JPH02235956A - Lithium-ion conductive polymer electrolyte - Google Patents

Lithium-ion conductive polymer electrolyte

Info

Publication number
JPH02235956A
JPH02235956A JP1057258A JP5725889A JPH02235956A JP H02235956 A JPH02235956 A JP H02235956A JP 1057258 A JP1057258 A JP 1057258A JP 5725889 A JP5725889 A JP 5725889A JP H02235956 A JPH02235956 A JP H02235956A
Authority
JP
Japan
Prior art keywords
polymer
lithium
polymer electrolyte
crystallinity
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1057258A
Other languages
Japanese (ja)
Inventor
Kiyoaki Akashiro
赤代 清明
Tatsu Nagai
龍 長井
Akira Kawakami
章 川上
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1057258A priority Critical patent/JPH02235956A/en
Publication of JPH02235956A publication Critical patent/JPH02235956A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To prepare a polymer electrolyte exhibiting an excellent lithium-ion conductivity at a temp. lower than room temp. by using, as an org. polymer to constitute said polymer electrolyte, a cross-linked polymer which has a crystallinity lower than a specified value and is obtd. by cross-linking a glycerin ether of polyethylene oxide. CONSTITUTION:A cross-linked polymer having a crystallinity of 20% or lower and obtd. by cross-linking a glycerin ether of polyethylene oxide of the formula (wherein n is 10 to 50) is used as an org. polymer to constitute an ionically conductive polymer electrolyte comprising a lithium salt and said org. polymer. The lithium ion conductive polymer electrolyte thus obtd. is solid at room temp. and excellent in the ionic conductivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池、エレクトロクロミンクディス
プレイなどの電解質や、リチウムイオン濃度センサー、
リチウムイオン分離膜などの用途に供されるリチウムイ
オン伝導性ポリマー電解質に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to electrolytes for lithium batteries, electrochromic displays, etc., lithium ion concentration sensors,
This invention relates to a lithium ion conductive polymer electrolyte that is used for applications such as lithium ion separation membranes.

〔従来の技術] リチウム電池などのリチウムイオン伝導性固体電解質と
して、柔軟性がありフィルム状に成形することが容易な
ポリマー電解質を用いる試みがなされている。このポリ
マー電解質はリチウム塩を溶解する有機ポリマーとリチ
ウム塩との複合体からなるものであり、その柔軟でフィ
ルム状に成形することが容易であるという特性を生かし
て、これを薄膜化や小型化が要請されているリチウム電
池に適用すれば、電池作製のための作業性や封止の面で
有利となり、また低コスト化にも役立たせることができ
るという利点がある。また、その柔軟性によってリチウ
ムイオン分離膜として利用することができ、さらにエレ
クトロクロミックディスプレイなどの電解質やリチウム
イオン濃度センサーなどとしても有用であると考えられ
る。
[Prior Art] Attempts have been made to use polymer electrolytes, which are flexible and can be easily formed into a film, as lithium ion conductive solid electrolytes for lithium batteries and the like. This polymer electrolyte is made of a composite of lithium salt and an organic polymer that dissolves lithium salt. Taking advantage of its flexibility and ease of forming into a film, it can be made thinner and more compact. If applied to lithium batteries, which require the following, it would be advantageous in terms of workability and sealing for battery production, and would also have the advantage of being useful for cost reduction. Furthermore, due to its flexibility, it can be used as a lithium ion separation membrane, and it is also thought to be useful as an electrolyte for electrochromic displays and as a lithium ion concentration sensor.

そして、上記のようなリチウムイオン伝導性ポリマー電
解質の有機ポリマーとしては、これまで、ポリエチレン
オキザイI1ボリエチレンイミン、ポリエチレンザクシ
不一トなどが提案されていた〔例えば、FasL Jo
n Transport in Solid P.13
1(1979) )。
As organic polymers for the above-mentioned lithium ion conductive polymer electrolyte, polyethylene oxide I1 polyethyleneimine, polyethylene oxypropylene, etc. have been proposed so far [for example, FasL Jo
n Transport in Solid P. 13
1 (1979)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの有機ポリマーとリヂウム塩との
複合体からなるポリマー電解質は、高温ではそのポリマ
ー成分が結晶性を失って良好なリチウムイオン伝導性を
示すものの、25゜C程度の室温下では結晶性が高いた
めにリチウJ、イオン伝導性が低く、室温下で用いられ
ることがほとんどのリチウム電池や前述の各種用途に応
用した時、性能」二充分に満足できないという問題があ
った。
However, in polymer electrolytes made of composites of these organic polymers and lithium salts, the polymer component loses crystallinity at high temperatures and exhibits good lithium ion conductivity, but it becomes crystalline at room temperature of about 25°C. Due to its high ion conductivity, lithium ion conductivity is low, and when applied to lithium batteries, which are mostly used at room temperature, and the various applications mentioned above, there is a problem that the performance cannot be fully satisfied.

したがって、本発明は、ポリマー電解質の有機ポリマー
として、上記有機ポリマーとは異なるポリマーを用いる
ごとによって、室温で固体状で、かつ良好なリチウムイ
オン伝導性を示すポリマー電解質を提供することを目的
とする。
Therefore, an object of the present invention is to provide a polymer electrolyte that is solid at room temperature and exhibits good lithium ion conductivity by using a polymer different from the above organic polymer as the organic polymer of the polymer electrolyte. .

[課題を解決するだめの手段〕 本発明者らは、上記の目的を達成するために鋭意研究を
重ねた結果、ポリマー電解質を構成さゼる有機ポリマー
として、ポリエチレンオキ→ノイIのグリセリンエーテ
ルを架橋した結晶化度が20%以下の架橋ポリマーを用
いるときは、室温下で良好なリチウムイオン伝導性を示
す固体状のポリマー電解質が得られることを見出し、本
発明を完成するにいたった。
[Means for Solving the Problems] As a result of extensive research to achieve the above object, the present inventors have discovered that polyethylene oxide → NeuI glycerin ether is used as an organic polymer constituting the polymer electrolyte. It was discovered that when a crosslinked polymer with a crosslinked crystallinity of 20% or less is used, a solid polymer electrolyte exhibiting good lithium ion conductivity at room temperature can be obtained, and the present invention was completed.

すなわち、木発明は、リチ〜ム塩と有機ボ17マーとの
複合体からなるリチウムイオン伝導性ポリマー電解質に
おいて、ト記の有機ポリマーが、次の代(1) I」 H−−C  −0(CHzCHz○)nH1{   C
   O(CHzCHzO)nr−T       (
I)+{ −  C−0 ( C H 2 C H z
 O ) n t{H (式中、nは10〜50である。) で表されるポリエチレンオキザイドのグリセリンエーテ
ルを架橋した結晶化度が20%以下の架橋ポリマーであ
ることを特徴とするリチウムイオン伝導性ポリマー電解
質に関する。
That is, the wood invention provides a lithium ion conductive polymer electrolyte consisting of a complex of a lithium salt and an organic bo-17mer, in which the organic polymer of (CHzCHz○)nH1{ C
O(CHzCHzO)nr-T (
I) + { − C−0 ( C H 2 C H z
Lithium characterized by being a cross-linked polymer with a crystallinity of 20% or less obtained by cross-linking glycerin ether of polyethylene oxide represented by O) n t{H (in the formula, n is 10 to 50) Relating to ionically conductive polymer electrolytes.

上記結晶化度が20%以下の架橋ポリマーば、式[1)
で示されるボリュチレンオキザイ1・のグリセリンエー
テルを、該グリセリンエーテルに対して架橋剤をモル比
で等モル以」二加え、かつ触媒を用いて○I1基の反応
性を高めた状態で、架橋することによって得られる。
If the above-mentioned crosslinked polymer has a crystallinity of 20% or less, the formula [1]
A glycerin ether of volutelene oxai 1 shown by is added with a cross-linking agent in an equimolar molar ratio or more to the glycerin ether, and a catalyst is used to increase the reactivity of the ○I group, Obtained by crosslinking.

本発明において、」二記架橋ポリマーを用いる理由およ
び上記架橋ポリマーを用いたときにポリマー電解質が高
いリチウムイオン伝導性を示す理由を述べると次のとお
りである。
In the present invention, the reason for using the crosslinked polymer described in "2" and the reason why the polymer electrolyte exhibits high lithium ion conductivity when the above crosslinked polymer is used are as follows.

まず、未架橋のもの、つまり、式(1)で表されるポリ
エチレンオキザイドのグリセリンエーテルの結晶化度は
40〜60%程度である。このポリエチレンオキヅイ1
・のグリセリンエーテルは、ポリエチレンオキサイlに
基づくエーテル酸素が多く、このエーテル酸素がリチウ
ムイオンと錯体を形成してリチウムイオン伝導性を発揮
するようになる。
First, the crystallinity of uncrosslinked glycerin ether, that is, polyethylene oxide represented by formula (1), is about 40 to 60%. This polyethylene okizui 1
The glycerin ether has a large amount of ether oxygen based on polyethylene oxyl, and this ether oxygen forms a complex with lithium ions and exhibits lithium ion conductivity.

ところが、この式CI+で表されるポリエヂレンオート
ザイLのグリセリンエーテルは、結晶化度が高く、した
がって、融点が高いため、室温下では高分子の分子鎖の
運動が制約されてリチウムイオン伝導性か低くなる。ま
た、1分子当たりのエーテル酸素の数だけでいえば、こ
の式[1で表されるポリエチレンオキ→ノイドのグリセ
リンエーテルより、グリセリンエーテル化していないポ
リエチレンオキサイI一の方が多いが、ポリエチレンオ
ギサ・イFはより結晶性が高く、そのため、融点が高く
て室温下でのリチウムイオン伝導性がさらに低い。そこ
で、グリセリンでエーテル化するごとにより、結晶化度
を下げて融点を低くし、かつフィルム形成能を高めてい
る。
However, since the glycerin ether of polyethylene autozyme L represented by the formula CI+ has a high degree of crystallinity and therefore a high melting point, the movement of the polymer molecular chains is restricted at room temperature, making it difficult to conduct lithium ions. sex becomes lower. In addition, in terms of the number of ether oxygens per molecule, polyethylene oxy-I which has not been converted into a glycerin ether has more ether oxygen than the glycerin ether of the polyethylene oxy-noid represented by the formula [1, but polyethylene oxy Cy-F has higher crystallinity, and therefore has a higher melting point and lower lithium ion conductivity at room temperature. Therefore, by etherifying it with glycerin, the degree of crystallinity is lowered, the melting point is lowered, and the film-forming ability is increased.

しかし、前述したように、この式(11で示されるポリ
エチレンオキサイドのグリセリンエーテルでも、結晶化
度が高く、室温下でのリチウムイオン伝導性か低い。
However, as described above, even the glycerin ether of polyethylene oxide represented by formula (11) has a high degree of crystallinity and low lithium ion conductivity at room temperature.

そごで、この弐fIlで示されるポリエチレンオキザイ
トのグリセリンエーテルを架橋剤で架橋すると結晶化度
は30%に減少する。それによって高分子の分子鎖の運
動が活発になり室温下でのりチウムイオン伝導性が向上
ずるが、それでも充分とはいえない。
Then, when the glycerin ether of polyethylene oxite represented by 2fI is crosslinked with a crosslinking agent, the crystallinity is reduced to 30%. This increases the movement of the polymer's molecular chains and improves lithium ion conductivity at room temperature, but this is still not sufficient.

そのため、本発明では、上記式(Ilで表されるポリエ
チレンオキサイドのグリセリンエーテルに対して架橋剤
をモル比で等モル以上添加し、かつ触媒を用いてO H
基の反応性を高めた状態で架橋して、結晶化度を20%
以下、望ましくは15%以下に低下させ、室温下での高
分子の分子鎖の運動を活発にし、リチウムイオン伝導性
を高めている。つまり、結晶化度が高く高分子の分子鎖
の運動を妨げるような未反応のポリエヂレンオキサイド
鎖を少なくするこ七によって、室温下でのリチウムイオ
ン伝導性を高めているのである。
Therefore, in the present invention, a crosslinking agent is added in a molar ratio of at least the same mole to the glycerin ether of polyethylene oxide represented by the above formula (Il), and O H
Crosslinking with increased reactivity of the groups increases crystallinity by 20%
Hereinafter, it is desirably lowered to 15% or less to activate the movement of the polymer molecular chains at room temperature and improve lithium ion conductivity. In other words, lithium ion conductivity at room temperature is improved by reducing the number of unreacted polyethylene oxide chains that have high crystallinity and impede the movement of polymeric molecular chains.

本発明においては、上記架橋ポリマーの結晶化度を20
%以下に特定しているが、これは架橋ポリマーの結晶化
度が20%以下になると、高分子の分子鎖の運動がより
しやすくなり、通常に架橋した場合に比べて、室温下で
のリチウムイオン伝導性が一段と高くなるからである。
In the present invention, the crystallinity of the crosslinked polymer is set to 20
% or less, but this is because when the crystallinity of the cross-linked polymer is 20% or less, the molecular chains of the polymer move more easily, and compared to the case of normal cross-linking, the This is because the lithium ion conductivity becomes even higher.

そして、架橋ポリマーの結晶化度がさらに低くなると、
室温下でのリチウムイオン伝導性はさらに高くなり、架
橋ポリマーの結晶化度が15%以下になると、より望ま
しい結果が得られ、結晶化度をO%まで低下させると、
さらに望ましい結果が得られる。
And when the crystallinity of the crosslinked polymer becomes even lower,
The lithium ion conductivity at room temperature is even higher, and when the crystallinity of the crosslinked polymer is below 15%, more desirable results are obtained, and when the crystallinity is reduced to 0%,
More desirable results are obtained.

ポリエチレンオキサイト′のグリセリンエーテルを表す
式(I)において、nばポリエチレンオキサイドのモノ
マー数を示すものであり、本発明においては、このnを
10〜50にしているが、これはnが10より小さい場
合は架橋したときに、架橋点間の距離が短く高分子鎖の
運動がしにくくなり、一方、nか50より多くなるとO
H基の反応性が低くなり、未反応のポリエチレンオキザ
イド鎖が残り高分子鎖の運動がしにくくなるためである
In the formula (I) representing glycerin ether of polyethylene oxide, n indicates the number of monomers of polyethylene oxide, and in the present invention, n is set to 10 to 50; If it is small, the distance between the crosslinking points will be short and it will be difficult for the polymer chain to move when crosslinked.On the other hand, if n is more than 50, the O
This is because the reactivity of the H group becomes low and unreacted polyethylene oxide chains remain, making it difficult for the polymer chains to move.

前記式fT)で表されるポリエチレンオギザイドのグリ
セリンエーテルを架橋するだめの架橋剤としては、たと
えばジイソシアナート、ジカルボン酸、ジカルボン酸塩
化物、メチロール化合物、エビクロルヒドリンなどが用
いられる。
As the crosslinking agent for crosslinking the glycerin ether of polyethylene ogizide represented by the formula fT), for example, diisocyanates, dicarboxylic acids, dicarboxylic acid chlorides, methylol compounds, shrimp chlorohydrin, etc. are used.

上記架橋剤として用いられるジイソシアナートとしては
、たとえばヘギザメチレンジイソシアナ一ト、2,4−
トリレンジイソシアナート、メヂレンビス(4−フェニ
ルイソシアナート)、キシリレンジイソシアナートなど
があげられる。
Examples of the diisocyanate used as the crosslinking agent include hexamethylene diisocyanate, 2,4-
Examples include tolylene diisocyanate, medilene bis(4-phenyl isocyanate), and xylylene diisocyanate.

また、上記架橋剤として用いられるンカルボン酸として
は、たとえばシュウ酸、マロン酸、コハク酸、フタル酸
、イソフタル酸、テレフタル酸などがあげられる。そし
て、上記架橋剤として用いられるジカルポン酸塩化物と
しては、たとえば塩化スクシネルがあげられ、また、メ
チロール化合物としては、た七えばジメチル尿素があげ
られる。
Examples of carboxylic acids used as the crosslinking agent include oxalic acid, malonic acid, succinic acid, phthalic acid, isophthalic acid, and terephthalic acid. Examples of the dicarboxylic acid chloride used as the crosslinking agent include succinel chloride, and examples of the methylol compound include dimethylurea.

これらの架橋剤は、式fIlで表されるポリエチレンオ
キサイトのグリセリンエーテルに対してモル比で等モル
以上使用される。これは架橋剤の使用量が等モルより少
ない場合は部分的な架橋はできても結晶化度を低下させ
るまでには至らないからである。
These crosslinking agents are used in an equimolar or more molar ratio to the glycerin ether of polyethylene oxide represented by formula fl. This is because if the amount of the crosslinking agent used is less than equimolar, even if partial crosslinking can be achieved, the degree of crystallinity will not be reduced.

弐mで表されるポリエチレンオキザイトのグリセリンエ
ーテルの架橋にあたっては、○l1基の反応性を高めて
架橋反応を充分に進行させて架橋ポリマーの結晶化度を
低下させるため、触媒が用い?れる。この触媒は架橋剤
の種類によって異なる。
When crosslinking the glycerin ether of polyethylene oxite represented by 2m, a catalyst is used to increase the reactivity of the ○l1 group, allow the crosslinking reaction to proceed sufficiently, and reduce the crystallinity of the crosslinked polymer. It will be done. This catalyst varies depending on the type of crosslinking agent.

たとえば、架橋剤としてジイソシアナートを用いる場合
は、触媒としてはウレタン化触媒が用いられる。そして
、架橋剤としてジカルボン酸を用いる場合は、触媒とし
てTi..GeXSn..Pb,Mnなどの金属の酸化
物が用いられ、架橋剤としてジカルボン酸塩化物を用い
る場合は、触媒として水酸化ナトリウム、ラウリル硫酸
ナトリウムなどが用いられ、架橋剤としてメチロール化
合物を用いる場合には、触媒としてヨウ素、A1■0,
、TiO■、ジメチルスルオキシドなどが用いられ、架
橋剤としてエビクロルヒドリンを用いる場合は、触媒と
してトリエチルアルミニウムが用いられる。
For example, when a diisocyanate is used as a crosslinking agent, a urethanization catalyst is used as a catalyst. When a dicarboxylic acid is used as a crosslinking agent, Ti. .. GeXSn. .. When oxides of metals such as Pb and Mn are used and dicarboxylic acid chlorides are used as crosslinking agents, sodium hydroxide, sodium lauryl sulfate, etc. are used as catalysts, and when methylol compounds are used as crosslinking agents, Iodine as a catalyst, A1■0,
, TiO2, dimethyl sulfoxide, etc., and when shrimp chlorohydrin is used as a crosslinking agent, triethylaluminum is used as a catalyst.

本発明において、上記の架橋ポリマーと共にリチウムイ
オン伝導性ポリマー電解質を構成させるリチウム塩とし
ては、従来のポリマー電解質に用いられているものがい
ずれも使用可能である。その具体例をあげると、たとえ
ばLiBr.Lil、LiSCN.LiBF4、LiA
sF., 、LiC1 04、L i CF:lSOZ
 、L i C6F+zSOz、L i H g 1 
2などがある。これらのリチウL塩の使用量は、L記の
架橋ポリマーに対し通常1〜30重量%の範囲、特に3
〜20重早%の範囲がItTrEシい。
In the present invention, any of the lithium salts used in conventional polymer electrolytes can be used as the lithium salt constituting the lithium ion conductive polymer electrolyte together with the above-mentioned crosslinked polymer. To give a specific example, for example, LiBr. Lil, LiSCN. LiBF4, LiA
sF. , , LiC1 04, Li CF:lSOZ
, L i C6F+zSOz, L i H g 1
There are 2 etc. The amount of these lithium L salts used is usually in the range of 1 to 30% by weight, especially 3% by weight, based on the crosslinked polymer described in L.
ItTrE is weak in the range of ~20%.

本発明のリチウムイオン伝導性ポリマー電解負は、上記
の架橋ポリマーとリチウム塩との複合体からなるもので
あるが、この複合体は、たとえば上記の架橋ポリマーを
りーf〜ウ1・塩を溶解した有機溶媒溶液に浸漬し、リ
チウム塩i8液を架橋ボリマ中に浸透させてから、有機
溶媒溶液を茎発除去することによって得ることができる
The lithium ion conductive polymer electrolytic negative of the present invention is composed of a composite of the above-mentioned crosslinked polymer and a lithium salt. It can be obtained by immersing the crosslinked polymer in an organic solvent solution, allowing the lithium salt i8 solution to permeate into the crosslinked polymer, and then removing the organic solvent solution from the stem.

上記のように架橋ポリマーをリヂウム塩溶液に浸漬する
ことにより、リチウJ、塩が架橋ポリマー中のエーテル
酸素と錯体を形成して結合し、溶媒除去後も上記結合が
保たれ゛ζ、架橋ポリマーとリチウム塩との複合体が得
られる。
By immersing the crosslinked polymer in the lithium salt solution as described above, the lithium salt forms a complex and bonds with the ether oxygen in the crosslinked polymer, and the above bond is maintained even after the solvent is removed. A complex of lithium salt and lithium salt is obtained.

ポリマー電解質の形態は、その用途目的なとによって適
宜決められる。たとえばポリマー電解質をリチウム電池
用の電解質として用い、かつ正{’1両極間のセバレー
タとしての機能を兼ねさセる場合は、ポリマー電解質を
シーl・状に形成すればよい。このシー1−状のポリマ
ー電解質を得るには、架橋ポリマーをシー1・状に形成
し、このシーI・状の架橋ポリマーをリヂウム塩のイj
機溶媒溶液に浸漬し、リチウム塩溶液を架橋ポリマーに
浸透さ・已てから、有機溶媒を蒸発除去すればよい。」
一記ポリマー電解質のシー1・としては、一般にフィル
1、と呼ばれているようなミクロンオーダーのきわめて
薄いものも作製することができる。
The form of the polymer electrolyte is appropriately determined depending on its intended use. For example, when a polymer electrolyte is used as an electrolyte for a lithium battery and also functions as a separator between positive and negative electrodes, the polymer electrolyte may be formed into a seal shape. To obtain this C-shaped polymer electrolyte, a cross-linked polymer is formed into a C-1 shape, and this C-shaped cross-linked polymer is injected with a lidium salt.
After the lithium salt solution is permeated into the crosslinked polymer by immersing it in an organic solvent solution, the organic solvent may be removed by evaporation. ”
As the polymer electrolyte sheet 1, an extremely thin sheet on the order of microns, which is generally called a film 1, can also be produced.

また、本発明のポリマー電解質をリヂウl、電池の正極
に適用する場合は、架橋前の弐(Ilで表されるボリエ
チI/ンオキナイ}・のグリセリンエーテル、架橋剤、
触媒、正極活物質などを所定割合で加え、=1−記弐(
Ilで表されるポリエチレンオキザイドのグリセリンエ
ーテルを架橋させたのち成形し、得られたI戊形体をリ
チウ1、塩の有機冫容媒冫容冫夜に浸?青し、その後有
機溶媒を芸発除去すればよい。そうすること乙こよって
、ポリマー電解質と正極活物質とが混在一休化したもの
が得られる。
In addition, when the polymer electrolyte of the present invention is applied to a positive electrode of a battery, glycerin ether of 2 (represented by Il), a crosslinking agent,
Add the catalyst, cathode active material, etc. in a predetermined ratio, = 1 - Note 2 (
After cross-linking glycerin ether of polyethylene oxide represented by Il, it is molded, and the obtained I-shaped body is immersed in an organic solvent containing lithium oxide and salt. The organic solvent may be removed by bluing and then removing the organic solvent. By doing so, a mixture of the polymer electrolyte and the positive electrode active material can be obtained.

ポリマー電解質を得るにあたって、リチウム塩を溶解さ
セる有機溶媒よしては、リヂウl、塩を充分に溶解し、
かつ架橋ポリマーと反応しない有機?容媒であればよく
、たとえばアセ1・ン、テ1・ラヒトロフラン、ジメ1
・キシエタン、ジオキソラン、フ゜ロピレニ/カーボ不
一ト、アセトニ1・りJレ、ジメチルフォルムアミドな
どが用いられる。
To obtain the polymer electrolyte, an organic solvent for dissolving the lithium salt is used, which dissolves the salt sufficiently, and
And organic that does not react with cross-linked polymers? Any container may be used, such as ace1・n, te1・rahitrofuran, jime1
・Xyethane, dioxolane, polypylene/carbonate, acetonate, dimethylformamide, etc. are used.

第1図は上記した本発明のポリマー電解質を用いたリチ
ウム電池の一例を示すもので、図中、(1)はステンレ
ス鋼からなる方形平板状の正極築電板であり、(2)は
周辺を−面側へ段状に折曲した]:面と同し向きの平坦
状の周辺部(2a)を設けたステンレス鋼からなる浅い
方形皿状の負極集電板、(3)は両極集電板(1)、(
2)の対向する周辺部(1a)、(2a)間を封止する
接着剤層である。
Figure 1 shows an example of a lithium battery using the polymer electrolyte of the present invention described above. In the figure, (1) is a rectangular positive electrode construction plate made of stainless steel, and (2) is a surrounding [bent in steps toward the negative side]: A shallow rectangular dish-shaped negative electrode current collector plate made of stainless steel with a flat peripheral part (2a) facing the same direction as the surface, (3) is a bipolar collector plate. Electric board (1), (
2) is an adhesive layer that seals between the opposing peripheral parts (1a) and (2a).

(4)は両極集電板(1)、(2)間に構成された空間
(5)内において正極集電板(1)側に配された本発明
のポリマー電解質と正極活物質とを既述の方法にてシ1
・状に成形してなる正極、(6)は空間(5)内におい
て負極集電板(2)側に装填されたリチウJ、またεJ
リチウム合金からなる負極、(力は正極(4)と負極(
6)との間に介在させた前記本発明のポリマー電解質を
シ− l−状に成形してなるセパレータである。
(4) has already included the polymer electrolyte of the present invention and the positive electrode active material arranged on the positive electrode current collector plate (1) side in the space (5) formed between the two electrode current collector plates (1) and (2). 1 using the method described above.
・The positive electrode formed into a shape, (6) is the Lichiu J loaded on the negative electrode current collector plate (2) side in the space (5), and εJ
Negative electrode made of lithium alloy (the force is between the positive electrode (4) and the negative electrode (
6) This is a separator formed by molding the polymer electrolyte of the present invention interposed between the separator and the polymer electrolyte of the present invention into a seal shape.

なお、上記正極(4)は、場合により正極活物質とボリ
テ1・ラフルオロエチレン粉末などの結着剤や電子伝導
助剤とを混合してシート状に成形したものなどであって
もよい。正極(4)に用いる正極活物質としては、たと
えばT i Sz 、tvio S2 、VbO+3、
V 2 0 5、V S e − N r P S 3
、ポリアニリン、ボリピロール、ボリチオフェンなどの
1種もしくは2種以上が用いられる。
Note that the positive electrode (4) may be formed into a sheet by mixing a positive electrode active material with a binder such as Bolite 1/Lafluoroethylene powder or an electron conduction aid, as the case may be. Examples of positive electrode active materials used in the positive electrode (4) include T i Sz , tvio S2 , VbO+3,
V 2 0 5, V S e - N r P S 3
, polyaniline, polypyrrole, polythiophene, etc., or two or more thereof may be used.

このように構成されろリチウム電池は、セパレータ(7
)が前記リチウムイオン伝導性ポリマー電解質からなる
シート状物であることにより、また正極(4)が上記リ
ヂウムイオン伝導性ポリマー電解質を含む同様のシート
状物であることによって、電池の薄形化や電池作製のた
めの作業性、封正の信頼性などの向上に寄!j,さセる
ごとができ、また液体電解質のような漏液の心配が木質
的にないといった種々の利点を有ずるうえに、1一記ポ
リマー電解質がそのリチウムイオン伝導性ζこ優れてい
ることにより、一次電池として放電特性や二次電池とし
ての充放電サイクル特性に非常に優れたものとなる。
The lithium battery configured in this way has a separator (7
) is a sheet-like material made of the lithium ion-conductive polymer electrolyte, and the positive electrode (4) is a similar sheet-like material containing the lithium-ion conductive polymer electrolyte. Contributes to improving workability for manufacturing and reliability of sealing! j, In addition to having various advantages such as being able to slide and not having to worry about leakage like liquid electrolytes, polymer electrolytes have excellent lithium ion conductivity. This results in extremely excellent discharge characteristics as a primary battery and excellent charge/discharge cycle characteristics as a secondary battery.

〔実施例〕〔Example〕

以下に、本発明の実施例をあげて説明する。 Examples of the present invention will be described below.

実施例1 式fIlで表されるポリエチレンオキサイドのグリセリ
ンエーテル(平均分子量約3,000で、式(■)中の
nは約22、第一工業製薬製)4gとへキザメチレンジ
イソシアナート336mg  ( CNCO!) 一(
OH基〕、これば式(I+で表されるポリエヂレンオキ
サイドのグリセリンエーテルのOH基に対してNGO基
が等モルであることを示す)をフラスコに入れ、マグネ
ットスターラーで攪拌後、ウレタン化触媒(スズブチル
ラウレート)を添加してからアルミニウム板上に滴下し
、アルゴンガス中ポットプレート上で100゜Cで1時
間反応させて架橋ポリマーを得た。
Example 1 4 g of glycerin ether of polyethylene oxide represented by formula fl (average molecular weight of about 3,000, n in formula (■) is about 22, manufactured by Daiichi Kogyo Seiyaku) and 336 mg of hexamethylene diisocyanate ( CNCO!) One (
OH group], this formula (indicates that the NGO group is equimolar to the OH group of the glycerin ether of polyethylene oxide represented by I+) is placed in a flask, stirred with a magnetic stirrer, and then converted into urethane. After adding a catalyst (tin butyl laurate), the mixture was dropped onto an aluminum plate and reacted on a pot plate in argon gas at 100°C for 1 hour to obtain a crosslinked polymer.

得られた架橋ポリマーをアルミニウム板からはがし、ア
セトン中に浸漬し、未反応物をアセトンに溶解除去した
。得られた架橋ポリマーの結晶化度を熱分析で測定した
ところ、結晶化度はO%であった。
The obtained crosslinked polymer was peeled off from the aluminum plate and immersed in acetone, and unreacted substances were dissolved and removed in acetone. The degree of crystallinity of the obtained crosslinked polymer was measured by thermal analysis, and the degree of crystallinity was 0%.

続いて、上記の架橋ポリマーを2重量%LiBF4アセ
トン溶液に8時間浸漬し、上記LiBFnアセトン溶液
を架橋ポリマー中に浸透させた後、アセトンを蒸発除去
して、厚さ0.1mmのシート状のポリマー電解質を得
た。
Subsequently, the above crosslinked polymer was immersed in a 2% by weight LiBF4 acetone solution for 8 hours, and after the above LiBFn acetone solution was permeated into the crosslinked polymer, the acetone was removed by evaporation to form a sheet with a thickness of 0.1 mm. A polymer electrolyte was obtained.

実施例2 式(Ilで表されるポリエチレンオキサイドのグリセリ
ンエーテル(平均分子量約5 , 000で、式fIl
中のnは約37、第一工業製薬製)4gとへキサメチレ
ンジイソシアナート202mg ( (NCO基〕一[
OH基])を用いた以外は実施例1と同様にして架橋ポ
リマーを得た。得られた架橋ポリマーの結晶化度を熱分
析で測定したところ、結晶化度は10%であった。
Example 2 A glycerin ether of polyethylene oxide of the formula (Il) with an average molecular weight of about 5,000 and a formula fIl
n is about 37, 4 g of Daiichi Kogyo Seiyaku) and 202 mg of hexamethylene diisocyanate ((NCO group) -
A crosslinked polymer was obtained in the same manner as in Example 1 except that OH group]) was used. The degree of crystallinity of the obtained crosslinked polymer was measured by thermal analysis and was found to be 10%.

続いて、上記の架橋ポリマーを実施例1と同様のLiB
F4のアセトン溶液に浸漬し、実施例1と同様の操作を
経て、厚さ0.1mmのシート状のポリマー電解質を得
た。
Subsequently, the above crosslinked polymer was treated with LiB as in Example 1.
It was immersed in an acetone solution of F4 and subjected to the same operations as in Example 1 to obtain a sheet-like polymer electrolyte with a thickness of 0.1 mm.

実施例3 式(■)で表されるポリエチレンオキサイドのグリセリ
ンエーテル(平均分子量約2,000で、式(I+中の
nは約14、第一工業製薬製)4gとへキサメチレンジ
イソシアナート504mg((NC○基〕一(OH基]
)を用いた以外は実施例1と同様にして架橋ポリマーを
得た。得られた架橋ポリマーの結晶化度を熱分析で測定
したところ、結晶化度は0%であった。
Example 3 4 g of glycerin ether of polyethylene oxide represented by formula (■) (average molecular weight about 2,000, n in formula (I+ is about 14, manufactured by Daiichi Kogyo Seiyaku) and 504 mg of hexamethylene diisocyanate ((NC○ group) one (OH group)
) A crosslinked polymer was obtained in the same manner as in Example 1 except that the following was used. The degree of crystallinity of the obtained crosslinked polymer was measured by thermal analysis, and the degree of crystallinity was 0%.

続いて、上記の架橋ポリマーを実施例1と同様のL i
 B F aのアセトン溶液に浸漬し、実施例1と同様
の操作を経て、厚さ0.1mmのシート状のポリマー電
解質を得た。
Subsequently, the above crosslinked polymer was treated with the same Li as in Example 1.
A sheet-like polymer electrolyte having a thickness of 0.1 mm was obtained by immersing it in an acetone solution of BFa and performing the same operations as in Example 1.

比較例1 式(Ilで表されるポリエチレンオキサイドのグリセリ
ンエーテル(平均分子量約3,000で、式(Il中の
nは約22、第一工業製薬製)4gとへキサメチレンジ
イソシアナート224mg ( (NCO基〕/(OH
基) =2/3 、これは式fIlで表されるポリエチ
レンオキサイドのグリセリンエーテルのOH基に対して
NGO基がモル比で273であることを示す)を用い、
ウレタン化触媒を添加しなかったほかば実施例1と同様
にして架橋ポリマーを得た。
Comparative Example 1 4 g of glycerin ether of polyethylene oxide (average molecular weight of about 3,000, formula (n in Il is about 22, manufactured by Daiichi Kogyo Seiyaku) represented by formula (Il) and 224 mg of hexamethylene diisocyanate ( (NCO group)/(OH
group) = 2/3, which indicates that the molar ratio of the NGO group to the OH group of the glycerin ether of the polyethylene oxide represented by the formula fIl is 273,
A crosslinked polymer was obtained in the same manner as in Example 1 except that no urethanization catalyst was added.

得られた架橋ポリマーの結晶化度を熱分析で測定したと
ころ、結晶化度は30%であった。
The degree of crystallinity of the obtained crosslinked polymer was measured by thermal analysis and was found to be 30%.

続いて、上記の架橋ポリマーを実施例1と同様のLiB
Faのアセトン溶液に浸漬し、実施例1と同様の操作を
経て、厚さ0.1mmのシート状のポリマー電解質を得
た。
Subsequently, the above crosslinked polymer was treated with LiB as in Example 1.
A sheet-like polymer electrolyte having a thickness of 0.1 mm was obtained by immersing it in an acetone solution of Fa and performing the same operations as in Example 1.

比較例2 式(Ilで表されるポリエチレンオキサイドのグリセリ
ンエーテル(平均分子量約5,000で、式(11中の
nは約37、第一工業製薬製)4gとへキサメチレンジ
イソシアナート202mg ( (NCO基]一[OH
基])を用い、ウレタン化触媒を添加しなかったほかは
実施例1と同様にして架橋ポリマーを得た。
Comparative Example 2 4 g of glycerin ether of polyethylene oxide represented by formula (Il, average molecular weight of about 5,000, formula (n in 11 is about 37, manufactured by Daiichi Kogyo Seiyaku) and 202 mg of hexamethylene diisocyanate ( (NCO group) -[OH
A crosslinked polymer was obtained in the same manner as in Example 1 except that the urethanization catalyst was not added.

得られた架橋ポリマーの結晶化度を熱分析で測定したと
ころ、結晶化度は40%であった。
The degree of crystallinity of the obtained crosslinked polymer was measured by thermal analysis and was found to be 40%.

続いて、上記の架橋ポリマーを実施例1と同様のL i
B F 4のアセ1・ン溶液に浸漬し、実施例1と同様
の操作を経て、厚さO.I.mmのシーI・状のポリマ
ー電解質を得た。
Subsequently, the above crosslinked polymer was treated with the same Li as in Example 1.
It was immersed in an acetylene solution of B F 4 and subjected to the same operation as in Example 1 to a thickness of O. I. A polymer electrolyte in the form of C.I.mm was obtained.

上記のようにして得られたポリマー電解質の性能を調べ
るために以下のイオン伝導度試験および電池の内部抵抗
試験を行った。
In order to examine the performance of the polymer electrolyte obtained as described above, the following ionic conductivity test and battery internal resistance test were conducted.

〈イオン伝導度試験〉 実施例1〜3および比較例1〜2のポリマー電解質をリ
チウムボイルで勺ントイッチ状に挟み、リチウム電極間
の交流インピーダンスを測定し、複素インピーダンス解
析を行って、室温(25゜C)でのイオン伝導度を測定
した。結果は次の第1表に示すとおりであった。
<Ionic conductivity test> The polymer electrolytes of Examples 1 to 3 and Comparative Examples 1 to 2 were sandwiched between lithium boilers in a switch shape, and the AC impedance between the lithium electrodes was measured. The ionic conductivity at °C) was measured. The results were as shown in Table 1 below.

第 表 また、種々の温度条件下でのイオン伝導度を上記と同様
にして測定した結果は、第2図に示すとおりであった。
Table 2 Also, the ionic conductivity under various temperature conditions was measured in the same manner as above, and the results were as shown in FIG.

なお、第2図において縦軸はイオン伝導度(S/cm)
であり、横軸は絶対温度の逆数103/T(K−’)で
ある。
In Figure 2, the vertical axis is ionic conductivity (S/cm)
, and the horizontal axis is the reciprocal of absolute temperature 103/T(K-').

〈電池の内部抵抗試験〉 実施例1〜3および比較例1〜2のポリマー電解質を用
いて、第1図に示す構成の総厚0.5mm、−・辺の長
さlcmの正方形状の薄形リチウム電池を作製した。な
お、負極はリチウJ、とアルミニウムとの合金を、正極
は実施例1〜3および比較例1〜2と同組成のポリマー
電解質とTiS.とを含むシート状成形物をそれぞれ用
いた。これらのリチウム電池について、25゜C、60
゜C, 100 ’Cでの内部抵抗を測定した。結果は
、次の第2表に示すとおりであった。
<Battery internal resistance test> Using the polymer electrolytes of Examples 1 to 3 and Comparative Examples 1 to 2, a square-shaped thin film with a total thickness of 0.5 mm and a side length of 1 cm as shown in FIG. A type lithium battery was fabricated. The negative electrode was made of an alloy of TiS. A sheet-like molded product containing the following was used. For these lithium batteries, 25°C, 60°C
The internal resistance was measured at 100'C. The results were as shown in Table 2 below.

第    2    表 11力記第1表に示すイオン伝導度試験の結果から明ら
かなように、本発明の実施例1〜3のポリマー電解質は
、25゛Cで1.5X10−5S/cm〜4 XIO”
’S/cmと高いイオン伝導性を示したが、比較例1〜
2のポリマー電解質は25゜Cでのイオン伝導度が1×
10−6S/印−I X 10− ’S/cmと低がっ
た。そのため、第2表に示すように、本発明の実施例1
〜3のポリマー電解質を用いたリチウム電池の25℃で
の内部抵抗は670〜2500Ωであったが、比較例1
〜2のポリマー電解質を用いたリチウム電池の25゜C
での内部抵抗は10kΩ〜100kΩと大きかった。ま
た、第2図に示すように、比較例1〜2は、高温領域(
第2図において、横軸の左側の領域)では高いイオン伝
導性を示したが、温度が25゛C付近(横軸の3.35
付近)では、実施例1〜3より、イオン伝導度が低く、
さらに温度が低くなると(つまり、横軸で右方向にずず
むと)、イオン伝導度がさらに低くなって、実施例1〜
3とのイオン伝導度差が大きくなる。
As is clear from the results of the ionic conductivity test shown in Table 1, the polymer electrolytes of Examples 1 to 3 of the present invention had a conductivity of 1.5X10-5S/cm to 4XIO at 25°C. ”
Although it showed high ionic conductivity of 'S/cm, Comparative Examples 1~
Polymer electrolyte 2 has an ionic conductivity of 1× at 25°C.
It was as low as 10-6S/mark-IX 10-'S/cm. Therefore, as shown in Table 2, Example 1 of the present invention
The internal resistance at 25°C of the lithium battery using the polymer electrolyte of Comparative Example 1 was 670 to 2500 Ω.
~25°C for lithium batteries using polymer electrolytes of ~2
The internal resistance was as large as 10 kΩ to 100 kΩ. Moreover, as shown in FIG.
In Figure 2, high ionic conductivity was shown in the region on the left side of the horizontal axis, but the temperature was around 25°C (3.35°C on the horizontal axis).
), the ionic conductivity was lower than in Examples 1 to 3,
As the temperature further decreases (that is, moving to the right on the horizontal axis), the ionic conductivity decreases further, and Examples 1 to
The difference in ionic conductivity with No. 3 becomes large.

〔発明の効果〕〔Effect of the invention〕

以J−説明したように、本発明では、リチウム塩と複合
体を構成させる有機ポリマーとして、式fIlで表され
るポリエチレンオキサイトのグリセリンエーテルを架橋
した結晶化度が20%以下の架橋ポリマーを用いること
によって、室温下で固体状で、かつイオン伝導性の傍れ
たリチウl・イオン伝導性ポリマー電解質を提供するこ
とができた。
As explained below, in the present invention, a crosslinked polymer having a crystallinity of 20% or less obtained by crosslinking glycerin ether of polyethylene oxide represented by the formula fIl is used as the organic polymer constituting the complex with the lithium salt. By using this method, it was possible to provide a lithium ion-conducting polymer electrolyte that was solid at room temperature and had near ion-conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のリチウムイオン伝導性ポリマー電解質
をセパレータに用いたリチウム電池の一例を示す縦断面
図、第2図は実施例および比較例のリチウムイオン伝導
性ポリマー電解質のイオン伝導度と温度との関係を示す
特性図である。 (7)・・・セバレータ (ポリマー電解質)7・・・
セノマレ タ(ポリマ 電解質)
Figure 1 is a longitudinal cross-sectional view showing an example of a lithium battery using the lithium ion conductive polymer electrolyte of the present invention as a separator, and Figure 2 is the ionic conductivity and temperature of the lithium ion conductive polymer electrolytes of Examples and Comparative Examples. FIG. (7)...Severator (polymer electrolyte)7...
Cenomareta (polymer electrolyte)

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム塩と有機ポリマーとの複合体からなるリ
チウムイオン伝導性ポリマー電解質において、上記の有
機ポリマーが、次の式( I )▲数式、化学式、表等が
あります▼( I ) (式中、nは10〜50である。) で表されるポリエチレンオキサイドのグリセリンエーテ
ルを架橋した結晶化度が20%以下の架橋ポリマーであ
ることを特徴とするリチウムイオン伝導性ポリマー電解
質。
(1) In a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, the above organic polymer has the following formula (I)▲Mathematical formula, chemical formula, table, etc.▼(I) (in the formula , n is 10 to 50.) A lithium ion conductive polymer electrolyte characterized by being a crosslinked polymer having a crystallinity of 20% or less, which is obtained by crosslinking glycerin ether of polyethylene oxide.
JP1057258A 1989-03-09 1989-03-09 Lithium-ion conductive polymer electrolyte Pending JPH02235956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057258A JPH02235956A (en) 1989-03-09 1989-03-09 Lithium-ion conductive polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057258A JPH02235956A (en) 1989-03-09 1989-03-09 Lithium-ion conductive polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH02235956A true JPH02235956A (en) 1990-09-18

Family

ID=13050505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057258A Pending JPH02235956A (en) 1989-03-09 1989-03-09 Lithium-ion conductive polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH02235956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158039A (en) * 2000-11-21 2002-05-31 Nof Corp Electrolyte for secondary battery and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158039A (en) * 2000-11-21 2002-05-31 Nof Corp Electrolyte for secondary battery and secondary battery

Similar Documents

Publication Publication Date Title
JP4503829B2 (en) Electrolytes containing mixed fluorocarbon / hydrocarbonimide salts and methide salts
US6100324A (en) Ionomers and ionically conductive compositions
EP1393394B1 (en) Conductive polyamine-based electrolyte
EP1095071B1 (en) Aromatic polymers with pendant fluorinated ionic groups
US5227043A (en) Ionic conductive polymer electrolyte and cell comprising the same
JPH10265674A (en) Polymer compound composite material and its production
JPH03190959A (en) Lithium ion-conductive polyelectrolyte
JP3022317B2 (en) Polymer solid electrolyte
JPH02295004A (en) Lithium ion conductive polymer electrolyte
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JPH02235956A (en) Lithium-ion conductive polymer electrolyte
JPH01107474A (en) Lithium ion conductive polymer electrolyte
JPH0224976A (en) Lithium ion conducting polymer electrolyte
JPH0238451A (en) Ionically conductive solid electrolyte material
JPH0224975A (en) Lithium ion conducting polymer electrolyte
JPS62254303A (en) Lithium ion conducting polymer electrolyte
JPH10130487A (en) Solid polymer electrolyte and battery made by using it
JPH01107471A (en) Lithium ion conductive polymer electrolyte
JPH0384809A (en) Lithium ion conductive polymer electrolyte
JP3115165B2 (en) Lithium secondary battery
JP2528693B2 (en) Polymer battery
JPH01107469A (en) Lithium ion conductive polymer electrolyte
JPH01107472A (en) Lithium ion conductive polymer electrolyte
JPH03190960A (en) Lithium low-conductive polyelectrolyte
JPS63136408A (en) Lithium ion conducting polymer electrolyte