time, the position Ya of the focus setting objective lens b11 is stored based on the output of the position detector provided in the focus setting objective lens b11. In this case, it is determined that the focus of the objective lens a12 is focused on the lower end surface Z1 by detecting that the output of the photodetector a7 is maximum, that is, the amount of light passing through the pinhole a9 is maximized. Is done.
[0031]
By the above procedure, the positional relationship of the objective lens a12 with respect to the position of the focus setting objective lens b11 when the focus of the objective lens a12 and the focus of the focus setting objective lens b11 coincide, that is, the objective lens a12 and the focus setting objective lens. The distance R with b11 was determined.
[0032]
Subsequently, the optical system is returned to the state shown in FIG. 1, and the focus of the objective lens a12 is adjusted to the lower end surface X3 with respect to the mask X as follows. First, the focus setting objective lens b11 is focused on the lower end surface X3 in the same manner as described above. Then, the objective lens a12 is moved to a position that satisfies the distance R. In this case, the position of the objective lens a12 is set with high accuracy based on the detection values of the position detector of the objective lens a12 and the position detector of the focus setting objective lens b11. Through the above procedure, the focal point of the objective lens a12 is optically aligned with the lower end surface X3 with high accuracy.
[0033]
In this state, the thickness of the light transmission layer a14 of the thickness corrector a13 is maximized so that the shutter b4 is closed and the shutter a5 is opened to irradiate the mask X with incident light and the output of the photodetector a7 is maximized. Is set. That is, the thickness of the thickness corrector a13 is set so that the thickness of the glass substrate X1 plus the thickness of the thickness corrector a13 becomes the thickness of the sample glass Z, that is, the reference thickness V.
[0034]
The line width L of the chrome pattern X2 is measured as follows by the microscope adjusted in focus in this way. That is, the objective lens 11 is moved along the optical axis P1 so as to be focused on the lower end surface (joint surface with the chromium pattern X2) X3 of the glass substrate X1, detected by the photodetector 13, and the intensity of the reflected light is increased. The maximum position is set. In this case, since the intensity of the reflected light varies depending on the presence or absence of the chromium pattern X2, the line width L is measured based on the intensity change.
[0035]
【The invention's effect】
As described above, the present invention has the following effects.
(1) Oppositely arranged on the same optical axis as the objective lens across the measurement object, the optical positional relationship with the objective lens is measured in advance, and the focus setting incident light is condensed and irradiated on the lower end surface. A focus setting objective lens, a focus setting photodetector for detecting the intensity of reflected light from the bottom of the glass layer through the focus setting objective lens, and a focus setting objective lens when setting the focus of the objective lens Since the optical switching means for propagating only the incident light of the focus setting and propagating only the incident light to the objective lens at the time of measurement is provided, it is possible to accurately detect the objective lens based on the optical thickness of the glass layer of the measurement object. The focal position is set.
(2) Since the focal position of the objective lens is set with high accuracy based on the optical thickness of the glass layer of the measurement object, the reduction in measurement accuracy due to the difference in the material of the glass layer of the measurement object is suppressed. Can do.
(3) The measurement object can be stably measured against changes in ambient temperature.
(4) It is not necessary to use a thickness measuring instrument that physically measures the thickness of the measurement object when measuring the measurement object.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an optical system of a microscope in a microscope and its focus setting method according to the present invention.
FIG. 2 is a configuration diagram of an optical system during focus adjustment of an objective lens in the microscope and the focus setting method according to the present invention.
FIG. 3 is a side sectional view showing a configuration of a mask to be measured in the microscope and the focus setting method according to the present invention.
[Explanation of symbols]
1 laser oscillator 2, a5, b4 shutter 3, a1 to a4, b1 to b3 reflecting mirror 4, a6, b5 beam splitter A measuring optical system B focus setting optical system a7 photodetectors a8, b7 focusing lenses a9, b8 pins Hall a10, b9 1 / 4λ phase plate a11, b10 Collimator lens a12 Objective lens a13 Thickness corrector a14 Light transmission layer b6 Focus setting photodetector b11 Focus setting objective lens L Chrome pattern line width P1 Objective lens light Axis P2 Optical axis R of focus setting objective lens R Distance between objective lens and focus setting objective lens X Mask X1 Glass substrate X2 Chrome pattern X3 Bottom edge surface Y0 Position of sample glass bottom edge along optical axis Ya Optical axis Position of objective lens along Yb Position of objective lens for focus setting along optical axis Z Sample glass Z1 Lower end surface of sample glass

