JPH02236228A - Production of high strength steel plate - Google Patents

Production of high strength steel plate

Info

Publication number
JPH02236228A
JPH02236228A JP1113389A JP1113389A JPH02236228A JP H02236228 A JPH02236228 A JP H02236228A JP 1113389 A JP1113389 A JP 1113389A JP 1113389 A JP1113389 A JP 1113389A JP H02236228 A JPH02236228 A JP H02236228A
Authority
JP
Japan
Prior art keywords
steel
strength
strain
less
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1113389A
Other languages
Japanese (ja)
Other versions
JP2682691B2 (en
Inventor
Satoshi Akamatsu
聡 赤松
Takehide Senuma
武秀 瀬沼
Hiroshi Yada
浩 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1113389A priority Critical patent/JP2682691B2/en
Publication of JPH02236228A publication Critical patent/JPH02236228A/en
Application granted granted Critical
Publication of JP2682691B2 publication Critical patent/JP2682691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a steel plate excellent in a balance between strength and toughness by casting and solidifying a steel with a specific composition, controlling cooling down to a specific temp. region, carrying out light draft rolling in which total amount of strain is specified, and then controlling cooling. CONSTITUTION:A steel having a composition consisting of, by weight, <=0.20% C, <=2.0% Si, <=2.0% Mn, 0.002-0.05% Ti, 0.0003-0.010% B, 0.002-0.05% S, <=0.01% N, and the balance Fe with inevitable impurities is refined. This steel is cast and solidified to 1-10mm casting thickness, and is cooled from solidification down to the Ar3 temp. at 5-30 deg.C/sec average cooling rate. Subsequently, in the as-cast state or at a temp. of the Ar3 point or above, the above steel is subjected to light draft rolling in which total amount of strain is regulated to <=1.0 by logarithmic strain by one pass or multiple passes. Then, cooling is applied to the resulting steel plate while regulating average cooling rate from 900 down to 600 deg.C to 10 deg.C/sec, by which a fine Widmanstaetten ferrite structure is formed.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、鋳造ままあるいは鋳造後の軽圧下圧延で、優
れた強度・延性バランスを有する鋼板の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a steel plate having an excellent balance of strength and ductility, either as cast or by light reduction rolling after casting.

[従来の技術] 鋼板の製造技術においては製造コストの低減のため工程
の簡略化や直行化が強く指向されてきている。製品の厚
みに近い鋳片に鋳造する技術もこの傾向の一つの表れと
言える。
[Prior Art] In the manufacturing technology of steel plates, there has been a strong trend toward simplifying and directing processes in order to reduce manufacturing costs. One manifestation of this trend is the technology of casting slabs that are close to the thickness of the product.

しかしながら鋳造ままの鋼材のオーステナイト粒径は通
常数IllITlであり、従来の熱間圧延工程によって
達成し得る粒径と比較して非常に粗大であるため、変態
後のフエライト組織も粗くなる傾向がある.これはフエ
ライト粒の優先生成サイトが通常オーステナイト粒界で
あることに起因している。このような粗大組織は一般に
強度・延性バランスや疲労強度などの機械的性質を劣化
し、高強度鋼板が必要とする強度や他の特性を満足しな
い。
However, the austenite grain size of as-cast steel is usually several IllITl, which is much coarser than the grain size that can be achieved by conventional hot rolling processes, so the ferrite structure after transformation also tends to be coarse. .. This is because the preferential production site of ferrite grains is usually the austenite grain boundary. Such a coarse structure generally deteriorates mechanical properties such as strength-ductility balance and fatigue strength, and does not satisfy the strength and other properties required of high-strength steel sheets.

このような冶金組織学的な問題点に対し、最近鋼中に微
細分散する酸化物などを有効利用してオーステナイト粒
界だげてはなく粒内からもフエライト変態をおこさせる
ことにより極めて微細な組織が得られる技術が開発され
ている.このような現象を鋼板の製造方法に適用した例
としては、特開昭61−213322号公報に開示され
ているTi系酸化物をその核としたものがあり、鋼中酸
化物の粒子径や分散量について検討されている。
In order to solve these metallurgical structural problems, it has recently been possible to effectively utilize oxides that are finely dispersed in steel to induce ferrite transformation not only at the austenite grain boundaries but also within the grains. Techniques have been developed to obtain tissue. An example of applying this phenomenon to a steel plate manufacturing method is a method using a Ti-based oxide as a core disclosed in Japanese Patent Laid-Open No. 61-213322. The amount of dispersion is being considered.

しかし前述の公報は主に厚板製造を念頭に、その製造条
件及び必要とされる機械的特性が調査されており、この
ような粒内変態組織が鋳造厚みを数mmとした場合にで
きるかどうか、また延性や疲労強度などの他の特性を満
足しているかどうかについてはふれられていない.[発
明が解決しようとする課題コ 本発明は鋳造まま、もしくはオーステナイト温度域での
軽圧下圧延のみで強度・延性バランスの優れた高強度鋼
板の製造法を提供するものである。
However, in the above-mentioned publication, the manufacturing conditions and required mechanical properties were investigated mainly with the manufacture of thick plates in mind, and it was found that such an intragranular transformation structure could be formed when the casting thickness was several mm. There is no mention of whether or not it satisfies other properties such as ductility and fatigue strength. [Problems to be Solved by the Invention] The present invention provides a method for producing a high-strength steel plate with an excellent balance of strength and ductility by using the as-cast steel plate or only by light reduction rolling in the austenitic temperature range.

[課題を解決するための千段] 本発明の基本となる原理は上記に示した粒内変態であり
、その核として変態前に存在する析出物を有効利用する
ことにある.このためその製造技術においては、これら
の析出挙動をいかに制御するかが重要であり、前述の特
開昭61−213322号公報では鋼中の酸化物に注目
し、おもに凝固時の温度制御について詳しく開示されて
いた. しかしながらこれらの酸化物はフエライトの変態核とし
て直接働くものではないこと、つまりむしろ凝固後引続
き析出するMnSやTiNなどのオーステナイト中で析
出する析出物がこの現象の中核であることが最近の研究
の結果明らかになってきた。よってこの種の現象におい
ては、オーステナイト中、すなわち900℃から140
0℃の温度範囲の制御がより重要であり、合わせてこれ
らの低温域で析出する元素の組成についても明確にして
いくことが製造上重要と言える。
[A Thousand Steps to Solve the Problem] The basic principle of the present invention is the intragranular transformation described above, and the effective use of the precipitates that exist before the transformation as the nucleus. Therefore, how to control these precipitation behaviors is important in manufacturing technology, and the above-mentioned Japanese Patent Application Laid-Open No. 61-213322 focuses on oxides in steel and mainly describes in detail the temperature control during solidification. It had been disclosed. However, recent research has shown that these oxides do not directly act as transformation nuclei of ferrite; rather, the core of this phenomenon is precipitates such as MnS and TiN that precipitate in austenite after solidification. The results are becoming clear. Therefore, in this type of phenomenon, in austenite, that is, from 900°C to 140°C
Controlling the temperature range of 0°C is more important, and it is also important for manufacturing to clarify the composition of the elements that precipitate in these low temperature ranges.

かかる現象を踏まえ、木発明は鋳造板厚1〜101nI
I1の鋼より粒内変態により微細なウイッドマンシュテ
ッテンフェライト組織を形成せしめて、鋳造まま、もし
くは軽圧下圧延のみで強度・延性バランスの優れた高強
度鋼板の製造を可能にするものであり、上記のような製
造時のオーステナイト域の冷却速度、酸化物以外の析出
物の生成条件、凝固時のオーステナイト粒径を考慮した
臨界圧延条件を制御することを特徴とする。
Based on this phenomenon, the wooden invention has a cast plate thickness of 1 to 101 nI.
It forms a finer Widmanstätten ferrite structure through intragranular transformation than I1 steel, making it possible to manufacture high-strength steel sheets with an excellent balance of strength and ductility by as-cast or by only light reduction rolling. The method is characterized in that the critical rolling conditions are controlled in consideration of the cooling rate of the austenite region during production, the conditions for the formation of precipitates other than oxides, and the austenite grain size during solidification as described above.

以下に本発明について詳細に説明する.まず本発明鋼の
成分の限定理由について述べる. Cは鋼材の強度を高めるため必要不可欠な元素であるが
過剰の添加は溶接性を劣化させるため0.2%以下とし
た.また特に限定はしないがCの下限については従来工
程でウイッドマンシュテッテンフェライト組織が得られ
る0.02%以上とすることが望ましい。
The present invention will be explained in detail below. First, we will discuss the reasons for limiting the composition of the steel of the present invention. C is an essential element to increase the strength of steel materials, but excessive addition deteriorates weldability, so it was limited to 0.2% or less. Although not particularly limited, the lower limit of C is desirably 0.02% or more, at which a Widmanstätten ferrite structure can be obtained in a conventional process.

