JPH0933237A - Measuring probe - Google Patents

Measuring probe

Info

Publication number
JPH0933237A
JPH0933237A JP7182818A JP18281895A JPH0933237A JP H0933237 A JPH0933237 A JP H0933237A JP 7182818 A JP7182818 A JP 7182818A JP 18281895 A JP18281895 A JP 18281895A JP H0933237 A JPH0933237 A JP H0933237A
Authority
JP
Japan
Prior art keywords
measured
measurement
measuring
capacitance
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182818A
Other languages
Japanese (ja)
Inventor
Keizo Matsuo
圭造 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7182818A priority Critical patent/JPH0933237A/en
Publication of JPH0933237A publication Critical patent/JPH0933237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring probe by which measured data suitable for the many-sided evaluation of a face to be measured is detected efficiently. SOLUTION: The measuring probe is provided with an optical detection part 100 adopting an astigmatism method, and a capacitance-type detection part 200 whose constitution is similar to that of a capacitance-type displacement meter. Two electrode parts 202a, 202b for capacitance detection are formed in a concentric circle shape on the sensor face 201 of the capacitance-type detection part 200, and a hole 201a which has a proper diameter is opened so as to pass their center. Then, in a measurement, the measuring light of the optical detection part 100 passes the hole 201a, and a region D on the surface of an object A to be measured, which is contained in the measuring range C of the capacitance-type detection part 200, is illuminated. Consequently, the surface roughness of the object A to be measured is measured by the optical detection part 100 by one scanning operation, and the shape of an undulation or the like which is generated on the surface of the object A to be measured is measured by the capacitance-type detection part 200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物の表面形状及
び表面粗さの測定に適した測定プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring probe suitable for measuring the surface shape and surface roughness of an object to be measured.

【0002】[0002]

【従来の技術】被測定物の表面形状や表面粗さを測定す
るための測定器の測定プローブは、その方式によって、
接触式のものと非接触式のものとに大別される。詳細に
は、前者が、ルビー等の材料で形成された測定子を被測
定物の表面に接触させることによって被測定物の表面の
位置を検出するものであるのに対して、後者は、被測定
物の表面には全く接触せずに被測定物の表面の位置を検
出するというものである。ここでいう測定器とは、測定
プローブを被測定物に対して相対的に移動させる装置の
ことである。
2. Description of the Related Art A measuring probe of a measuring instrument for measuring the surface shape and surface roughness of an object to be measured is
It is roughly classified into a contact type and a non-contact type. In detail, the former is to detect the position of the surface of the object to be measured by bringing a probe formed of a material such as ruby into contact with the surface of the object to be measured, while the latter is to detect the position of the surface of the object to be measured. The position of the surface of the measured object is detected without contacting the surface of the measured object at all. The measuring device mentioned here is a device that moves the measuring probe relative to the object to be measured.

【0003】さて、測定を行う際には、両測定プローブ
の内から、測定条件に応じて予めより好ましい方の測定
プローブを選択して、これを備える測定器が使用される
のが一般的である。例えば、機械要素の性能を評価する
検査等に使用される測定器としては、接触式測定プロー
ブよりも非接触式測定プローブを備えたものが選択され
ることが多い。その主な理由として、こうした検査に接
触式測定プローブを備えた測定器を使用すると、測定子
との接触により被測定物である機械要素の表面に傷等の
欠陥が生じて、製品としての検査段階において、機械要
素自体が不良品となる可能性があるということや、測定
プローブの動特性に基づく制約を受けるために測定精度
の向上に限界があること等が挙げられる。
When performing measurement, it is general to select a more preferable measurement probe from both measurement probes in advance according to the measurement conditions and use a measuring instrument equipped with this. is there. For example, as a measuring instrument used for inspection for evaluating the performance of a mechanical element, a measuring instrument equipped with a non-contact measuring probe is often selected rather than a contact measuring probe. The main reason for this is that when a measuring instrument equipped with a contact-type measuring probe is used for such inspections, defects such as scratches occur on the surface of the mechanical element that is the object to be measured due to contact with the probe, and the inspection as a product At the stage, there is a possibility that the mechanical element itself may be a defective product, and there is a limit to the improvement of the measurement accuracy due to the restriction based on the dynamic characteristics of the measurement probe.

【0004】なお、こうした非接触式測定プローブの内
の、頻繁に使用されるものの例としては、被測定物の表
面で反射した測定光の強度等を検出することにより被測
定物の表面の位置を測定する光学式測定プローブや、被
測定物の表面と電極との間の静電容量の変化を検出する
ことにより被測定物の表面の位置を測定する静電容量型
変位計等が挙げられる。
Among these non-contact measurement probes, an example of a frequently used probe is the position of the surface of the object to be measured by detecting the intensity of the measurement light reflected by the surface of the object to be measured. Examples include an optical measurement probe for measuring the, and a capacitance type displacement meter for measuring the position of the surface of the object to be measured by detecting a change in electrostatic capacitance between the surface of the object to be measured and the electrodes. .

【0005】[0005]

【発明が解決しようとする課題】さて、非接触式測定プ
ローブには、採用される測定原理によって、好ましい測
定範囲があるので、より効率的な測定を行うには測定の
目的に応じた非接触式測定プローブを使用することが望
ましい。例えば、被測定物の表面粗さの測定を行う場合
等のように、高分解能な測定が要求される場合(特に、
横方向への分解能が高度に要求される場合)には、被測
定物の表面の微細な領域の測定に適した、非点収差法を
採用した非接触式測定プローブ等の使用が好ましく、被
測定物の表面形状を大まかに測定する場合等には、比較
的広い範囲の領域の測定に対応することができる静電容
量型変位計の使用が好ましい。
Since the non-contact type measuring probe has a preferable measuring range depending on the measuring principle adopted, the non-contact type measuring probe has a preferable non-contact type according to the purpose of the measurement in order to perform more efficient measurement. It is desirable to use forensic measurement probes. For example, when high-resolution measurement is required, such as when measuring the surface roughness of the measured object (especially,
When high resolution in the lateral direction is required), it is preferable to use a non-contact measurement probe that employs the astigmatism method, which is suitable for measuring a fine area on the surface of the DUT. When roughly measuring the surface shape of an object to be measured, it is preferable to use a capacitance displacement meter capable of measuring a relatively wide area.

【0006】ところで、こうした非接触式測定プローブ
は、通常、測定器の構成に組み込まれているため、非接
触式測定プローブの交換については融通が効かない場合
が多い。従って、機械要素の性能を評価する検査等にお
いて多面的な評価項目が与えられる場合には、各評価項
目に対応する測定に適した非接触式プローブを採用した
測定器を各々準備する必要がある。
[0006] By the way, since such a non-contact type measuring probe is usually incorporated in the structure of a measuring instrument, it is often inflexible in replacing the non-contact type measuring probe. Therefore, when multifaceted evaluation items are given in inspections for evaluating the performance of mechanical elements, it is necessary to prepare each measuring device that employs a non-contact type probe suitable for measurement corresponding to each evaluation item. .

【0007】このことは、第一に、検査に要する設備費
用が増大する原因となり、第二に、検査時の作業効率が
低減する原因となり、第三に、測定デ−タに基づいて行
われる評価の信頼性が低下する原因となる。なお、第
二、第三の記載の原因となる理由は以下の通りである。
こうした場合には、各評価項目毎に、各評価項目に対応
して準備された測定器に対する測定物の位置決めを行わ
なければならず、こうした位置決めが熟練を要する面倒
な作業であるということが上記第二の作業の効率化を阻
む原因である。また、こうした各測定器に対する被測定
物の位置決め精度や、測定環境の経時変化によって各測
定器での測定毎に各々生じる測定誤差等が、各測定器で
得られた測定デ−タ間の整合性の良し悪しを左右すると
いうことは、上記第三の測定デ−タに基づいて行われる
評価の信頼性が低下する原因となる。
This causes, firstly, an increase in equipment cost required for the inspection, secondly, causes a reduction in the work efficiency at the time of inspection, and thirdly, is performed based on the measurement data. This causes the reliability of the evaluation to decrease. The reasons that cause the second and third statements are as follows.
In such a case, for each evaluation item, the measurement object has to be positioned with respect to the measuring instrument prepared corresponding to each evaluation item, and such positioning is a troublesome work requiring skill. This is a cause of hindering the efficiency of the second work. In addition, the positioning accuracy of the object to be measured with respect to each of these measuring instruments and the measurement error caused by each measurement by each measuring instrument due to the change of the measuring environment with time are consistent between the measured data obtained by each measuring instrument. The fact that the quality is good or bad causes the reliability of the evaluation performed based on the third measurement data to be reduced.

【0008】そこで、本発明は、被測定物の表面の多面
的な評価に適した測定デ−タを効率的に検出する測定プ
ローブを提供することを目的とする。
Therefore, it is an object of the present invention to provide a measurement probe that efficiently detects measurement data suitable for multifaceted evaluation of the surface of an object to be measured.

【0009】[0009]

【課題を解決するための手段】上記課題達成のために、
本発明は、被測定物の表面の位置を測定する測定プロー
ブであって、前記被測定物の表面に測定光を照射すると
共に、前記被測定物の表面で反射した測定光に応じて前
記被測定物の表面の位置を検出する光学式検出部と、2
つの電極部が形成されたセンサ面を有し、前記2つの電
極部と前記被測定物の表面との間の静電容量に応じて前
記被測定物の表面の位置を検出する静電容量型検出部と
を備え、前記静電容量型検出部のセンサ面には、前記2
つの電極部の中心部を貫通する貫通穴が形成され、前記
光学式検出部と前記静電容量型検出部は、前記被測定物
の表面に照射される測定光と前記被測定物の表面で反射
した測定光が前記静電容量型検出部のセンサ面の貫通穴
を通過するように配置されていることを特徴とする測定
プローブを提供する。
[Means for Solving the Problems] In order to achieve the above objects,
The present invention is a measurement probe for measuring the position of the surface of an object to be measured, irradiating the surface of the object to be measured with measurement light, and the object to be measured according to the measurement light reflected on the surface of the object to be measured. An optical detector for detecting the position of the surface of the object to be measured, and 2
A capacitance type having a sensor surface on which two electrode portions are formed and detecting the position of the surface of the measured object according to the capacitance between the two electrode portions and the surface of the measured object. A detection unit, and the sensor surface of the capacitance type detection unit is provided with the above-mentioned 2
A through hole is formed through the central part of the two electrode parts, and the optical detection part and the capacitance type detection part are the measurement light irradiated on the surface of the object to be measured and the surface of the object to be measured. There is provided a measurement probe, wherein the reflected measurement light is arranged so as to pass through a through hole on the sensor surface of the capacitance type detection unit.

【0010】[0010]

【作用】本発明に係る測定プローブによれば、前記静電
容量型は、前記2つの電極部と前記被測定物の表面との
間の静電容量に応じて前記被測定物の表面の位置を検出
し、前記光学式検出部は、前記被測定物の表面で反射し
た測定光に応じて前記被測定物の表面の位置を検出す
る。このとき、前記被測定物の表面に照射される測定光
と、前記被測定物の表面で反射した測定光は、それぞ
れ、前記静電容量型検出部のセンサ面の貫通穴を通過す
る。
According to the measuring probe of the present invention, the capacitance type is a position of the surface of the object to be measured according to the capacitance between the two electrode parts and the surface of the object to be measured. And the optical detection unit detects the position of the surface of the measured object according to the measurement light reflected by the surface of the measured object. At this time, the measurement light irradiated on the surface of the object to be measured and the measurement light reflected on the surface of the object to be measured respectively pass through the through holes on the sensor surface of the capacitance type detection unit.

【0011】このように、本測定プローブは、被測定物
の表面粗さの測定に適した測定原理を採用した光学式検
出部と、被測定物の表面形状の測定に適した測定原理を
採用した静電容量型検出部とを兼備しているため、これ
を取り付けた測定器によれば、被測定物の表面粗さの測
定と表面形状の測定とを、一回の走査で同時に行うこと
ができる。また、従来各測定で得られる測定デ−タを対
応付けるために行なう必要があった被測定物の位置決め
が必要ない。従って、従来のように、こうした位置決め
作業が原因で生じる誤差が各測定デ−タ毎に変動的に含
まれるということがない。
As described above, the present measurement probe employs the optical detection unit adopting the measurement principle suitable for measuring the surface roughness of the object to be measured and the measurement principle suitable for measuring the surface shape of the object to be measured. Since it also serves as a capacitance type detection unit, the measuring instrument equipped with this unit can simultaneously measure the surface roughness and surface shape of the object to be measured with one scan. You can Further, it is not necessary to position the object to be measured, which has conventionally been required to associate the measurement data obtained by each measurement. Therefore, unlike the conventional case, an error caused by such a positioning operation is not variably included in each measurement data.

【0012】従って、本測定プローブを取り付けた測定
器を機械要素等の検査等に使用すれば、測定に要する時
間の短縮と測定作業の軽減、すなわち検査作業の効率化
を図ることができる。また、測定結果を評価する段階
で、全く同一の測定環境条件の下で得られた、整合のと
れた測定デ−タを参照することができるので、検査にお
ける評価の信頼性が向上する。
Therefore, if the measuring instrument to which the main measurement probe is attached is used for inspection of mechanical elements and the like, the time required for measurement and the measurement work can be shortened, that is, the inspection work can be made efficient. Further, in the stage of evaluating the measurement result, it is possible to refer to the consistent measurement data obtained under exactly the same measurement environment condition, so that the reliability of the evaluation in the inspection is improved.

【0013】すなわち、本測定プローブによれば、被測
定物の表面の多面的な評価に適した測定デ−タを効率的
に検出することができる。
That is, according to the present measurement probe, measurement data suitable for multifaceted evaluation of the surface of the object to be measured can be efficiently detected.

【0014】[0014]

【実施例】以下、添付の図面を参照しながら、本発明に
係る実施例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】まず、本実施例に係る測定プローブの基本
的な構成について、図1を参照しながら説明する。な
お、本測定プローブは、被測定物に対して測定プローブ
を相対的に移動させる装置(以下、測定器という)に取
り付けて使用するものである。
First, the basic structure of the measuring probe according to this embodiment will be described with reference to FIG. The measurement probe is used by being attached to a device (hereinafter referred to as a measuring instrument) that moves the measurement probe relatively to the object to be measured.

【0016】さて、本測定プローブは、互いに異なる測
定原理を採用した2つの検出部、すなわち、測定原理と
して非点収差法を採用した光学式検出部100と、静電
容量型変位計と同様な測定原理を採用した静電容量型検
出部200とを兼備する。前者は、被測定物Aの表面粗
さの測定にするためのものであり、後者は、被測定物A
の所定の範囲に渡るおおまかな表面形状(例えば、被測
定物Aの表面に周期的に表れるうねり等)を測定するた
めのものである。これは、主に、両者の横方向への分解
能に起因するものであるが、前者が、被測定物Aの表面
の微小領域を測定範囲とする、ミクロンオーダーの横方
向への分解能の測定を行うものであるのに対し、後者
は、静電容量型変位計と同様な電気系の切替操作により
測定範囲を柔軟に変更することが可能なものであるた
め、本実施例では、うねり等の表面形状を適当な横方向
への分解能で測定できるように、これに適した面積を有
する領域を測定範囲とするように予め設定してある。
Now, the present measurement probe is similar to two detection units adopting different measurement principles, that is, an optical detection unit 100 adopting the astigmatism method as a measurement principle, and a capacitance type displacement meter. It also serves as the capacitance type detection unit 200 that adopts the measurement principle. The former is for measuring the surface roughness of the measured object A, and the latter is for measuring the measured object A.
For measuring a rough surface shape over a predetermined range (for example, undulations that periodically appear on the surface of the object A to be measured). This is mainly due to the lateral resolution of both, but the former measures the lateral resolution in the micron order with a minute area on the surface of the object A to be measured as the measurement range. On the other hand, in the latter case, the latter is capable of flexibly changing the measurement range by switching operation of the electric system similar to that of the capacitance type displacement meter. In order that the surface shape can be measured with an appropriate lateral resolution, a region having an area suitable for this is set in advance as a measurement range.

【0017】さて、これら光学式検出部100と静電容
量型検出部200に採用された周知の測定原理について
の詳しい説明を省略し、ここでは、本測定プローブの特
徴である、両検出部100,200を構成する主要な部
品の位置関係を中心に説明することとする。
A detailed description of the well-known measurement principle adopted for the optical detection unit 100 and the capacitance type detection unit 200 will be omitted, and here, both detection units 100, which are the features of the present measurement probe, will be omitted. , 200 will be mainly described.

【0018】さて、光学式検出部100及び静電容量型
検出部200は、互いに、被測定物Aの表面の同じ位置
Bを含む領域を測定範囲とするような位置関係に配置さ
れる。
The optical detection unit 100 and the capacitance type detection unit 200 are arranged in such a positional relationship that the measurement range is a region including the same position B on the surface of the object A to be measured.

【0019】そのために、静電容量型検出部200のセ
ンサ面201には、2つの静電容量検出用の電極部20
2a,202bが同心円状に形成され、その中心を通る
ように、適当な径を有する穴201aが空けられてい
る。なお、本実施例では、センサ面201をガラス等の
絶縁体で形成し、その表面にアルミニウム等の導体を蒸
着させることにより、2つの電極部202a,202b
を形成している。
For this reason, two electrode portions 20 for capacitance detection are provided on the sensor surface 201 of the capacitance type detection portion 200.
2a and 202b are formed concentrically, and a hole 201a having an appropriate diameter is formed so as to pass through the center thereof. In this embodiment, the sensor surface 201 is made of an insulating material such as glass, and a conductor such as aluminum is vapor-deposited on the surface of the sensor surface 201 to form two electrode portions 202a and 202b.
Is formed.

【0020】そして、光学式検出部100の測定光は、
センサ面201に空けられた穴201aを通過すること
により、静電容量型検出部200の測定範囲Cに含まれ
る、被測定物Aの表面の領域Dを照明する。
The measuring light of the optical detecting section 100 is
By passing through the hole 201a formed in the sensor surface 201, the area D on the surface of the object A to be measured, which is included in the measurement range C of the capacitance type detection unit 200, is illuminated.

【0021】すなわち、図2の情報処理装置300にお
いては、静電容量型検出部200の備える2つの電極部
202a,202bと被測定物Aの表面(測定範囲C)
との間の静電容量が算出され、更に、この静電容量に基
づいて、本測定プローブに対する、被測定物Aの表面
(測定範囲C)の相対的な変位量が算出される。
That is, in the information processing apparatus 300 shown in FIG. 2, the two electrode portions 202a and 202b of the capacitance type detection unit 200 and the surface of the object A (measurement range C) are measured.
And the electrostatic capacitance between the two are calculated, and the relative displacement amount of the surface (measurement range C) of the object A to be measured with respect to the main measurement probe is calculated based on the electrostatic capacitance.

【0022】一方、光学式検出部100では、He-N
eレーザ発振器101から照射された測定光が、集光レ
ンズ102を介してピンホール103を通過し、λ/4
板104により所定の位相差を与えられた後、静電容量
型検出部200のセンサ面201に空けられた穴201
aを通過すると共に、対物レンズ105により、被測定
面Aの表面(測定範囲D)に集光する。なお、この状
態、すなわち光学式検出部100の測定光が被測定物A
の表面Bで合焦した状態において、静電容量型検出部2
00のセンサ面201は、被測定物Aの表面との間隔
が、測定に適した、約1mm程度の距離となるように配
置されていることが望ましい。さて、被測定面Aの表面
(測定範囲D)で反射した測定光は、再度、静電容量型
検出部200のセンサ面201に空けられた穴201a
を通過した後、偏光ビームスプリッタ106を介してビ
ームスプリッタ107に入射して、2光束に分割され
る。この2光束に分割された各測定光は、各々、それぞ
れのシリンドリカルレンズ108a,108bを介し
て、それぞれの4分割フォトダイオード109a,10
9bへと入射する。そして、図2の情報処理装置400
において、それぞれの4分割フォトダイオード109
a,109bからの出力信号の差分が算出され、この差
分に基づいて、本測定プローブに対する、被測定物Aの
表面(測定範囲D)の相対的な変位量が算出される。な
お、同時に、この情報処理装置400は、He-Neレ
ーザ発振器101のレーザ光の発振を制御する。
On the other hand, in the optical detection unit 100, He-N
e The measurement light emitted from the laser oscillator 101 passes through the pinhole 103 through the condensing lens 102, and becomes λ / 4.
After a predetermined phase difference is given by the plate 104, a hole 201 formed in the sensor surface 201 of the capacitance type detection unit 200.
While passing through a, the light is focused on the surface (measurement range D) of the measured surface A by the objective lens 105. In this state, that is, when the measurement light of the optical detection unit 100 is the object A to be measured.
In the state of being focused on the surface B of the
The sensor surface 201 of No. 00 is preferably arranged such that the distance from the surface of the object A to be measured is about 1 mm, which is suitable for measurement. Now, the measurement light reflected by the surface (measurement range D) of the surface A to be measured is again provided with the hole 201a formed in the sensor surface 201 of the capacitance type detection unit 200.
After passing through, the beam enters the beam splitter 107 via the polarization beam splitter 106 and is split into two light beams. The respective measurement lights divided into these two light fluxes pass through the respective cylindrical lenses 108a and 108b, and the respective four-divided photodiodes 109a and 10b.
It is incident on 9b. Then, the information processing device 400 of FIG.
At each of the four divided photodiodes 109
The difference between the output signals from a and 109b is calculated, and based on this difference, the relative displacement amount of the surface (measurement range D) of the object A to be measured with respect to the main measurement probe is calculated. At the same time, the information processing device 400 controls the oscillation of the laser light of the He—Ne laser oscillator 101.

【0023】このように、本測定プローブは、被測定物
Aの表面粗さの測定に適した測定原理を採用した検出部
と、被測定物Aの表面形状の測定に適した測定原理を採
用した検出部とを兼備しているため、これを取り付けた
測定器によれば、従来であれば各測定に適した測定原理
を採用した測定プローブを取り付けた2台の測定器で別
々に測定する必要があった、被測定物Aの表面粗さと表
面形状とを、一回の走査で同時に測定することができ
る。また、従来であれば、各測定により得られる測定デ
−タを対応付けるために必要であった、被測定物Aの位
置決めを行う必要がなくなる。従って、本測定プローブ
を取り付けた測定器を機械要素等の検査等に使用すれ
ば、第一に、測定に要する時間の短縮と測定作業の軽
減、すなわち検査作業の効率化を図ることができ、第二
に、同一の測定環境条件の下で得られた、整合のとれた
測定デ−タを参照することができるので、検査における
評価結果の信頼性が向上する。
As described above, the present measurement probe employs the detection unit which adopts the measuring principle suitable for measuring the surface roughness of the object A to be measured and the measuring principle suitable for measuring the surface shape of the object A to be measured. Since it also serves as a detection unit, a measuring instrument equipped with the measuring unit separately measures with two measuring instruments equipped with a measuring probe that adopts a measuring principle suitable for each measurement in the conventional case. The surface roughness and the surface shape of the object A to be measured, which were necessary, can be simultaneously measured by one scanning. In addition, it is not necessary to position the object to be measured A, which is conventionally required to associate the measurement data obtained by each measurement. Therefore, if the measuring instrument equipped with the present measurement probe is used for inspection of mechanical elements, etc., firstly, it is possible to shorten the time required for measurement and the measurement work, that is, to improve the efficiency of the inspection work, Second, since the consistent measurement data obtained under the same measurement environment conditions can be referred to, the reliability of the evaluation result in the inspection is improved.

【0024】なお、本実施例では、各検出部の測定原理
として、それぞれ、非点収差法と、静電容量型変位計と
同様な測定原理を採用したが、必ずしも、これらの測定
原理を採用する必要はない。例えば、表面粗さ測定用の
検出部の測定原理として、被測定物Aの表面粗さの測定
に適しているとされている他の測定原理、例えば臨界角
法、ダブルナイフエッジ法、光ヘテロダイン干渉法、非
点収差法等を採用しても構わない。また、表面形状測定
用の検出部の測定原理として、空気マイクロメータと同
様な測定原理や、渦電流式変位センサと同様な測定原理
等を採用した検出部を使用しても構わない。ただし、い
ずれの測定原理を採用した場合であっても、表面粗さ測
定用の検出部の測定範囲が、表面形状測定用の検出部の
測定範囲に含まれるような位置に、両者を配置する必要
がある。
In this embodiment, the astigmatism method and the measurement principle similar to that of the capacitance type displacement meter are adopted as the measurement principles of the respective detection parts, but these measurement principles are not necessarily adopted. do not have to. For example, as the measurement principle of the detection unit for measuring the surface roughness, another measurement principle that is considered suitable for measuring the surface roughness of the object A to be measured, for example, the critical angle method, the double knife edge method, the optical heterodyne An interference method, an astigmatism method or the like may be adopted. Further, as a measuring principle of the detecting section for measuring the surface shape, a detecting section adopting the same measuring principle as that of the air micrometer or the same measuring principle as that of the eddy current displacement sensor may be used. However, no matter which measurement principle is adopted, both are arranged at a position such that the measurement range of the detection unit for surface roughness measurement is included in the measurement range of the detection unit for surface shape measurement. There is a need.

【0025】[0025]

【発明の効果】本発明に係る測定プローブによれば、被
測定物の表面の多面的な評価に適した測定デ−タを効率
的に検出することができる。
According to the measuring probe of the present invention, the measuring data suitable for the multifaceted evaluation of the surface of the object to be measured can be efficiently detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る測定プローブの基本構成
図である。
FIG. 1 is a basic configuration diagram of a measurement probe according to an embodiment of the present invention.

【図2】図1の測定プローブを使用した測定系の構成を
説明するための図である。
FIG. 2 is a diagram for explaining the configuration of a measurement system using the measurement probe of FIG.

【符号の説明】[Explanation of symbols]

100…光学式検出部、200…静電容量型検出部、2
01…静電容量型検出部のセンサ面、202a,202
b…静電容量検出用の電極部、201a…穴、101…
He-Neレーザ発振器、102…集光レンズ、103
…ピンホール、104…λ/4板、105…対物レン
ズ、106…偏光ビームスプリッタ、107…ビームス
プリッタ、108a,108b…シリンドリカルレン
ズ、109a,109b…4分割フォトダイオード、3
00…情報処理装置、400…情報処理装置
100 ... Optical detection unit, 200 ... Capacitance type detection unit, 2
01 ... Sensor surface of electrostatic capacitance type detection unit, 202a, 202
b ... Electrode portion for detecting capacitance, 201a ... Hole, 101 ...
He-Ne laser oscillator, 102 ... Condensing lens, 103
... Pinhole, 104 ... λ / 4 plate, 105 ... Objective lens, 106 ... Polarization beam splitter, 107 ... Beam splitter, 108a, 108b ... Cylindrical lens, 109a, 109b ... Quadrant photodiode, 3
00 ... Information processing device, 400 ... Information processing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定物の表面の位置を測定する測定プロ
ーブであって、 前記被測定物の表面に測定光を照射すると共に、前記被
測定物の表面で反射した測定光に応じて前記被測定物の
表面の位置を検出する光学式検出部と、 2つの電極部が形成されたセンサ面を有し、前記2つの
電極部と前記被測定物の表面との間の静電容量に応じて
前記被測定物の表面の位置を検出する静電容量型検出部
とを備え、 前記静電容量型検出部のセンサ面には、前記2つの電極
部の中心部を貫通する貫通穴が形成され、 前記光学式検出部と前記静電容量型検出部は、前記被測
定物の表面に照射される測定光と前記被測定物の表面で
反射した測定光が前記静電容量型検出部のセンサ面の貫
通穴を通過するように配置されていることを特徴とする
測定プローブ。
1. A measurement probe for measuring the position of the surface of an object to be measured, wherein the surface of the object to be measured is irradiated with measuring light, and the measuring probe reflects the measuring light reflected on the surface of the object to be measured. It has an optical detection section for detecting the position of the surface of the object to be measured and a sensor surface on which two electrode sections are formed, and the capacitance between the two electrode sections and the surface of the object to be measured is And a capacitance type detection unit for detecting the position of the surface of the object to be measured according to the present invention, and a sensor surface of the capacitance type detection unit has a through hole penetrating the central portions of the two electrode units. The optical detection unit and the capacitance type detection unit are formed by the measurement light irradiated on the surface of the measured object and the measurement light reflected on the surface of the measured object. The measurement probe is arranged so as to pass through a through hole on the sensor surface of the measurement probe.
JP7182818A 1995-07-19 1995-07-19 Measuring probe Pending JPH0933237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182818A JPH0933237A (en) 1995-07-19 1995-07-19 Measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182818A JPH0933237A (en) 1995-07-19 1995-07-19 Measuring probe

Publications (1)

Publication Number Publication Date
JPH0933237A true JPH0933237A (en) 1997-02-07

Family

ID=16124998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182818A Pending JPH0933237A (en) 1995-07-19 1995-07-19 Measuring probe

Country Status (1)

Country Link
JP (1) JPH0933237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916922A2 (en) * 1997-11-12 1999-05-19 Mitutoyo Corporation Non-contact surface roughness measuring device
KR100253357B1 (en) * 1997-11-21 2000-05-01 김영환 Apparatus for measuring interface roughness using scm
JP2000283702A (en) * 1999-03-31 2000-10-13 Fotonikusu:Kk Distance sensor and distance measuring device
JP2000304504A (en) * 1999-04-19 2000-11-02 Fotonikusu:Kk Thickness sensor and thickness measuring device
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916922A2 (en) * 1997-11-12 1999-05-19 Mitutoyo Corporation Non-contact surface roughness measuring device
EP0916922A3 (en) * 1997-11-12 2000-06-14 Mitutoyo Corporation Non-contact surface roughness measuring device
KR100253357B1 (en) * 1997-11-21 2000-05-01 김영환 Apparatus for measuring interface roughness using scm
JP2000283702A (en) * 1999-03-31 2000-10-13 Fotonikusu:Kk Distance sensor and distance measuring device
JP2000304504A (en) * 1999-04-19 2000-11-02 Fotonikusu:Kk Thickness sensor and thickness measuring device
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium

Similar Documents

Publication Publication Date Title
EP1131623B1 (en) Detection system for nanometer scale topographic measurements of reflective surfaces
US5929983A (en) Optical apparatus for determining the height and tilt of a sample surface
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
GB2144537A (en) Profile measuring instrument
CN110687051B (en) Detection equipment and method
JP4384737B2 (en) Inspection equipment for high-speed defect analysis
US5083035A (en) Position location in surface scanning using interval timing between scan marks on test wafers
JP3934051B2 (en) Measurement of surface defects
US4764014A (en) Interferometric measuring methods for surfaces
US7016046B2 (en) Interferometer arrangement and interferometric measuring method
US5945685A (en) Glass substrate inspection tool having a telecentric lens assembly
EP0407454A1 (en) Optical measuring apparatus.
JPH0933237A (en) Measuring probe
US5124563A (en) Optical scanning method and device for measuring the width of lines
EP0235861A1 (en) Device for detecting a centring error
JP4580579B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP3232340B2 (en) Interferometry for large diameter planes
JPH07225195A (en) Flaw measuring method for minute pattern
JP3184914B2 (en) Surface shape measuring method and surface shape measuring instrument
JPS6199805A (en) Step measuring instrument
JP2003004424A (en) Surface geometry measuring method and apparatus
JPH0536727B2 (en)
Zhao et al. Practical heterodyne surface profiling interferometer with automatic focusing
JPS6049858B2 (en) Defect inspection equipment
JPH041559A (en) Device and method for inspecting semiconductor device