Claims (5)

計測対象物のガラス層の厚さに応じて厚みが設定される光透過層を介して計測光を対物レンズによってガラス層の下端面に集光して照射するとともに、計測対象物からの反射光の強度を対物レンズを介して光検出器によって検出することにより、下端面上に形成された対象部の寸法を計測する顕微鏡において、
計測対象物を挟んで前記対物レンズと同一光軸上に対向配置されて対物レンズに対する光学的な位置関係が予め計測されるとともに、前記下端面に焦点設定入射光を集光して照射する焦点設定用対物レンズと、
前記下端面からの焦点設定反射光の強度を前記焦点設定用対物レンズを介して検出する焦点設定用光検出器と、
前記対物レンズの焦点設定時には前記焦点設定用対物レンズに焦点設定入射光のみを照射させ、計測時には前記対物レンズに入射光のみを照射させる光切換手段とを具備し、
焦点設定入射光の強度を前記光検出器及び焦点設定用光検出器によって検出することにより光透過層の厚さが調節されて対物レンズの焦点位置が設定されることを特徴とする顕微鏡。
The measurement light is focused and irradiated on the lower end surface of the glass layer by the objective lens through the light transmission layer whose thickness is set according to the thickness of the glass layer of the measurement object, and the reflected light from the measurement object In the microscope that measures the size of the target part formed on the lower end surface by detecting the intensity of the light by the photodetector through the objective lens,
A focal point that is disposed oppositely on the same optical axis as the objective lens with the measurement object interposed therebetween, and the optical positional relationship with respect to the objective lens is measured in advance, and the focus setting incident light is condensed and irradiated on the lower end surface. An objective lens for setting;
A focus setting light detector for detecting the intensity of the focus setting reflected light from the lower end surface via the focus setting objective lens;
A light switching means for irradiating only the focus setting incident light to the focus setting objective lens when setting the focus of the objective lens, and irradiating only the incident light to the objective lens during measurement;
A microscope characterized in that the focus position of an objective lens is set by adjusting the thickness of a light transmission layer by detecting the intensity of focus setting incident light with the photodetector and the focus setting photodetector.
光学的な位置関係として、対物レンズの焦点と焦点設定用対物レンズの焦点とが一致したときの対物レンズと焦点設定用対物レンズとの距離が予め計測されることを特徴とする請求項1記載の顕微鏡。2. The distance between the objective lens and the focus setting objective lens when the focal point of the objective lens coincides with the focus of the focus setting objective lens is measured in advance as the optical positional relationship. Microscope. 光検出器及び焦点設定用光検出器によって検出される焦点設定入射光の強度が最大となるよう光透過層の厚さが設定されることを特徴とする請求項1または2記載の顕微鏡。3. The microscope according to claim 1, wherein the thickness of the light transmission layer is set so that the intensity of the focus setting incident light detected by the photodetector and the focus setting photodetector is maximized. 入射光と焦点設定入射光とは同一光源から供給されることを特徴とする請求項1ないし3いずれかの項記載の顕微鏡。4. The microscope according to claim 1, wherein the incident light and the focus setting incident light are supplied from the same light source. 計測対象物のガラス層の厚さに応じて厚みが設定される光透過層を介して入射光を対物レンズによってガラス層の下端面に集光して照射するとともに、計測対象物からの反射光の強度を光透過層と対物レンズを介して検出することにより、下端面上に形成された対象部の寸法を計測する顕微鏡の焦点設定方法であって、
a.前記対物レンズと同一光軸上にサンプルガラスを挟んで焦点設定用対物レンズを対向配置する行程と、
b.焦点設定用対物レンズを介してサンプルガラスの下端面に焦点設定入射光を照射して得られる焦点設定反射光の強度を焦点設定用対物レンズを介して検出することにより、該焦点設定用対物レンズを移動して焦点をサンプルガラスの下端面に合わせる行程と、
c.サンプルガラスを透過した焦点設定入射光の強度を対物レンズを介して検出することにより対物レンズを移動して焦点をサンプルガラスの下端面に合わせる行程と、
d.前記対物レンズと焦点設定用対物レンズとの間にサンプルガラスに代えて計測対象物及び光透過層を装着して入射光を、焦点設定用対物レンズの焦点が前記ガラス層の下端面に合うように焦点設定用対物レンズの位置を移動する行程と、
e.前記行程b、cにおける焦点設定用対物レンズと対物レンズとの位置関係に基づいてガラス層の下端面に焦点が合うように対物レンズの位置を合わせる行程と、
f.前記反射光の強度が最大となるように前記光透過層の厚みを調節する行程と、
を有することを特徴とする顕微鏡の焦点設定方法。
The incident light is focused and irradiated on the lower end surface of the glass layer by the objective lens through the light transmission layer whose thickness is set according to the thickness of the glass layer of the measurement object, and the reflected light from the measurement object. A focus setting method for a microscope that measures the size of the target portion formed on the lower end surface by detecting the intensity of the light through the light transmission layer and the objective lens,
a. A step of opposingly placing a focus setting objective lens across a sample glass on the same optical axis as the objective lens;
b. The focus setting objective lens is detected by detecting the intensity of the focus setting reflected light obtained by irradiating the lower end surface of the sample glass with the focus setting incident light through the focus setting objective lens. To move the focus to the lower end surface of the sample glass,
c. The process of moving the objective lens to detect the intensity of the focus setting incident light transmitted through the sample glass through the objective lens and adjusting the focal point to the lower end surface of the sample glass;
d. In place of the sample glass, a measurement object and a light transmission layer are attached between the objective lens and the focus setting objective lens so that incident light can be focused, and the focus setting objective lens is focused on the lower end surface of the glass layer. A process of moving the position of the focus setting objective lens,
e. A step of aligning the position of the objective lens so that the lower end surface of the glass layer is focused based on the positional relationship between the focus setting objective lens and the objective lens in the steps b and c;
f. Adjusting the thickness of the light transmission layer so that the intensity of the reflected light is maximized;
A method for setting a focus of a microscope.
JP34408595A 1995-12-28 1995-12-28 Microscope and focus setting method thereof Expired - Fee Related JP3715013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34408595A JP3715013B2 (en) 1995-12-28 1995-12-28 Microscope and focus setting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34408595A JP3715013B2 (en) 1995-12-28 1995-12-28 Microscope and focus setting method thereof

Publications (2)

Publication Number Publication Date
JPH09184706A JPH09184706A (en) 1997-07-15
JP3715013B2 true JP3715013B2 (en) 2005-11-09

Family

ID=18366540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34408595A Expired - Fee Related JP3715013B2 (en) 1995-12-28 1995-12-28 Microscope and focus setting method thereof

Country Status (1)

Country Link
JP (1) JP3715013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023255A1 (en) * 2010-08-18 2012-02-23 Canon Kabushiki Kaisha Microscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417485B1 (en) 2000-05-30 2002-07-09 Igor Troitski Method and laser system controlling breakdown process development and space structure of laser radiation for production of high quality laser-induced damage images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023255A1 (en) * 2010-08-18 2012-02-23 Canon Kabushiki Kaisha Microscope

Also Published As

Publication number Publication date
JPH09184706A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
US5563706A (en) Interferometric surface profiler with an alignment optical member
JP3881125B2 (en) Level difference measuring apparatus and etching monitor apparatus and etching method using the level difference measuring apparatus
US20070229853A1 (en) Nanometer contact detection method and apparatus for precision machining
CN110702614B (en) Ellipsometer device and detection method thereof
KR20160040737A (en) Overlay metrology using the near infra-red spectral range
JP2002296005A (en) Aligning method, point diffraction interference measuring instrument, and high-accuracy projection lens manufacturing method using the same instrument
JP3715013B2 (en) Microscope and focus setting method thereof
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
JPS5979104A (en) Optical device
JP3179697B2 (en) Photomask defect detector
JPH10253892A (en) Phase interference microscope
JP3670068B2 (en) Microscope and focus setting method thereof
JP2004226939A (en) Defect inspection apparatus, defect inspection method and method for manufacturing semiconductor device using the same
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
JP4258378B2 (en) Position detection apparatus, exposure apparatus, and exposure method
JP3964260B2 (en) Shape measuring device
JP4580579B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP2004279075A (en) Lens eccentricity measuring method and measuring device
JPH09184984A (en) Microscope
KR102116618B1 (en) Inspection apparatus for surface of optic specimen and controlling method thereof
JP2753545B2 (en) Shape measurement system
JP3047459B2 (en) Photomask inspection apparatus and photomask inspection method
JP3004076B2 (en) Sample surface position measurement device
JP3405523B2 (en) Phase shift amount measuring method and apparatus
KR100460705B1 (en) Apparatus for detecting particles on reticle to remarkably improve precision and resolution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees