JPS6049858B2 - Defect inspection equipment - Google Patents

Defect inspection equipment

Info

Publication number
JPS6049858B2
JPS6049858B2 JP52050746A JP5074677A JPS6049858B2 JP S6049858 B2 JPS6049858 B2 JP S6049858B2 JP 52050746 A JP52050746 A JP 52050746A JP 5074677 A JP5074677 A JP 5074677A JP S6049858 B2 JPS6049858 B2 JP S6049858B2
Authority
JP
Japan
Prior art keywords
light
lens
defects
sample
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52050746A
Other languages
Japanese (ja)
Other versions
JPS53136881A (en
Inventor
匡 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52050746A priority Critical patent/JPS6049858B2/en
Publication of JPS53136881A publication Critical patent/JPS53136881A/en
Publication of JPS6049858B2 publication Critical patent/JPS6049858B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本考案は、円形状のガラス面板上等に形成された半導体
材料等によるストライプの短絡、断線、ストライプエッ
ジに出来た荒れ(キサキサ状)、ピンホールなどの欠陥
検査およびモニタに関するものである。
Detailed Description of the Invention The present invention is useful for inspecting defects such as short circuits, disconnections, roughness (roughness) on the edges of stripes, pinholes, etc. caused by semiconductor materials formed on circular glass plates, etc. It is related to monitors.

従来より行なわれている代表的な欠陥検査方法は、光学
顕微鏡による目視的な、その倍率て決定される視野内の
欠陥を調べる官能試験である。
A typical defect inspection method conventionally used is a sensory test in which defects are visually inspected using an optical microscope within a field of view determined by its magnification.

この方法には、(1)試料面全面を調べるのに長時間を
要す、(2)検査員の疲労に伴う見落しが避けられない
、などの欠点がある。本発明の目的は、ガラス面板等の
上に規則正しく配置されたストライプ等の欠陥検査を自
動的に行なうモニタリング可能な欠陥検査装置を提供す
ることである。
This method has drawbacks such as (1) it takes a long time to examine the entire sample surface, and (2) oversights due to inspector fatigue are inevitable. An object of the present invention is to provide a monitoring-enabled defect inspection device that automatically inspects defects such as stripes regularly arranged on a glass face plate or the like.

第1図〜第3図にストライプ付ガラス面板の欠陥の例を
模式的に拡大して示す。
FIGS. 1 to 3 schematically show enlarged examples of defects in the striped glass face plate.

第1図は短絡、第2図は断線、第3図はストライプエッ
ジに出来た荒れ(キサキサ状)、などの欠陥を示す図で
ある。第3図に示したように、ストライプエッジの荒れ
にはエッジから外側に突出したヒゲ状のものと、エッジ
の内側にへこんだものとがあり、大きさは共に2μ以下
のものが多い。第1図〜第3図において、1はガラス面
板、2はガラス面上に形成されたCr、半導体材料など
のストライプ、3はストライプと同物質による短絡、4
はストライプの断線、5と6はストライプエッジに出来
た荒れで、5はエッジの外側に突出したヒゲ状のもの、
6はエッジの内側にへこんだもの、である。
FIG. 1 shows defects such as short circuits, FIG. 2 shows wire breaks, and FIG. 3 shows defects such as roughness (roughness) on stripe edges. As shown in FIG. 3, there are two types of roughness on the stripe edge: whisker-like roughness that protrudes outward from the edge, and roughness that is recessed inside the edge, and both are often less than 2 μm in size. In Figures 1 to 3, 1 is a glass face plate, 2 is a stripe made of Cr or semiconductor material formed on the glass surface, 3 is a short circuit caused by the same material as the stripe, and 4 is a short circuit made of the same material as the stripe.
5 is a break in the stripe, 5 and 6 are rough edges on the stripe edge, 5 is a whisker-like thing that protrudes outside the edge,
6 is a recess on the inside of the edge.

従来、このような欠陥に類似の傷、ごみ、しみ、などの
欠陥を光学的手段によつて非接触被破壊で検出する異常
検出装置が提案されている。
Conventionally, an abnormality detection device has been proposed that detects defects such as scratches, dust, stains, etc. similar to such defects by optical means in a non-contact manner.

第4図にその代表的構成を示す。Figure 4 shows its typical configuration.