Slはやはり鋼材の強度を高めるため必要不可欠な元素
であるが、過剰の添加は鋼材の延性を劣化させることか
ら2.0%以下とした。
Sl is still an essential element for increasing the strength of steel materials, but excessive addition deteriorates the ductility of steel materials, so it was set at 2.0% or less.

Mnも鋼材の強度を高めるが、製鋼工程における組成制
御のコストが低く抑えられる範囲で、本発明においては
、2.0%以下と限定する。またその下限については特
に限定はしないが、Mnが本発明において重要なMnS
の構成元素であり、後述する鋼中M n il4度の局
部的な差が明瞭に現れるよう0.1%以上とすることが
望ましい. Tiは鋼中に不可避的元素として含まれるOと結合し、
TiOもしくはTi,O,のとしてフエライト変態の核
に寄与すること、他方、Nと結合しTiNとして鋼中の
Nを固着することにより後述するBを固溶状態でオース
テナイト粒界に偏析させる効果があり、本発明鋼におい
て最も重要な元素である。このためその下限としては上
記の効果が現れる0.002%とし、その上限について
は過剰な添加がTicの析出を促し析出硬化によって延
性の劣化を招くことのないよう0.05%とする。
Mn also increases the strength of steel materials, but in the present invention it is limited to 2.0% or less within the range where the cost of composition control in the steel manufacturing process can be kept low. Further, there is no particular restriction on the lower limit, but Mn is MnS, which is important in the present invention.
The content is preferably 0.1% or more so that local differences in Mnil4 degrees in the steel, which will be described later, will clearly appear. Ti combines with O, which is included as an inevitable element in steel,
It contributes to the nucleus of ferrite transformation as TiO or Ti,O, and on the other hand, it combines with N and fixes N in the steel as TiN, which has the effect of causing B to be segregated in a solid solution state at the austenite grain boundaries, which will be described later. It is the most important element in the steel of the present invention. Therefore, the lower limit is set at 0.002% to achieve the above effects, and the upper limit is set at 0.05% so that excessive addition will not promote the precipitation of Tic and cause deterioration of ductility due to precipitation hardening.

Bは微量の添加でオーステナイト粒界に偏析し、粒界か
ら生成するフエライトを制御することで相対的に粒内変
態を促す効果があり、またBNやFe23 ( C.[
1) aといった析出物として直接的に寄与する効果も
考えられ、本発明に不可欠な元素である。そこでこの下
限については従来材で偏析効果の現れる0.0003%
とする.また上限については多すぎると変態時に熱間割
れを生じる可能性があり、また延性の劣化が著しくなる
ことから0.01%以上とする。
When added in a small amount, B segregates at austenite grain boundaries and has the effect of relatively promoting intragranular transformation by controlling ferrite generated from grain boundaries.
1) It is thought that the effect of directly contributing as a precipitate such as a is an element essential to the present invention. Therefore, the lower limit of this is 0.0003%, where the segregation effect occurs in conventional materials.
Suppose that The upper limit is set to 0.01% or more, since if it is too large, hot cracking may occur during transformation and the deterioration of ductility will become significant.

Sは本発明においてffi要な役割を果たすMnSの構
成元素である。しかし過剰の添加は熱間割れの原因とな
ること、また下限については脱硫コストの上昇等の問題
から0.002%から0.05%と限定する。
S is a constituent element of MnS that plays an important role in the present invention. However, excessive addition causes hot cracking, and the lower limit is limited to 0.002% to 0.05% due to problems such as increased desulfurization cost.

Nは鋼中の不可避的成分の一つであるが、本発明鋼にお
いてはTiNを形成するための構成元素として重要であ
る。しかし0.01%以上の添加は延性の劣化を招くこ
とからこれを限定する。
N is one of the inevitable components in steel, and in the steel of the present invention, it is important as a constituent element for forming TiN. However, addition of 0.01% or more causes deterioration of ductility, so this is limited.

次に製造方法について述べる。Next, the manufacturing method will be described.

