JPH04357472A - Probe for measuring electric field - Google Patents

Probe for measuring electric field

Info

Publication number
JPH04357472A
JPH04357472A JP3035887A JP3588791A JPH04357472A JP H04357472 A JPH04357472 A JP H04357472A JP 3035887 A JP3035887 A JP 3035887A JP 3588791 A JP3588791 A JP 3588791A JP H04357472 A JPH04357472 A JP H04357472A
Authority
JP
Japan
Prior art keywords
probe
electro
protrusion
electric field
optic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035887A
Other languages
Japanese (ja)
Other versions
JP2742143B2 (en
Inventor
Tadao Nagatsuma
忠夫 永妻
Mitsuru Shinagawa
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3035887A priority Critical patent/JP2742143B2/en
Publication of JPH04357472A publication Critical patent/JPH04357472A/en
Application granted granted Critical
Publication of JP2742143B2 publication Critical patent/JP2742143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a probe in a structure which is suited for mass production since it can be machined accurately, supported easily, and machined easily in a probe for detecting electric field signal of an integrated circuit according to electrooptical sampling. CONSTITUTION:A probe 6 for measuring electric field is provided with a protrusion at a center portion of one surface of a substrate 3 which is made of a transparent material. The protrusion was subjected to side machining in conical shape so that the tip becomes a circular fine region, an electrochemical crystal 1 is fixed to a tip surface of the protrusion, and a dielectric reflection film 5 is provided on the surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【従来の技術】集積回路の評価および試験を非接触で行
なう手段として、電界によって複屈折率が変わるという
性質を有する電気光学結晶を電界測定のためのプローブ
に用いる方法が知られている。すなわち、該結晶を被測
定回路の近傍(通常、数マイクロメートル程度の離間距
離)に配置し、被測定回路からの電界を電気光学結晶に
結合させ、該結晶にパルスレーザ光をサンプリング光と
して照射すると、電界の大きさに応じて、照射した光の
偏光状態が変化するという原理を利用するもので、電気
光学サンプリングと呼ばれている。電気光学サンプリン
グの詳しい情報は、例えば、アイ イー イー イー 
 ジャーナル オブ クォンタム エレクトロニクスI
EEE  Journal  of  Quantum
  Electronics、1988年2月、198
−220頁、K.J.Weingarten等による論
文からも知ることができる。このためのプローブとして
、従来、図3に示すように、長さ5−10ミリメートル
、一辺あるいは直径、数ミリメートルの角柱あるいは円
柱状の透明支持体(材料は例えば石英)の一端に、表面
に誘電体反射膜を蒸着した電気光学結晶を貼り付け、先
端側面を数十マイクロメートル角のピラミッド状に研磨
加工したものを用いている。これらの棒状のプローブは
図4に示すような板バネや、図5に示すような円形ある
いは角形のホールの開いたプローブ支持用治具に固定し
、該支持用治具を上下微動させてプローブと被測定回路
との離間距離hを制御している。しかしながら、従来の
構造のものでは次に述べるような問題があり、その解決
を要する課題があった。
2. Description of the Related Art As a means for non-contact evaluation and testing of integrated circuits, a method is known in which an electro-optic crystal whose birefringence index changes depending on the electric field is used as a probe for measuring the electric field. That is, the crystal is placed near the circuit under test (usually at a distance of several micrometers), the electric field from the circuit under test is coupled to the electro-optic crystal, and the crystal is irradiated with pulsed laser light as sampling light. This method utilizes the principle that the polarization state of the irradiated light changes depending on the magnitude of the electric field, and is called electro-optic sampling. For more information on electro-optic sampling, see e.g.
Journal of Quantum Electronics I
EEE Journal of Quantum
Electronics, February 1988, 198
-220 pages, K. J. This can also be learned from the paper by Weingarten et al. Conventionally, as a probe for this purpose, as shown in FIG. An electro-optic crystal with a vapor-deposited reflective film is attached, and the side surface of the tip is polished into a pyramid shape several tens of micrometers square. These rod-shaped probes are fixed to a leaf spring as shown in Fig. 4 or a probe support jig with a circular or square hole as shown in Fig. 5, and the probes are fixed by slightly moving the support jig up and down. The separation distance h between the circuit and the circuit under test is controlled. However, the conventional structure has the following problems, which need to be solved.

【0002】0002

【発明が解決しようとする課題】図3に示した構造のプ
ローブおよび図4から図5に示した該プローブ支持の方
法においては、主として以下に述べるような大きな問題
点を有している。まず第1の問題点は、電気光学結晶を
有するプローブ先端の加工精度が出し難い構造となって
いることである。すなわち、従来の構造のプローブの製
作においては、先端側面を一面ずつ研磨していくために
各研磨工程での加工誤差(角度や寸法)が最終的に、先
端電気光学結晶面の形状、寸法ならびに位置のずれ(軸
ずれ)を生じる。特に、軸ずれは重要な問題であり、プ
ローブ先端面は、プローブへのレーザ光の入射やプロー
ブ自身の被測定回路への位置決めのために、図4あるい
は図5に示すように、対物レンズの中心に配置すること
が必要である。したがって、上記軸ずれを有したプロー
ブの場合、プローブ支持用治具に上下微動機構に加えて
軸ずれを調整するための微動機構を具備しなければなら
ず、プローブ支持機構の複雑化を招く。ところが、従来
のプローブ構造において、プローブ加工精度を数マイク
ロメートル内に抑えて軸ずれや寸法誤差の少ないものを
製作するためには、一般に高度のNC工作機械を要する
。第2の問題点は、プローブ先端の電気光学結晶表面と
被測定回路との平行度をとるための支持が困難な構造と
なっていることである。通常プローブは十分な測定感度
を得るために被測定回路基板表面に対して数マイクロメ
ートル程度まで近づけて使用する。両者の平行度が悪い
と結晶端部を被測定回路に接触させ回路を破壊する危険
性がある。しかしながら、従来の棒状構造のプローブの
場合、例えば図4に示すように、板バネをプローブ側面
で固定して保持したり、図5のように、支持用治具のホ
ールにプローブを挿入し、プローブ側面とホール側面と
を固定するため、プローブに傾きを生じ易く、上記平行
度を得るのが極めて困難である。さらに、第3の問題点
として、従来の構造のプローブの製作においては、多面
の逐次研磨加工を行うため、多大な加工時間を要し、大
量生産に適しておらず経済化が困難であった。
The probe having the structure shown in FIG. 3 and the method of supporting the probe shown in FIGS. 4 and 5 have the following major problems. The first problem is that the probe tip, which has an electro-optic crystal, has a structure that makes it difficult to achieve machining accuracy. In other words, in the production of a probe with a conventional structure, the side surfaces of the tip are polished one by one, so the processing errors (angles and dimensions) in each polishing process ultimately affect the shape, dimensions, and shape of the tip electro-optic crystal surface. This causes positional deviation (axis deviation). In particular, axis misalignment is an important problem, and the tip of the probe is required to accommodate the objective lens, as shown in Figures 4 and 5, in order to allow the laser beam to enter the probe and position the probe itself to the circuit under test. It is necessary to place it in the center. Therefore, in the case of a probe having the above-mentioned axis misalignment, the probe supporting jig must be equipped with a fine movement mechanism for adjusting the axis misalignment in addition to the vertical fine movement mechanism, which leads to a complicated probe support mechanism. However, in the conventional probe structure, in order to suppress the processing accuracy of the probe to within several micrometers and manufacture a probe with few axis deviations and dimensional errors, a sophisticated NC machine tool is generally required. The second problem is that the structure makes it difficult to support the electro-optic crystal surface at the tip of the probe and the circuit under test to ensure parallelism. Normally, the probe is used close to the surface of the circuit board to be measured by several micrometers in order to obtain sufficient measurement sensitivity. If the parallelism between the two is poor, there is a risk that the crystal end will come into contact with the circuit under test and destroy the circuit. However, in the case of a conventional rod-shaped probe, for example, as shown in FIG. 4, a leaf spring is fixed and held on the side of the probe, or as shown in FIG. 5, the probe is inserted into a hole in a support jig. Since the side surface of the probe and the side surface of the hole are fixed, the probe tends to tilt, making it extremely difficult to obtain the above-mentioned parallelism. Furthermore, the third problem is that in the production of probes with conventional structures, multiple polishing processes are performed sequentially, which requires a large amount of processing time, making it unsuitable for mass production and difficult to achieve economicalization. .

【0003】本発明は電気光学サンプリングによる集積
回路の電界信号検出用のプローブにおいて、以上の問題
点を解決し、加工精度が得やすく、支持が容易で、且つ
加工が簡単なため量産化に適した構造のプローブを提供
することを目的とする。
The present invention solves the above problems in a probe for detecting electric field signals of integrated circuits using electro-optical sampling, and is suitable for mass production because it is easy to obtain processing accuracy, easy to support, and easy to process. The purpose of this study is to provide a probe with a unique structure.

【0004】0004

【課題を解決するための手段】上記の目的を達成するた
め、本発明の電界測定用プローブは、透明な材料の基板
の一方の面の中央部に突起を有し、該突起はその先端が
円形の微小領域となるように円錐状に側面加工されたも
のであり、該突起の先端面には、電気光学結晶を固定し
、その表面に誘電体反射膜を施した構造を備えることと
した。
[Means for Solving the Problems] In order to achieve the above object, the electric field measurement probe of the present invention has a protrusion in the center of one surface of a substrate made of a transparent material, and the protrusion has a tip thereof. The protrusion has a conical side surface processed to form a small circular area, and the tip of the protrusion has a structure in which an electro-optic crystal is fixed and a dielectric reflective film is applied to the surface. .

【0005】[0005]

【作用】プローブ先端部が円錐状になっているため、例
えば切削加工による側面の一体加工成形を可能にし、そ
の結果、従来の逐次研磨加工に比べて加工時間が低減さ
れプローブの量産化をもたらす。また同時に、回転式の
切削工具が適用できる構造であるため、先端面の中心出
しが高精度に行える。さらに、プローブを支持するため
の基板部位と一体加工できる構造であるので、これによ
り、先端の電気光学結晶表面と該基板部位の表面との平
行度を精度良く出すことが可能となる。その結果、本プ
ローブが通常のレンズやミラーを固定するホルダーと同
様の治具で固定できる構造となっていることと相まって
、プローブ結晶表面を極めて水平な状態に固定すること
ができ、測定の際プローブを被測定回路に近接させても
接触して両者を破壊する危険性はなくなる。
[Action] Since the tip of the probe is conical, it is possible to form the side surface in one piece by cutting, for example.As a result, compared to the conventional sequential polishing process, processing time is reduced and the probe can be mass-produced. . At the same time, since the structure allows use of rotary cutting tools, the centering of the tip surface can be performed with high precision. Furthermore, since it has a structure that can be fabricated integrally with the substrate portion for supporting the probe, it is thereby possible to accurately achieve parallelism between the surface of the electro-optic crystal at the tip and the surface of the substrate portion. As a result, this probe has a structure that can be fixed with a jig similar to the holder used to fix ordinary lenses and mirrors, and the probe crystal surface can be fixed in an extremely horizontal state during measurement. Even if the probe is brought close to the circuit under test, there is no risk of contact and destruction of both.

【0006】[0006]

【実施例】図1は、本発明の実施例図を示す。また図2
は本発明のプローブの使用例図を示す。図において、1
は電気光学結晶、2は透明支持体、3は透明基板、4は
反射防止膜、5は高反射膜、6はプローブ、7は対物レ
ンズ、8はプローブホルダー支持体、9はプローブホル
ダー、10はプローブ固定キャップ、11は被測定回路
、12はステージである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention. Also, Figure 2
1 shows an example of the use of the probe of the present invention. In the figure, 1
is an electro-optic crystal, 2 is a transparent support, 3 is a transparent substrate, 4 is an antireflection film, 5 is a high reflection film, 6 is a probe, 7 is an objective lens, 8 is a probe holder support, 9 is a probe holder, 10 11 is a probe fixing cap, 11 is a circuit to be measured, and 12 is a stage.

【0007】電気光学結晶1は、例えばニオブ酸リチウ
ム(LiNbO3)、タンタル酸リチウム(LiTaO
3)、GaAsで、その厚さは数十マイクロから数百マ
イクロメートル程度である。透明支持体2は、全体とし
て薄い円盤状の基板の一方の面の中央部に円柱状の突起
部を設けた構造となっており、該支持体の材料は例えば
合成石英である。円柱状の突起部の先端は、上記電気光
学結晶1が貼り付けられ、該結晶面が数マイクロメート
ルから数十マイクロメートル径の円形となるように円錐
状に側面加工されている。また、該電気結晶表面には、
使用するレーザ光の波長に合わせた、高反射膜5が施さ
れている。プローブを支持するための円盤状の基板部位
から先端までを一体加工できることから、先端の電気光
学結晶表面と該基板部位の表面との平行度を精度良く出
すことができる。また、プローブ先端の側面部を切削に
より一体加工できることから、量産化が可能となる。さ
らに、回転式の切削工具を適用すれば、先端の電気光学
結晶が上記円盤状の基板に対して真ん中になるよう精度
良く位置合わせでき、いわゆる軸ずれのない高精度のプ
ローブの製作が可能となる。上記透明支持体2の円盤状
の基板部にはこれと同じ透明材料からなる円盤状の透明
基板3が貼り合わされている。そしてこの透明基板の他
方の面には反射防止膜4が蒸着されている。該反射防止
膜は透明支持体2の円盤状の基板表面に直接施すことも
可能である。しかし、生産性の点では、使用レーザの波
長に依存する高反射膜5と反射防止膜4を有する部分(
1および3)と、依存しない部分(2)を分けた方が良
い。あらかじめ、いくつかの波長に対応して反射膜およ
び反射防止膜の蒸着を施した部分1および3を用意して
おき、透明支持体2に張り合わせて加工すれば良い。す
なわち、膜蒸着の工程と切削や研磨等の機械加工工程と
を完全に分離できるため、両工程を繰り返す必要がなく
なり、生産の効率化が図られる。なお、反射防止膜は、
レーザ光が透明基板3に入射する際、またはこの入射光
が高反射膜5で反射して透明基板3から出射する際に反
射による損失を生じないよう防止するためのもので、プ
ローブを高感度にする上でこれを設けることが好ましい
The electro-optic crystal 1 is made of, for example, lithium niobate (LiNbO3) or lithium tantalate (LiTaO3).
3) It is made of GaAs, and its thickness is about several tens of micrometers to several hundred micrometers. The transparent support 2 has a structure in which a cylindrical protrusion is provided at the center of one surface of a thin disk-shaped substrate as a whole, and the material of the support is, for example, synthetic quartz. The electro-optic crystal 1 is attached to the tip of the cylindrical protrusion, and the side surface of the cylindrical projection is machined into a conical shape so that the crystal plane has a circular shape with a diameter of several micrometers to several tens of micrometers. Moreover, on the surface of the electric crystal,
A highly reflective film 5 matched to the wavelength of the laser beam used is applied. Since the part of the disk-shaped substrate for supporting the probe to the tip can be integrally processed, the parallelism between the electro-optic crystal surface at the tip and the surface of the substrate part can be achieved with high precision. Furthermore, since the side surface of the tip of the probe can be integrally machined by cutting, mass production becomes possible. Furthermore, if a rotary cutting tool is used, the electro-optic crystal at the tip can be precisely positioned in the center of the disk-shaped substrate, making it possible to manufacture a high-precision probe without so-called axis misalignment. Become. A disk-shaped transparent substrate 3 made of the same transparent material is bonded to the disk-shaped substrate portion of the transparent support 2. An antireflection film 4 is deposited on the other surface of this transparent substrate. The antireflection film can also be applied directly to the surface of the disc-shaped substrate of the transparent support 2. However, in terms of productivity, the part with the high reflection film 5 and the antireflection film 4 depends on the wavelength of the laser used (
It is better to separate 1 and 3) and the non-dependent part (2). Portions 1 and 3 coated with reflective films and anti-reflection films corresponding to several wavelengths may be prepared in advance and laminated onto the transparent support 2 for processing. That is, since the film deposition process and the machining process such as cutting and polishing can be completely separated, there is no need to repeat both processes, and production efficiency can be improved. In addition, the anti-reflection film is
This is to prevent loss due to reflection when the laser beam is incident on the transparent substrate 3, or when this incident light is reflected by the high reflection film 5 and emitted from the transparent substrate 3, and makes the probe highly sensitive. It is preferable to provide this.

【0008】図2は、本プローブの使用例である。本プ
ローブは、支持体の円盤状の基板部を通常のレンズやミ
ラー用のホルダーと同じような構造の治具で固定するこ
とが可能で、取り付け、取り外しが極めて容易に行える
。また、同様の治具を用いれば、プローブ先端と平行な
基板部位の表面とプローブホルダー9の表面で固定され
るため、プローブの先端にある電気光学結晶表面を被測
定回路11あるいはステージ12に対して平行に設定す
ること容易となる。また、該電気光学結晶を対物レンズ
7あるいは光学系の中心に設定することが容易であるこ
とは言うまでもない。より実際的な使用上の具体例とし
ては、プローブ6をプローブホルダー9に挿入してプロ
ーブ固定キャップ10で固定し、該プローブホルダーを
プローブ上下機構を有するプローブホルダー支持体8に
固定して用いる。
FIG. 2 shows an example of how this probe is used. In this probe, the disk-shaped substrate of the support can be fixed using a jig with a structure similar to that of a normal lens or mirror holder, making installation and removal extremely easy. Furthermore, if a similar jig is used, the surface of the substrate part parallel to the tip of the probe is fixed to the surface of the probe holder 9, so the electro-optic crystal surface at the tip of the probe is attached to the circuit under test 11 or the stage 12. This makes it easy to set them parallel to each other. Furthermore, it goes without saying that it is easy to set the electro-optic crystal at the center of the objective lens 7 or the optical system. As a more practical example, the probe 6 is inserted into a probe holder 9 and fixed with a probe fixing cap 10, and the probe holder is fixed to a probe holder support 8 having a probe up/down mechanism.

【0009】また、上記の実施例はひとつの例示であっ
て、本発明の精神を逸脱しない範囲で種々の変更あるい
は改良を行ないうることは言うまでもない。例えば、電
気光学結晶の透明基板に固定される側の面には、該透明
基板と電気光学結晶の屈折率の違いによる界面でのレー
ザ光の反射を防ぐための、反射防止膜を施しても良い。 また、透明支持体の円盤状の基板部は、ホルダーに固定
時に電気光学結晶の結晶軸方向を誤らないために一部を
切り落としたり、ホルダーへの挿入を容易にするために
角を落とす等の様々な形状変更を行っても良い。
Furthermore, the above-described embodiment is merely an example, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention. For example, an anti-reflection film may be applied to the side of the electro-optic crystal that is fixed to the transparent substrate to prevent reflection of laser light at the interface due to the difference in refractive index between the transparent substrate and the electro-optic crystal. good. In addition, the disk-shaped substrate part of the transparent support may be partially cut off to avoid misaligning the crystal axis direction of the electro-optic crystal when fixed to the holder, or the corners may be cut off to facilitate insertion into the holder. Various shape changes may be made.

【0010】0010

【発明の効果】本発明により、プローブ先端の電気光学
結晶をプローブを固定するための基板部位の中心に設定
することができるため、プローブへのレーザ光の入射や
被測定回路へのプローブの位置決めが容易となる。また
該結晶表面と該基板部位の表面とを平行に設定できるた
め、プローブ結晶表面を極めて水平な状態に固定するこ
とができ、被測定回路を破壊することなくプローブを近
接させることが可能となり、測定の感度、再現性の向上
が図られる。また、プローブの加工自体が簡単化させる
とともに、製作工程が簡素化されるため、プローブの量
産化が図られる。
[Effects of the Invention] According to the present invention, the electro-optic crystal at the tip of the probe can be set at the center of the substrate part for fixing the probe, so that the incidence of laser light on the probe and the positioning of the probe on the circuit under test can be easily adjusted. becomes easier. In addition, since the crystal surface and the surface of the substrate part can be set parallel to each other, the probe crystal surface can be fixed in an extremely horizontal state, and the probe can be brought close to the circuit under test without destroying it. Measurement sensitivity and reproducibility are improved. Further, since the processing of the probe itself is simplified and the manufacturing process is simplified, mass production of the probe can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例図[Figure 1] Example diagram of the present invention

【図2】本発明のプローブの使用例図[Fig. 2] Example of use of the probe of the present invention

【図3】従来のプローブ構造図[Figure 3] Conventional probe structure diagram

【図4】従来のプローブの一使用例図[Figure 4] Illustration of an example of the use of a conventional probe

【図5】従来のプローブの他の使用例図[Figure 5] Diagram of other usage examples of conventional probes

【符号の説明】[Explanation of symbols]

1…電気光学結晶              2…透
明支持体3…透明基板               
   4…反射防止膜5…高反射膜         
         6…プローブ7…対物レンズ   
             8…プローブホルダー支持
体 9…プローブホルダー        10…プローブ
固定キャップ 11…被測定回路              12…
ステージ13…板バネ               
   14…プローブ支持用治具
1... Electro-optic crystal 2... Transparent support 3... Transparent substrate
4...Anti-reflective film 5...Highly reflective film
6...Probe 7...Objective lens
8... Probe holder support 9... Probe holder 10... Probe fixing cap 11... Circuit under test 12...
Stage 13...plate spring
14... Probe support jig

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明な材料に固定した電気光学結晶を有し
て、該電気光学結晶を被測定電気回路からの電界を拾う
程度に該電気回路に近接させ、上記材料を介して該電気
光学結晶に光を照射し、被測定電気回路の電界を検出す
る電界測定プローブにおいて、  透明な材料の基板の
一方の面の中央部に突起を有し、該突起はその先端が円
形の微小領域となるように円錐状に側面加工されたもの
であり、該突起の先端面には、上記電気光学結晶を固定
し、その表面に誘電体反射膜を施した構造を備えること
を特徴とする電界測定用プローブ。
1. An electro-optic crystal fixed to a transparent material, the electro-optic crystal is placed close enough to the electrical circuit to pick up the electric field from the electrical circuit to be measured, and the electro-optic crystal is connected to the electrical circuit through the material. An electric field measurement probe that irradiates light onto a crystal and detects the electric field of an electrical circuit to be measured has a protrusion at the center of one surface of a substrate made of a transparent material, and the protrusion has a circular microscopic area at the tip. The protrusion has a side surface processed into a conical shape, and the electro-optic crystal is fixed to the tip surface of the protrusion, and a dielectric reflective film is applied to the surface of the electro-optic crystal. Probe for.
JP3035887A 1991-03-01 1991-03-01 Manufacturing method of electric field measurement probe Expired - Lifetime JP2742143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035887A JP2742143B2 (en) 1991-03-01 1991-03-01 Manufacturing method of electric field measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035887A JP2742143B2 (en) 1991-03-01 1991-03-01 Manufacturing method of electric field measurement probe

Publications (2)

Publication Number Publication Date
JPH04357472A true JPH04357472A (en) 1992-12-10
JP2742143B2 JP2742143B2 (en) 1998-04-22

Family

ID=12454532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035887A Expired - Lifetime JP2742143B2 (en) 1991-03-01 1991-03-01 Manufacturing method of electric field measurement probe

Country Status (1)

Country Link
JP (1) JP2742143B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677635A (en) * 1993-11-22 1997-10-14 Fujitsu Limited Voltage and displacement measuring apparatus and probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305257A (en) * 1987-06-05 1988-12-13 Hamamatsu Photonics Kk Voltage detecting apparatus
JPH01110743A (en) * 1987-10-23 1989-04-27 Nippon Telegr & Teleph Corp <Ntt> Device for testing integrated circuit
JPH02186282A (en) * 1989-01-12 1990-07-20 Fujitsu Ltd Signal measuring apparatus for semiconductor device
JPH02238382A (en) * 1989-03-13 1990-09-20 Nippon Telegr & Teleph Corp <Ntt> Positioning method of probe and circuit to be measured

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305257A (en) * 1987-06-05 1988-12-13 Hamamatsu Photonics Kk Voltage detecting apparatus
JPH01110743A (en) * 1987-10-23 1989-04-27 Nippon Telegr & Teleph Corp <Ntt> Device for testing integrated circuit
JPH02186282A (en) * 1989-01-12 1990-07-20 Fujitsu Ltd Signal measuring apparatus for semiconductor device
JPH02238382A (en) * 1989-03-13 1990-09-20 Nippon Telegr & Teleph Corp <Ntt> Positioning method of probe and circuit to be measured

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677635A (en) * 1993-11-22 1997-10-14 Fujitsu Limited Voltage and displacement measuring apparatus and probe
US5999005A (en) * 1993-11-22 1999-12-07 Fujitsu Limited Voltage and displacement measuring apparatus and probe

Also Published As

Publication number Publication date
JP2742143B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US3885875A (en) Noncontact surface profilometer
US4211489A (en) Photomask alignment system
JP3260619B2 (en) Optical waveguide probe and optical system
JPH0145842B2 (en)
US6710881B1 (en) Heterodyne interferometry for small spacing measurement
JP2742143B2 (en) Manufacturing method of electric field measurement probe
JP2947288B2 (en) Semiconductor integrated circuit test apparatus and probe position control method for the apparatus
JP2588965B2 (en) Electric field measurement probe
Smeethe et al. An electronically controlled Fabry-Perot spectrometer
JPS62212507A (en) Probe type surface shape detector requiring no calibration by laser interferometer
JP3381018B2 (en) Electric field detector
US4579454A (en) Optical profilometer for steep surface contours with significant surface tilt
CN2356314Y (en) Laser scanning force microscope
US4802736A (en) Interferometers
JP2655716B2 (en) Positioning method between probe and circuit under test
JP3321614B2 (en) Manufacturing method of electric field measurement probe
KR900006953B1 (en) Attaching method and apparatus for optical detector
JPH0694760A (en) Eo probe
JPH0820469B2 (en) Voltage detector
JPS60211304A (en) Measuring instrument for parallelism
JPS60186705A (en) Optical roughness gauge
JPH074914A (en) Optical minute displacement/roughness gage
JPH07167608A (en) Interferometer and optical scanning tunnel microscope
CN114812405A (en) Transparent crystal sheet thickness measuring device and method
JPH04235367A (en) Adjusting device of optical axis of detecting apparatus of signal waveform

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 14