以下にその概要を説明する。原理の概要は以下の通りで
ある。
The outline is explained below. The outline of the principle is as follows.

レーザ7によフリ細い平行光束を供給し、この平行光束
を任意の領域内を走査し、これを試料に照射し、試料上
の異常部分で起こるフラウンホーハー回折をフーリエ変
換して回折パターンを得て、その零次近傍の回折光を除
いて光電変換素子で受けて電気信号に5変換して異常部
分を検出する。変換された電気信号を信号処理部で処理
して異常部分の大きさや数の情報を得る。レーザ7から
の細い平行光束を回転ミラー8(X軸方向)と回転ミラ
ー11(Y軸方向)に偏向することによつて走査する。
A thin parallel light beam is supplied to the laser 7, this parallel light beam is scanned in an arbitrary area, and the sample is irradiated with this, and the Fraunhoher diffraction that occurs in the abnormal area on the sample is Fourier transformed to obtain a diffraction pattern. , except for the diffracted light in the vicinity of the zeroth order, which is received by a photoelectric conversion element and converted into an electrical signal to detect an abnormal portion. The converted electrical signal is processed by a signal processing unit to obtain information on the size and number of abnormal parts. Scanning is performed by deflecting a narrow parallel beam from a laser 7 to a rotating mirror 8 (X-axis direction) and a rotating mirror 11 (Y-axis direction).

レンズ9と10および12とは補助的に用いるもので、
レンズ9の焦点は回転ミラー8の面中心に、レンズ10
と12の焦点は回転ミラー11の面中心に配置している
。この配置により、回転ミラー8のX軸方向への走査に
もかかわらず光束はつねに回転ミラーの11の面中心に
集まり、また、回転ミラー11からの反射光はXおよび
Y軸方向の走査にもかかわらずレンズ12によつてレン
ズ12の光軸と平行となる。このようにして、試料13
の面全面を細い平行光束で走査できることとなる。した
がつて試料13からの回折光の零次近傍は常にレンズ1
4の焦点を通過することになる。この平行光束の異常部
分による回折(フラウンホーハー回折)光をフーリエ変
換レンズ(集光レンズ)14によつてフーリエ変換し、
このレンズの焦平面に回折パターンを得る。しかるに、
回折光の零次近傍の光強度は極めて強く、正常部分と異
常部分との回折一光強度の差があまりないのでSN比が
悪い。これを解決するため、光電変換素子の直前に零次
近傍の回折光を除去するための一部遮へいフィルタ15
を配置する。すなわち、光電変換素子16ては高次の回
折光を受光して電気信号に変換する。光二電変換素子1
6から得られる信号パルスを数えることによつて欠陥の
数を知ることとなる。以上の方法における欠点は(1)
より小さな欠陥まてを検出可能とするには、より細く光
束を絞る必要があるが、これには限度があること、(2
)零次回3折光のフーリエ変換後の回折パターンの広が
りは欠陥の大きさに依存するので一部遮へいフィルタの
遮へい部分の形状をその都度変更する必要があるが、こ
れは検査中には不可能であることてある。
Lenses 9, 10 and 12 are used auxiliary.
The focal point of the lens 9 is at the center of the surface of the rotating mirror 8, and the focal point of the lens 10 is
The focal points of and 12 are located at the center of the rotating mirror 11. Due to this arrangement, the light beam always gathers at the center of the surface 11 of the rotating mirror 8 even when the rotating mirror 8 scans in the X-axis direction, and the reflected light from the rotating mirror 11 also scans in the X- and Y-axis directions. Regardless, the lens 12 makes it parallel to the optical axis of the lens 12. In this way, sample 13
This means that the entire surface can be scanned with a narrow parallel beam of light. Therefore, the zeroth order of the diffracted light from sample 13 is always in the vicinity of lens 1.
It will pass through the focal point of 4. The diffracted (Fraunhoher diffraction) light due to the abnormal part of this parallel light beam is Fourier transformed by a Fourier transform lens (condensing lens) 14,
A diffraction pattern is obtained at the focal plane of this lens. However,
The light intensity near the zeroth order of the diffracted light is extremely strong, and there is not much difference in the intensity of the diffracted light between the normal part and the abnormal part, so the S/N ratio is poor. To solve this problem, a partial shielding filter 15 is installed immediately before the photoelectric conversion element to remove near-zero-order diffracted light.
Place. That is, the photoelectric conversion element 16 receives high-order diffracted light and converts it into an electrical signal. Photoelectric conversion element 1
By counting the signal pulses obtained from 6, the number of defects will be known. The drawbacks of the above method are (1)
In order to be able to detect smaller defects, it is necessary to focus the light beam more narrowly, but there is a limit to this (2
) The spread of the diffraction pattern after Fourier transformation of the zero-order third refraction light depends on the size of the defect, so it is necessary to change the shape of the shielding part of the partial shielding filter each time, but this is impossible during inspection. There are times when it is.

3第
5図は上記の欠点を除去した本発明になる欠陥検出装置
を示すブロック図である。光源部18により任意の径を
有する平行光束を供給し、走査部19において平行光束
を任意の領域内て走査するとともに細い平行光束として
試料4・面上20に照射し、回折集光光学系で通常回折
と欠陥部分からの異常回折光を分離集光して検出部21
に導き、検出部で電気信号に変換し、表示部22で欠陥
の大きさや数をモニタして良品不良品の区別を行なう。
3. FIG. 5 is a block diagram showing a defect detection device according to the present invention that eliminates the above-mentioned drawbacks. The light source section 18 supplies a parallel light beam with an arbitrary diameter, the scanning section 19 scans the parallel light beam within an arbitrary area, and irradiates the sample 4/surface 20 as a narrow parallel light beam, and the diffraction focusing optical system The detection unit 21 separates and focuses the normal diffracted light and the abnormal diffracted light from the defective part.
The detection section converts the defects into electrical signals, and the display section 22 monitors the size and number of defects to distinguish between good and defective products.

制御部23は走査部と表示部とを同期的に作動せしめる
ために設ける。第6図は第5図の基本構成に基づいた本
発明の具体的な一実施例である。
A control section 23 is provided to operate the scanning section and the display section synchronously. FIG. 6 shows a specific embodiment of the present invention based on the basic configuration shown in FIG.

第6図において、光源部18はレーザ7、ビームエキス
パンダ24から、走査部19は回転偏向鏡およびその駆
動回路31、レンズ12、試料走査機構30およびその
駆動回路32から、回折光集光光学系20はガラス面板
13、回折光集光レ)ンズ14から、検出部21はスリ
ット28、光電変換素子16、前置増幅器29から、表
示部22は積分器35、切替スイッチ36、通常の観測
用ブラウン管38から、制御部23は発振器33、分周
器34から、それぞれ構成されている。
In FIG. 6, the light source unit 18 is a laser 7 and a beam expander 24, and the scanning unit 19 is a rotating deflection mirror and its drive circuit 31, a lens 12, a sample scanning mechanism 30 and its drive circuit 32, and a diffracted light condensing optical system. The system 20 includes a glass face plate 13, a diffracted light condensing lens 14, the detection unit 21 includes a slit 28, a photoelectric conversion element 16, and a preamplifier 29. The display unit 22 includes an integrator 35, a changeover switch 36, and normal observation. The control section 23 is composed of an oscillator 33 and a frequency divider 34, respectively.

光源部18のビームエキスパング24でレーザ7からの
平行光束25の直径を任意の所望する太さに拡大した平
行光束26にし、レンズ12によつて数十ミクロンの細
い平行光束にする。走査部18の回転偏向鏡8と試料走
査機構30はそれぞれX軸およびY軸方向の走査を行な
う。回転偏向鏡8の回転軸の中心はその反射面内にあり
、その回転軸の中心上にレンズ12の第1の焦点がある
。したがつて、光束26がレンズ12から出射したとき
の光束中心はレンズ12の光軸と平行となつて試料面を
垂直に照射することとなる。試料13はレンズ12の第
2の焦平面に置かれる。このとき、試料面上ての光束直
径DBは、で与えられる。
A beam expander 24 of the light source section 18 expands the diameter of the parallel light beam 25 from the laser 7 to a parallel light beam 26 to any desired thickness, and the lens 12 converts it into a thin parallel light beam of several tens of microns. The rotating deflection mirror 8 of the scanning unit 18 and the sample scanning mechanism 30 perform scanning in the X-axis and Y-axis directions, respectively. The center of the rotational axis of the rotating deflection mirror 8 is within its reflecting surface, and the first focal point of the lens 12 is located on the center of the rotational axis. Therefore, when the light beam 26 is emitted from the lens 12, the center of the light beam is parallel to the optical axis of the lens 12, and the sample surface is irradiated perpendicularly. Sample 13 is placed at the second focal plane of lens 12. At this time, the luminous flux diameter DB on the sample surface is given by:

ここで、fはレンズ12の焦点距離、λは使用レーザの
波長、D8はビームエキスパンダ24により拡げられた
光束26の直径、である。したがつて、所望するDBを
得るには、レンズ12として短焦点距離のものを使う、
このレンズ12への入射光束径を太くする、などによる
。また、波長入の短かいレーザを使つてもよい。ビーム
エキスパンダ24を使うのはDBを太くするためである
。第4図の方法にはこれがないのて絞れない。試料は、
ストライプの長手方向を光束の偏向方向(X軸方向)に
対して直角(Y軸方向)になるように配置される。
Here, f is the focal length of the lens 12, λ is the wavelength of the laser used, and D8 is the diameter of the light beam 26 expanded by the beam expander 24. Therefore, in order to obtain the desired DB, a short focal length lens should be used as the lens 12.
This is done by increasing the diameter of the light beam incident on the lens 12, etc. Alternatively, a laser with a short wavelength input may be used. The purpose of using the beam expander 24 is to make the DB thicker. The method shown in Figure 4 does not have this feature, so it cannot be narrowed down. The sample is
The stripes are arranged so that the longitudinal direction thereof is perpendicular (Y-axis direction) to the deflection direction (X-axis direction) of the light beam.

この配置のもとで、正常なストライプ部分からの回折は
試料13の後方に光源として規則正しく起こる。もし、
ストライプに断線またはショートの欠陥があれば、正常
なストライプ部分からの規則正しい回折光の他に、新た
に欠陥部分で起こる不規則的な回折が起こる。その代表
例を第7図に示す。試料13はその前方から光束26に
よつて照射される。その走査方向はX軸方向である。ス
トライプの長手方向はy軸と平行である。いま、試料の
中心0に光束26を静止させて考えると、試料の中心近
傍に前記の如き欠陥があれば、ストライプによる回折は
X軸方向となる。また、欠陥による回折は零次光が不規
則であり、その高次光27″はy軸方向のものが多い。
したがつて、YZ平面内で、y軸からのθ方向て回折光
を集光すれば、ストライプからの回折光を集光すること
なく、欠陥部分からの回折光のみを集光することがてき
る。この構成ては、Oの装置の配置上、次式を満足する
必要がある。
Under this arrangement, diffraction from the normal stripe portion occurs regularly as a light source behind the sample 13. if,
If a stripe has a defect such as a break or a short, in addition to regular diffracted light from the normal stripe portion, irregular diffraction occurs at the defective portion. A typical example is shown in FIG. The sample 13 is illuminated by the light beam 26 from the front. The scanning direction is the X-axis direction. The longitudinal direction of the stripes is parallel to the y-axis. Now, if we consider that the light beam 26 is stationary at the center 0 of the sample, if there is a defect as described above near the center of the sample, the diffraction due to the stripe will be in the X-axis direction. Furthermore, the zero-order light is irregular in diffraction due to defects, and the higher-order light 27'' is mostly in the y-axis direction.
Therefore, if the diffracted light is focused in the θ direction from the y-axis within the YZ plane, only the diffracted light from the defective part can be focused without focusing the diffracted light from the stripes. Ru. This configuration needs to satisfy the following equation due to the arrangement of the O device.

それは、第7図を参照し、第8図を用いて計算すること
ができる。ここに、Iは試料の大きさの1/2、dは集
光レンズの大きさの1/2、fは集光レンズの焦点距離
てある。
It can be calculated with reference to FIG. 7 and using FIG. Here, I is 1/2 the size of the sample, d is 1/2 the size of the condenser lens, and f is the focal length of the condenser lens.

このようにし一ζ、θ方向の回折光を集光レンズ14て
集めて光電変換素子16と前置増幅器29で電気信号に
変換Jる。
In this way, the diffracted lights in the ζ and θ directions are collected by the condenser lens 14 and converted into electrical signals by the photoelectric conversion element 16 and the preamplifier 29.

この配置によれば、光電変換素子は規則正しく作られた
ストライプによる回折光を受けないで、一部遮へいフィ
ルタを必要とせずに高SN比の信号が得られる。さらに
、DC成分を含まないのて増幅器系のダイナミックレン
ジを広く利用できる利点がある。回折光集光レンズ14
の第1の焦点は試料13の中心に配置し、第2の焦点は
スリット28の中心に配置する。
According to this arrangement, the photoelectric conversion element does not receive diffracted light due to regularly formed stripes, and a signal with a high S/N ratio can be obtained without requiring a partial shielding filter. Furthermore, since it does not contain a DC component, it has the advantage of being able to utilize a wide dynamic range of the amplifier system. Diffraction light condensing lens 14
The first focal point of is located at the center of the sample 13 and the second focal point is located at the center of the slit 28.

スリット28は矩形スリットで、試料の走査範囲をおお
う程度の長さとし、その長手方向は光束の走査方向と合
わせる。なお、このスリット28は試料面以外からの迷
光を除去せしめるものである。回転偏向鏡8および試料
走査機構30を駆動するためにそれぞれ駆動回路31と
32とがあり、その走査速度を任意に選べるようにする
ための発振周波数可変の発振器33から直接または分周
器34を介してそれぞれの駆動回路31と32に供給す
る。
The slit 28 is a rectangular slit with a length that covers the scanning range of the sample, and its longitudinal direction is aligned with the scanning direction of the light beam. Note that this slit 28 is used to remove stray light from sources other than the sample surface. There are drive circuits 31 and 32 to drive the rotating deflection mirror 8 and the sample scanning mechanism 30, respectively, and the oscillation frequency is controlled directly from an oscillator 33 with a variable oscillation frequency or by a frequency divider 34 so that the scanning speed can be arbitrarily selected. The signals are supplied to respective drive circuits 31 and 32 via the respective drive circuits 31 and 32.

こうして、XとYの走査の同期をとる。ここで、信号の
例を示す。第9図aは第1図のような短絡欠陥による線
走査時の信号、bは第2図のような断線欠陥による同様
の信号である。このようにして欠陥を検出された前置増
幅器29からの電気信号をブラウン管(あるいはTV)
38てモニタすることとし、発振器33の信号を分岐し
てブラウン管の水平走査信号Hに、分周器34の出力を
分岐してブラウン管の垂直走査信号■に、それぞれし、
検出された電気信号はブラウン管の輝度信号Zとして供
給してモニタを形成し、欠陥の大きさ、数、場所などの
情報を同時に得ることができる。すなわち、断線、ショ
ートなどの欠陥をブラウン管上の輝点として表示し、欠
陥の大きさを輝点の大きさおよび輝度に、欠陥の数を輝
点の数に、欠陥の場所を輝点の場所にそれぞれ対応させ
ることができる。第1図および第2図のような欠陥をモ
ニタするときは切替スイッチ36を接点Aに接続する。
In this way, the X and Y scans are synchronized. Here, an example of a signal is shown. 9A shows a signal during line scanning due to a short circuit defect as shown in FIG. 1, and FIG. 9B shows a similar signal due to a disconnection defect as shown in FIG. The electrical signal from the preamplifier 29 whose defect was detected in this way is transferred to a cathode ray tube (or TV).
The signal from the oscillator 33 is branched to the horizontal scanning signal H of the cathode ray tube, and the output of the frequency divider 34 is branched to the vertical scanning signal (■) of the cathode ray tube.
The detected electrical signal is supplied as a brightness signal Z to a cathode ray tube to form a monitor, and information such as the size, number, and location of defects can be obtained at the same time. In other words, defects such as disconnections and short circuits are displayed as bright spots on the cathode ray tube, and the size of the defect is expressed as the size and brightness of the bright spot, the number of defects is expressed as the number of bright spots, and the location of the defect is expressed as the location of the bright spot. can be made to correspond to each. When monitoring defects as shown in FIGS. 1 and 2, the changeover switch 36 is connected to contact A.

次に第3図のような欠陥による回折について考える。(
1)形状、とくに、ヒゲ状突出部の稜の方向が不規則、
(2)大きさが不定、などのように表現できる。このよ
うな複雑な形状欠陥による回折を数学的に解くことはて
きないが、光の回折理論における回折像の一般的性質に
より次のように類推てきる。(a)回折像に縞膜様があ
り、この縞は方向の異なるものが幾つも入り込んている
(開口の点対称性およびそれらの破れなどの重ね合わせ
)。(b)回折像の現われる方向はほとんど全円周にわ
たる(開口の向きの不規則性、すなわち、回折像の点・
対称性および線対称からの破れ、および回折像の相反性
)。(c)ストライプの断線およびショートなどの欠陥
に比べて小さい欠陥であるため、回折像の強度は弱い。
したがつて、第3図のような欠陥に対して、第一6図の
構成で、O方向へ回折光は必す存在するが、レンズ14
て集光した総計の強度は弱く、光電変換素子て変換され
た電気信号も小さく、多数のパルス状となる。
Next, consider diffraction due to defects as shown in FIG. (
1) Irregular shape, especially the direction of the ridge of the whisker-like protrusion,
(2) The size can be expressed as undefined. Although it is not possible to mathematically solve diffraction due to such complex shape defects, the following analogy can be made based on the general properties of diffraction images in light diffraction theory. (a) The diffraction image has a striped film-like appearance, and this stripe has many stripes in different directions (point symmetry of the aperture and superimposition of their breaks, etc.). (b) The direction in which the diffraction image appears covers almost the entire circumference (irregularities in the orientation of the aperture, i.e., the points and
(Breaking from symmetry and line symmetry, and reciprocity of diffraction images). (c) Since the defect is smaller than defects such as stripe breaks and shorts, the intensity of the diffraction image is weak.
Therefore, for a defect like that shown in FIG. 3, with the configuration shown in FIG.
The total intensity of the light collected is weak, and the electrical signal converted by the photoelectric conversion element is also small and in the form of many pulses.

したがつて、この欠陥を検出するために、低時定数の積
分器35によつて走査ノの一周期にわたる包絡線として
得、その大小によつてギザギザ状欠陥の有無を判別すれ
ばよい。第10図にストライプエッジの荒れの有無によ
る包絡線の形で得られた信号波形を示す。同図aはスト
ライプエッジに荒れがない場合、bはストライプエツジ
に荒れがある場合である。これによつてわかるように、
エッジの荒れの有無によつて包絡線の形で得られる信号
の波形および大きさが異なつている。この欠陥をモニタ
するときは、第6図において、切替スイッチ36を接点
Bに接続する。
Therefore, in order to detect this defect, it is sufficient to obtain an envelope over one period of scanning using an integrator 35 with a low time constant, and determine whether or not there is a jagged defect based on the size of the envelope. FIG. 10 shows signal waveforms obtained in the form of envelopes depending on whether or not the stripe edges are rough. Figure a shows a case where the stripe edges are not rough, and figure b shows a case where the stripe edges have roughness. As you can see from this,
The waveform and magnitude of the signal obtained in the form of an envelope vary depending on whether or not the edges are rough. When monitoring this defect, the selector switch 36 is connected to contact B in FIG.

このとき、ストライプエッジの荒れの欠陥有無および程
度は、モニタ上では輝いている部分の大きさおよびその
濃淡として得られることとなる。第11図は、本発明に
なる他の具体的な一実施例てあり、とくに走査部を示し
てある。
At this time, the presence or absence of a defect and the degree of roughness of the stripe edge can be obtained on the monitor as the size of the shining part and its shading. FIG. 11 shows another specific embodiment of the present invention, particularly showing the scanning section.

省略した部分は第6図と同様の構成てあり、XおよびY
軸方向の走査を共に回転偏向鏡によるものである。回転
偏向鏡8はX軸方方向、11はY軸方向の走査をするも
のとする。第11図において、レンズ9の第1焦点は回
転偏向鏡8の回転軸の中心上にある。
The omitted parts have the same structure as in Fig. 6, and the X and Y
Both axial scanning is performed by a rotating deflection mirror. The rotating deflection mirror 8 scans in the X-axis direction, and the rotating deflection mirror 11 scans in the Y-axis direction. In FIG. 11, the first focal point of the lens 9 is located on the center of the rotation axis of the rotary deflection mirror 8. In FIG.

したがつて、回転鏡8で偏向された光束はレンズ9の光
軸と平行となつてレンズ10に入射する。レンズ10の
第2焦点は回転偏向鏡11の回転軸の中心上にある。し
たがつて、レンズ10から出た光束は回転偏向鏡11の
中心に集まる。こうして、X軸方向の走査が行われる。
Y軸方向の走査は同様に行われるが、レンズ12の第1
焦点は回転偏向鏡11の回転軸の中心上に、第2焦平面
は試料13の面.上に、それぞれある。回折光集光レン
ズ14は、第6図と同様に、その光軸をθ方向にすらし
て配置する。第6図では、試料13が透過性の場合の光
学系を示したが、ガラス面を非透過性のコーテングを!
施して後ストライプが形成される場合がある。
Therefore, the light beam deflected by the rotating mirror 8 enters the lens 10 parallel to the optical axis of the lens 9. The second focal point of the lens 10 is located on the center of the rotation axis of the rotating deflection mirror 11. Therefore, the light flux emitted from the lens 10 is concentrated at the center of the rotating deflection mirror 11. In this way, scanning in the X-axis direction is performed.
Scanning in the Y-axis direction is performed in the same way, but the first
The focal point is on the center of the rotation axis of the rotating deflection mirror 11, and the second focal plane is on the surface of the sample 13. There are each above. The diffracted light condensing lens 14 is arranged with its optical axis aligned in the θ direction, similarly to FIG. 6. Figure 6 shows the optical system when the sample 13 is transparent, but the glass surface should be coated with a non-transparent coating!
After application, stripes may be formed.

このように、試料が非透過性の場合にも、第12図のよ
うに検出部を構成―県゜Lは第6図、第11図の実施例
と同様に欠陥を検出でき、かつ、モニタを構成すること
ができる。この構成は試料が反射性のものにも適用でき
る。以上説明したごとく本発明によれば、光源とするレ
ーザの次にビームエキスパンダを配置することにより1
0〜数10ミクロンの光束に絞ることを可能ならしめ、
回折光集光レンズの光軸を試料への照射光軸からはずす
ことにより零次近傍の回折光の影響を受けすに欠陥から
の回折光を集光せし〔め、5p内外の欠陥を高S/N比
て、高速検出てき、また、ストライプエッジの荒れによ
る回折光から得られる信号を積分し、包絡線の形に信号
処理することによりストライプエッジの荒れを検出可能
とし、これらをブラウン管またはテレビに表示すること
により、欠陥検査をモニタリンク几得る短時間に良品不
良品を判別可能なガラス面板欠陥検出装置を実現てきる
In this way, even when the sample is non-transparent, the detection section configured as shown in Fig. 12 can detect defects in the same way as the embodiments shown in Figs. can be configured. This configuration can also be applied to reflective samples. As explained above, according to the present invention, by arranging the beam expander next to the laser used as a light source,
It is possible to narrow down the luminous flux from 0 to several tens of microns,
By moving the optical axis of the diffracted light condensing lens away from the optical axis of irradiation to the sample, the diffracted light from the defect can be focused without being affected by the diffracted light in the vicinity of zero order, and the defects inside and outside 5p can be focused. In addition, it is possible to detect the roughness of the stripe edge by integrating the signal obtained from the diffracted light due to the roughness of the stripe edge and processing the signal in the form of an envelope. By displaying the image on a television, it is possible to realize a glass face plate defect detection device that can monitor defect inspections and distinguish between good and defective products in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3図は被検体(ガラス面板)に発生した欠陥
の代表例を示す図、第4図は従来の欠陥検査方法の代表
例を示す図、第5図は本発明になる欠陥検査装置の概要
を示すフロック図、第6図は本発明の実施例を示す構成
図、第7図は試料への照射状態、ストライプおよび欠陥
による回折の模様、集光レンズの配置などを説明する図
、第8図はOの値を決定するための幾可学的配置図、第
9図は短絡および断線欠陥による信号例、第10図はス
トライプエッジの荒れの有無による包絡線の形て得られ
た信号波形図、第11図は本発明の他の実施例の部分構
成図、第12図は試料(被検体)が非透過性の場自の欠
陥検出部の構成を示す図てある。
Figures 1, 2, and 3 are diagrams showing typical examples of defects occurring on the object to be inspected (glass face plate), Figure 4 is a diagram showing a typical example of the conventional defect inspection method, and Figure 5 is a diagram showing the defects according to the present invention. Fig. 6 is a block diagram showing an overview of the inspection device, Fig. 6 is a configuration diagram showing an embodiment of the present invention, and Fig. 7 explains the irradiation state to the sample, the diffraction pattern due to stripes and defects, the arrangement of the condenser lens, etc. Figure 8 is a geometric layout diagram for determining the value of O, Figure 9 is an example of signals due to short circuit and disconnection defects, and Figure 10 is the shape of the envelope curve depending on whether or not the stripe edge is rough. FIG. 11 is a partial configuration diagram of another embodiment of the present invention, and FIG. 12 is a diagram showing the configuration of an in-situ defect detection section in which the sample (object) is non-transparent.

Claims (1)

【特許請求の範囲】[Claims] 1 光源としてのレーザと、該レーザから出射された光
ビームを被検体上に走査する手段と、該光ビームを走査
することにより上記被検体から生じた回折光を受光する
光電変換受光部とを有し、上記光電変換受光部が上記光
ビームの光軸からはずれた位置にあり上記回折光のうち
零次近傍以外の回折光のみを上記光電変換受光部が受光
することを特徴とする欠陥検査装置。
1. A laser as a light source, a means for scanning a light beam emitted from the laser onto a subject, and a photoelectric conversion light receiving section that receives diffracted light generated from the subject by scanning the light beam. defect inspection, wherein the photoelectric conversion light receiving section is located at a position offset from the optical axis of the light beam, and the photoelectric conversion light receiving section receives only diffracted light other than the zero order of the diffracted light. Device.
JP52050746A 1977-05-04 1977-05-04 Defect inspection equipment Expired JPS6049858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52050746A JPS6049858B2 (en) 1977-05-04 1977-05-04 Defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52050746A JPS6049858B2 (en) 1977-05-04 1977-05-04 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JPS53136881A JPS53136881A (en) 1978-11-29
JPS6049858B2 true JPS6049858B2 (en) 1985-11-05

Family

ID=12867394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52050746A Expired JPS6049858B2 (en) 1977-05-04 1977-05-04 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JPS6049858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377340A (en) * 1980-10-24 1983-03-22 Hamamatsu Systems, Inc. Method and apparatus for detecting particles on a material
DE3620129A1 (en) * 1986-06-14 1987-12-17 Zeiss Carl Fa DEVICE FOR TESTING TRANSPARENT MATERIAL COMPONENTS FOR SURFACE DEFECTS AND INCLUDES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016593A (en) * 1973-06-11 1975-02-21
JPS517985A (en) * 1974-05-10 1976-01-22 Tokyo Shibaura Electric Co KETSUKANKENSHUTSUSOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016593A (en) * 1973-06-11 1975-02-21
JPS517985A (en) * 1974-05-10 1976-01-22 Tokyo Shibaura Electric Co KETSUKANKENSHUTSUSOCHI

Also Published As

Publication number Publication date
JPS53136881A (en) 1978-11-29

Similar Documents

Publication Publication Date Title
US3614232A (en) Pattern defect sensing using error free blocking spacial filter
US7499156B2 (en) Closed region defect detection system
JP3258385B2 (en) Optical board inspection system
US5471066A (en) Defect inspection apparatus of rotary type
JP3566589B2 (en) Defect inspection apparatus and method
US3658420A (en) Photomask inspection by spatial filtering
JP5355922B2 (en) Defect inspection equipment
JP6328468B2 (en) Defect inspection apparatus and inspection method
US7046355B2 (en) Dual stage defect region identification and defect detection method and apparatus
US4681442A (en) Method for surface testing
US4674875A (en) Method and apparatus for inspecting surface defects on the magnetic disk file memories
JP3904581B2 (en) Defect inspection apparatus and method
EP0856728B1 (en) Optical method and apparatus for detecting defects
US4922308A (en) Method of and apparatus for detecting foreign substance
US8416292B2 (en) Defect inspection apparatus and method
JP2006098154A (en) Defect inspection method and its device
JP3105702B2 (en) Optical defect inspection equipment
JP3981696B2 (en) Defect inspection apparatus and method
JP3904565B2 (en) Defect inspection apparatus and method
JPS6049858B2 (en) Defect inspection equipment
JPH10177246A (en) Defect inspecting device for phase shift mask
JPH0536726B2 (en)
JPH0783840A (en) Rotary defect inspection device
JPH09281051A (en) Inspection apparatus
JPH0933237A (en) Measuring probe