本発明においては、以上述べたような成分の鋼を鋳造厚
み1〜10IIlffiで鋳造後、凝固から^『3点温
度までの間を平均冷速5℃/s以上30℃八以下の冷却
速度で冷却しなければならない. これはオーステナイト中で析出してくるMnS等の析出
物を非平衡状態、つまり析出の成長途上の状態にして、
これらの析出物とオーステナイトとの界面近傍で析出物
構成元素の濃度勾配を形成させるためである。これによ
り析出物の回りでフエライト生成傾向が顕著になり、粒
内変態を促進することができる。このような濃度勾配は
析出が起こらないほどの急冷では形成されず、また徐冷
やγ域での長時間保定を行うと平衡量まで析出が進行し
てしまい形成された勾配が消失してしまうため、上記の
ような最適冷速の範囲が必要となる。
In the present invention, after casting the steel with the above-mentioned components to a casting thickness of 1 to 10 IIlffi, it is cooled at an average cooling rate of 5°C/s or more and 30°C or less from solidification to the 3-point temperature. Must be cooled. This causes precipitates such as MnS that precipitate in austenite to be in a non-equilibrium state, that is, in a state where the precipitates are in the process of growing.
This is to form a concentration gradient of the precipitate constituent elements near the interface between these precipitates and austenite. As a result, the tendency to form ferrite becomes noticeable around the precipitates, and intragranular transformation can be promoted. Such a concentration gradient cannot be formed by rapid cooling that does not cause precipitation, and if slow cooling or long-term retention in the γ range is performed, precipitation will progress to an equilibrium amount and the formed gradient will disappear. , an optimum cooling rate range as described above is required.

さらにこの温度域で鋼板の表面形状などの要素を考慮し
て圧延を施す場合、その総歪量は対数歪で1.0以下に
しなければならない。
Furthermore, when rolling is performed in this temperature range while taking into account factors such as the surface shape of the steel sheet, the total amount of strain must be 1.0 or less in terms of logarithmic strain.

なぜならば、本発明のような粒内変態現象にとって,粒
界から生成するフエライトの形成は組織の粗大化、不均
一化につながるため、そのサイトとなる粒界面積はでき
るだけ少ないことが望ましいためである。このような立
場では、加工によって再結晶が進行しオーステナイト粒
径が小さくなることは不利であるし、また未再結晶域で
の加工は粒界に歪を蓄積させ、粒界の変態に対する活性
化を促すことになるためやはり好ましくない。
This is because, for the intragranular transformation phenomenon of the present invention, the formation of ferrite generated from grain boundaries leads to coarsening and non-uniformity of the structure, so it is desirable that the grain boundary area serving as the site of ferrite be as small as possible. be. In this situation, it is disadvantageous that processing progresses recrystallization and reduces the austenite grain size, and processing in non-recrystallized areas accumulates strain at grain boundaries and reduces the activation of grain boundary transformation. This is still undesirable because it encourages

上記のような粒界からのフエライト生成を回避するため
の臨界のオーステナイト粒径はおよそ200μIであり
、凝固時に形成される初期粒径から考えて、総歪量で1
.0以下ならばほぼこの条件を満足し得る。
The critical austenite grain size to avoid ferrite formation from grain boundaries as described above is approximately 200μI, and considering the initial grain size formed during solidification, the total strain is 1
.. If it is less than 0, this condition can almost be satisfied.

また変態時の冷却速度については、あまり遅いと粒界で
生成したフエライトが成長し、組織が粗大化するため、
900℃から600℃までを急冷し、従来この温度範囲
で生成する粒界生成フエライトの変態を抑制し、変態の
過冷度が十分高くなった600℃近傍より粒内変態を起
こさせることが必要である。これらのことから本発明に
おいては900℃から600℃の温度範囲についてその
冷速10℃/s以上と限定する.またIiQO℃以下の
温度制御については特に限定しないが最終的な組織が微
細なウィッドマンシュテッテンフェライトとなるように
、粗大なペイナイトやマルテンサイト組織が形成される
ことのないよう100℃/s以下とすることが望ましい
. [実 施 例] 第1表に真空溶解にて製造した供試鋼の化学成分を示す
Regarding the cooling rate during transformation, if the cooling rate is too slow, ferrite generated at grain boundaries will grow and the structure will become coarse.
It is necessary to rapidly cool from 900°C to 600°C to suppress the transformation of grain boundary-generated ferrite that conventionally occurs in this temperature range, and to allow intragranular transformation to occur from around 600°C, when the degree of supercooling of transformation has become sufficiently high. It is. For these reasons, in the present invention, the cooling rate is limited to 10°C/s or more in the temperature range of 900°C to 600°C. In addition, there is no particular restriction on temperature control below IiQO℃, but the temperature should be controlled at 100℃/s so that the final structure becomes fine Widmanstätten ferrite and to prevent the formation of coarse payinite or martensite structure. The following is desirable. [Example] Table 1 shows the chemical composition of the test steel produced by vacuum melting.

第2表には製造条件、及び得られた組織とその強度、延
性の値を示す。比較材中に示した下線の値は本発明条件
から外れているものを示している。
Table 2 shows the manufacturing conditions, the obtained structure, and its strength and ductility values. The underlined values shown in the comparative materials indicate values outside the conditions of the present invention.

本発明法で製造した鋼1〜5はいずれも微細なウイッド
マンシュテッテンフエライト組織からなっており、その
強度レベルは成分により大きく変化しているが、強度・
延性バランスで見るとすべて1700以上の値を示しい
ることがわかる。これは従来工程である厚スラブから多
段圧延を行って得られる熱延鋼板の値とほぼ同等であり
、これにより薄肉CCプロセスにおいても本発明法によ
れば従来材と同等の鋼板が製造できることがわかる. 一方、比較材である鋼6は変,態域の冷速が遅いため粗
大なオーステナイト粒界から変態したフエライトが成長
してしまい、全体に粗大フエライト組織となったため強
度が下がっている。
Steels 1 to 5 manufactured by the method of the present invention all consist of a fine Widmanstättenferrite structure, and the strength level varies greatly depending on the composition, but the strength and
Looking at the ductility balance, it can be seen that all of them show values of 1700 or more. This is almost the same as the value of hot rolled steel sheets obtained by multi-stage rolling from thick slabs, which is the conventional process, and this shows that the method of the present invention can produce steel sheets equivalent to conventional materials even in the thin-walled CC process. Recognize. On the other hand, in Steel 6, which is a comparison material, the cooling rate in the transformation region is slow, so transformed ferrite grows from coarse austenite grain boundaries, resulting in a coarse ferrite structure throughout, resulting in a decrease in strength.

オーステナイト組織が不均一化し、その結果得られた組
織も混粒を呈している。このため強度・延性バランスが
著しく低い。
The austenite structure becomes non-uniform, and the resulting structure also exhibits mixed grains. Therefore, the balance of strength and ductility is extremely low.

さらに&vI8は鋳造厚みが大きくそのオーステナイト
域の玲速が遅かった例である。この鋼ではフエライトの
核となるべき鋼中析出物近傍の過飽和度が減少しており
、これらの核生成能力が低下していたため、やはり組織
は粗大化している.鋼9と10は本発明において不可欠
な元素であるTtとBがそれぞれ無添加のため、やはリ
オーステナイト粒内での変態が進行せず、組織が不均一
化し、特に延性の点で劣っている. このように本発明法から外れた条件では、その強度・延
性バランスは1600以下といった従来材よりもかなり
劣るものとなっている。
Furthermore, &vI8 is an example in which the casting thickness was large and the rate of conversion of the austenite region was slow. In this steel, the degree of supersaturation near the precipitates in the steel, which should become the nuclei of ferrite, was reduced, and the ability to generate these nucleates was reduced, resulting in a coarser structure. In Steels 9 and 10, Tt and B, which are essential elements in the present invention, are not added, respectively, so the transformation within the liaustenite grains does not proceed, the structure becomes non-uniform, and the steels are particularly inferior in terms of ductility. There is. In this way, under conditions that deviate from the method of the present invention, the balance of strength and ductility is 1600 or less, which is considerably inferior to that of conventional materials.

またu47は加工時の歪量が大きかったため、[発明の
効果コ 以上述べたように本発明法によれば、従来粗大フエライ
ト組織が主体であると考えられていた鋳造厚みが薄く、
軽圧下しかできない薄肉CCプロセスにおいても、微紬
な組織を得ることができ、これにより従来工程材と同等
の強度・延性バランスを有する高強度鋼板を製造するこ
とが可能となる。
In addition, since U47 had a large amount of distortion during processing, [Effects of the Invention] As described above, according to the method of the present invention, the casting thickness, which was conventionally thought to be mainly composed of coarse ferrite structure, was reduced.
Even in the thin-walled CC process where only light reduction is possible, a microstructure can be obtained, making it possible to produce high-strength steel sheets with the same balance of strength and ductility as conventional process materials.

他4名4 others

Claims (1)

【特許請求の範囲】 1 重量%で C:0.20%以下 Si:2.0%以下 Mn:2.0%以下 Ti:0.002〜0.05% B:0.0003〜0.010% S:0.002〜0.05% N:0.01%以下 を基本成分とし、残部鉄および不可避的成分からなる溶
鋼を鋳造厚み1〜10mmで鋳造凝固せしめて、凝固か
らAr_3点温度までの平均冷速を5〜30℃/sとし
、鋳造ままもしくはAr_3点温度以上で1パスもしく
は多パスにて総歪量を対数歪で1.0以下の軽圧下圧延
を行った後、900℃から600℃までの平均冷速を1
0℃/s以上で冷却することを特徴とする、微細なウイ
ッドマンシュテッテンフェライト組織よりなる高強度鋼
板の製造法。
[Claims] 1% by weight: C: 0.20% or less Si: 2.0% or less Mn: 2.0% or less Ti: 0.002 to 0.05% B: 0.0003 to 0.010 % S: 0.002 to 0.05% N: 0.01% or less as a basic component, and the balance consists of iron and unavoidable components. Molten steel is cast to a thickness of 1 to 10 mm and solidified from solidification to Ar_3 point temperature. With an average cooling rate of 5 to 30℃/s, as cast or after light reduction rolling with a total strain of 1.0 or less in logarithmic strain in one pass or multiple passes at Ar_3 point temperature or higher, 900℃ The average cooling rate from to 600℃ is 1
A method for producing a high-strength steel sheet having a fine Widmanstätten ferrite structure, characterized by cooling at a rate of 0° C./s or higher.
JP1113389A 1989-01-20 1989-01-20 High strength steel sheet manufacturing method Expired - Fee Related JP2682691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113389A JP2682691B2 (en) 1989-01-20 1989-01-20 High strength steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113389A JP2682691B2 (en) 1989-01-20 1989-01-20 High strength steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH02236228A true JPH02236228A (en) 1990-09-19
JP2682691B2 JP2682691B2 (en) 1997-11-26

Family

ID=11769521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113389A Expired - Fee Related JP2682691B2 (en) 1989-01-20 1989-01-20 High strength steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP2682691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646656A1 (en) 1993-04-26 1995-04-05 Nippon Steel Corporation Sheet steel excellent in flanging capability and process for producing the same
US5421920A (en) * 1992-09-24 1995-06-06 Nippon Steel Corporation Process for producing rolled shape steel material having high strength, high toughness, and excellent fire resistance
US11655519B2 (en) 2017-02-27 2023-05-23 Nucor Corporation Thermal cycling for austenite grain refinement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421920A (en) * 1992-09-24 1995-06-06 Nippon Steel Corporation Process for producing rolled shape steel material having high strength, high toughness, and excellent fire resistance
EP0646656A1 (en) 1993-04-26 1995-04-05 Nippon Steel Corporation Sheet steel excellent in flanging capability and process for producing the same
US11655519B2 (en) 2017-02-27 2023-05-23 Nucor Corporation Thermal cycling for austenite grain refinement

Also Published As

Publication number Publication date
JP2682691B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JPH02236228A (en) Production of high strength steel plate
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPS61133322A (en) Production of thin steel sheet having excellent formability
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JP7404520B2 (en) High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method
JP3432713B2 (en) Structural steel plate with excellent strength and toughness
JPH0452218A (en) Manufacture of high toughness cast steel
JPS601928B2 (en) Manufacturing method for hot-rolled high-strength steel sheets with excellent workability
JPS6367524B2 (en)
JPH05345919A (en) Production of high strength hot rolled steel plate
JPH02236224A (en) Production of high tensile steel plate excellent in toughness
JPH0135048B2 (en)
JPH0445223A (en) Production of thick tough steel plate free from segregation
KR20040059582A (en) Method for manufacturing the good weldability and high strength thick plate steel
JPH04350119A (en) Production of thick steel plate having homogeneous quality
JPH05345918A (en) Production of high strength hot rolled steel plate
JP2633743B2 (en) Manufacturing method of thick steel plate with fine grain size
JP2703252B2 (en) Method for producing steel with excellent toughness in weld joints
JPH08283844A (en) Production of thick four resistant steel plate excellent in toughness
JPH03287717A (en) Production of high toughness steel
JP2627114B2 (en) Hot rolling method for steel with good toughness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees