JPH03190959A - Lithium ion-conductive polyelectrolyte - Google Patents

Lithium ion-conductive polyelectrolyte

Info

Publication number
JPH03190959A
JPH03190959A JP1328921A JP32892189A JPH03190959A JP H03190959 A JPH03190959 A JP H03190959A JP 1328921 A JP1328921 A JP 1328921A JP 32892189 A JP32892189 A JP 32892189A JP H03190959 A JPH03190959 A JP H03190959A
Authority
JP
Japan
Prior art keywords
polymer
lithium
lithium ion
polymer electrolyte
lithium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1328921A
Other languages
Japanese (ja)
Inventor
Kiyoaki Akashiro
赤代 清明
Tatsu Nagai
龍 長井
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1328921A priority Critical patent/JPH03190959A/en
Publication of JPH03190959A publication Critical patent/JPH03190959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide the title polyelectrolyte solid at room temperature, excellent in lithium ion conductivity, suitable as e.g. an electrolyte for lithium cells, electrochromic displays etc., made up of a specific organic polymer and a lithium salt. CONSTITUTION:The objective polyelectrolyte can be obtained by incorporating (A) a crosslinked polymer produced by crosslinking a siloxane-polyether grafted product of formula I (m is 3-10; n is 1-200; x is 0.1-1; R is -OH, -OCH=CH2, etc.) with (B) 0.1-40 (pref. 3-20)wt.% of a lithium salt (e.g. LiBr, LiI). Specifically, the present polyelectrolyte can be produced through the following process: the above-mentioned crosslinked polymer is immersed in a lithium salt solution to effect the penetration of the solution into the polymer followed by evaporating and removing the organic solvent. Said lithium salt is bound, in the form of a complex, to oxygen of ether in the crosslinked polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池、エレクトロクロミックデイス
プレィなどの電解質やリチウムイオン濃度センサー、リ
チウムイオン分離膜などの用途に供されるリチウムイオ
ン伝導性ポリマー電解質に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a lithium ion conductive polymer used for electrolytes such as lithium batteries and electrochromic displays, lithium ion concentration sensors, and lithium ion separation membranes. Regarding electrolytes.

〔従来の技術〕[Conventional technology]

リチウム電池用などのリチウムイオン伝導性の固体電解
質として、柔軟性がありフィルム状に成形することが容
易なポリマー電解質を用いる試みがなされている。
Attempts have been made to use polymer electrolytes, which are flexible and can be easily formed into a film, as lithium ion conductive solid electrolytes for lithium batteries and the like.

このポリマー電解質は、リチウム塩を溶解する有機ポリ
マーとリチウム塩との複合体からなるものであり、その
柔軟でフィルム状に成形することが容易であるという特
性を生かして、これを薄型化や小型化が要請されている
リチウム電池に適用すれば、電池作製のための作業性や
封止の面で有利となり、低コスト化にも役立たせること
ができるという利点がある。また、その柔軟性によって
エレクトロクロミックデイスプレィなどの電解質やリチ
ウムイオン濃度センザーなどとしても有用であると考え
られる。
This polymer electrolyte is made of a composite of lithium salt and an organic polymer that dissolves lithium salt. Taking advantage of its flexibility and ease of forming into a film, it can be made thinner and more compact. If it is applied to lithium batteries, which are required to be improved, it will be advantageous in terms of workability and sealing for battery production, and it will also have the advantage of being useful for cost reduction. In addition, due to its flexibility, it is thought to be useful as an electrolyte for electrochromic displays and as a lithium ion concentration sensor.

このようなポリマー電解質を構成させる有機ポリマーと
しては、ポリエチレンオキシド、ポリエチレンイミン、
ポリエチレンザクシネ−ト、架橋トリオールポリエチレ
ンオキシドなどの数多くのものが提案されている。
Organic polymers constituting such polymer electrolytes include polyethylene oxide, polyethyleneimine,
A number of materials have been proposed, including polyethylene succinate and crosslinked triol polyethylene oxide.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上記従来のポリマー電解質は、25°Cでの
リチウムイオン伝導性が低く、室温Fで用いることがほ
とんどのリチウム電池や前述の如き各種用途に応用した
とき、その性能」二充分に満足できないという問題があ
った。
However, the conventional polymer electrolyte described above has low lithium ion conductivity at 25°C, and its performance is not fully satisfactory when applied to lithium batteries, which are mostly used at room temperature F, and various applications such as those mentioned above. There was a problem.

したがって、本発明は、ポリマー電解質の有機ポリマー
として、上記有機ポリマーとは異なるポリマーを用いる
ことによって、室温で固体状でかつ良好なリチウムイオ
ン伝導性を示すポリマー電解質を揚供することを目的と
している。
Therefore, an object of the present invention is to provide a polymer electrolyte that is solid at room temperature and exhibits good lithium ion conductivity by using a polymer different from the above-mentioned organic polymers as the organic polymer of the polymer electrolyte.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の目的を達成するために鋭意研究を
重ねた結果、ポリマー電解質を構成させる有機ポリマー
として、特定のシロギザンーポリエーテルグラフト化物
を架橋処理して得た、リチウム塩を充分に溶解し、ガラ
ス転移温度が低く、結晶化度が低いポリマーを用いるこ
とにより、室温で良好なリチウムイオン伝導性を示す固
体状のポリマー電解質が得られることを知り、本発明を
完成するに至った。
As a result of extensive research in order to achieve the above object, the present inventors have developed a lithium salt obtained by crosslinking a specific cyrogisan-polyether grafted product as an organic polymer constituting a polymer electrolyte. It was discovered that by using a polymer that is sufficiently soluble, has a low glass transition temperature, and has a low degree of crystallinity, a solid polymer electrolyte that exhibits good lithium ion conductivity at room temperature can be obtained, and this led to the completion of the present invention. It's arrived.

ずなわら、本発明は、リチウム塩と有機ポリマとの複合
体からなるリチウムイオン伝導性ポリマー電解質におい
て、上記の有機ポリマーが、つぎの式(J); 0  ((CHzCIIzO)X(CHzCHO)+−
X)  、、CthCt(zCHzR〔式中、mは3〜
10、nは1〜200.、xば0.1〜1.0、Rば−
OHl−0CH=CH2またはつぎの式(a); CIl+     CIl:I     CI+3Si
−0−3i−0−3i−CI=CHz     −(a
)CH3CII3     C113 で示される基である〕 で表されるシロキサンーボリエーテルグラフト化物を架
橋処理した架橋ポリマーからなることを特徴とするリチ
ウムイオン伝導性ポリマー電解質に係るものである。
However, the present invention provides a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, in which the organic polymer has the following formula (J); 0 ((CHzCIIzO)X(CHzCHO)+ −
X) ,,CthCt(zCHzR [where m is 3 to
10, n is 1-200. , x = 0.1~1.0, R =
OHl-0CH=CH2 or the following formula (a); CIl+ CIl:I CI+3Si
-0-3i-0-3i-CI=CHz -(a
) CH3CII3 C113 This invention relates to a lithium ion conductive polymer electrolyte characterized by being made of a crosslinked polymer obtained by crosslinking a siloxane-bolyether grafted product represented by:

〔発明の構成・作用〕[Structure and operation of the invention]

本発明において用いられる式(1)で表されるシロキサ
ンーボリエーテルグラフト化物は、分子内にシロキサン
結合を有しているために、その分子運動性が高い。この
グラフト化物をその末端基を利用して適宜の手段で架橋
処理すると、ゴム状でかつ固体状のポリマーとなって、
これにリチウム塩を添加したときに高いリチウムイオン
伝導性を示す架橋ポリマーを生成する。ここで、前記し
た従来の架橋トリオールポリエチレンオギシドなどでは
、25°C程度の室温付近でグリセリンによる凝固が起
こってイオン伝導性の大きな低下を引き起こしていたが
、本発明では」−記した特定構成のシロキサン化合物を
用いているためにこのような心配も特になく、上記の如
き高いリチウムイオン伝導性が室温下においても良好に
維持される。
The siloxane-bolyether grafted product represented by formula (1) used in the present invention has a siloxane bond in the molecule, and therefore has high molecular mobility. When this grafted product is crosslinked by appropriate means using its terminal groups, it becomes a rubbery and solid polymer.
When a lithium salt is added to this, a crosslinked polymer exhibiting high lithium ion conductivity is produced. Here, in the above-mentioned conventional cross-linked triol polyethylene oxide, etc., coagulation due to glycerin occurred at around room temperature of about 25°C, causing a large decrease in ionic conductivity, but in the present invention, the specific structure described in Since the siloxane compound is used, there is no particular concern about this, and the high lithium ion conductivity as described above is maintained well even at room temperature.

本発明の上記式(1)で表されるシロキサン−ポリエー
テルグラフト化物において、nばエチレンオキシドまた
はこれとプロピレンオキシドとの付加モル数を示してい
るが、このnは1〜200の整数であることが必要であ
る。これはnがOではエチレンオキシドまたはこれとプ
ロピレンオキシドとが付加していないために、リチウム
塩との錯形成が生しず、その結果リチウムイオン伝導性
が得られず、またnが200より大きくなると、架橋反
応が起こりにくくなって未架橋のグラフト化物が多く残
り、この場合リチウムイオン伝導性が大きく低下してし
まうためである。
In the siloxane-polyether grafted product represented by the above formula (1) of the present invention, n indicates the number of moles of ethylene oxide or added moles of this and propylene oxide, and n is an integer of 1 to 200. is necessary. This is because when n is O, ethylene oxide or propylene oxide is not added, so complex formation with lithium salt does not occur, and as a result, lithium ion conductivity cannot be obtained, and when n is larger than 200, This is because the crosslinking reaction becomes difficult to occur, leaving a large amount of uncrosslinked grafted material, and in this case, the lithium ion conductivity is greatly reduced.

本発明の上記式(1)で表されるシロキサン−ポリエー
テルグラフ1〜化物は、たとえばシクロポリメチルシロ
キサンにポリエーテルグリコールモノアリルエーテルを
反応させる、つまり前者のSi■1基に後者の水酸基を
グラフト化反応させて、末端アリル基を有するグラフト
化物を生成し、ついでその末端アリル基を適宜の手段で
変性して式flj中のRが−OH2OCH= CHzま
たは前記の式ta+で示される基であるグラフト化物と
することにより、得ることができる。
The siloxane-polyether graph 1 to compound represented by the above formula (1) of the present invention can be produced by, for example, reacting cyclopolymethylsiloxane with polyether glycol monoallyl ether, that is, reacting one Si group of the former with a hydroxyl group of the latter. A grafting reaction is carried out to produce a grafted product having a terminal allyl group, and then the terminal allyl group is modified by an appropriate means so that R in the formula flj is -OH2OCH=CHz or a group represented by the above formula ta+. It can be obtained by making a certain grafted product.

」二記のグラフト化反応に際しては、シクロポリメチル
シロキサン1モルに対し、ポリエーテルグリコールモノ
アリルエーテルをO,]〜8モル程度使用し、触媒とし
てオクチル酸亜鉛、オクチル酸錫などの金属塩を用いて
、20〜100℃の温度で反応させればよい。
In the grafting reaction described in Section 2, approximately 8 mol of polyether glycol monoallyl ether is used per 1 mol of cyclopolymethylsiloxane, and a metal salt such as zinc octylate or tin octylate is used as a catalyst. What is necessary is just to make it react at the temperature of 20-100 degreeC.

また、上記の末端アリル基の変性は、たとえば水酸基変
性では末端アリル基を有するグラフト化物に希硫酸を反
応させたのちアルカリで処理すればよく、ビニル基変性
では上記の水酸基変性後にアルキルビニルエーテルを酢
酸水銀などの存在■で反応させればよい。また、式(a
)で示される基を導入するには、末端アリル基を有する
グラフト化物にビニルハイドロ1ヘリシロキサンを塩化
白金酸塩などの存在下で反応させればよい。
In addition, for modification of the terminal allyl group, for example, in the case of hydroxyl group modification, the grafted product having the terminal allyl group may be reacted with dilute sulfuric acid and then treated with alkali, and in the case of vinyl group modification, the alkyl vinyl ether may be treated with acetic acid after the above hydroxyl group modification. The reaction can be carried out in the presence of mercury or the like. Also, the formula (a
) can be introduced by reacting the grafted product having a terminal allyl group with vinylhydro-1-helisiloxane in the presence of chloroplatinate or the like.

本発明においてはこのようにして得たグラフト化物を架
橋処理して架橋ポリマーを生成する。グラフト化物の末
端が水酸基の場合、これを架橋するための架橋剤として
、水酸基と反応し・うる2官能性化合物、たとえばヘキ
ザメチレンジイソシアネーI・、2・4−トリレンジイ
ソシアネート、メチレンビス(4−フェニルイソシアネ
−1−)、キシリレンジイソシアネートなどのジイソシ
アネト化合物、エチレンジアミン、プトレシンなどのジ
アミン化合物、シュウ酸、マロン酸、コハク酸、イソフ
タル酸、テレフタル酸などのジカルボン酸化合物、塩化
スクシネルなどのシカルホン酸塩化物、ジメチル尿素な
どのメチロール化合物、エピクロルヒドリン、ジメチル
ジクロロシランなどが用いられる。
In the present invention, the thus obtained grafted product is crosslinked to produce a crosslinked polymer. When the end of the grafted product is a hydroxyl group, a bifunctional compound that can react with the hydroxyl group, such as hexamethylene diisocyanate I, 2,4-tolylene diisocyanate, methylene bis( Diisocyanate compounds such as 4-phenylisocyanate-1-), xylylene diisocyanate, diamine compounds such as ethylenediamine and putrescine, dicarboxylic acid compounds such as oxalic acid, malonic acid, succinic acid, isophthalic acid, and terephthalic acid, succinel chloride, etc. Cycarphonic acid chloride, methylol compounds such as dimethylurea, epichlorohydrin, dimethyldichlorosilane, etc. are used.

上記の架橋反応は、通常触媒、たとえばジイソシアネー
トの場合有機スズ化合物を用いて、25〜100℃で5
分〜2時間程度反応させることにより行うことができる
。架橋剤の使用量は、前記のグラフト化物の水酸基1モ
ルに対して通常0.1〜2.0モルの官能基量とするの
がよい。最適には、未架橋のグラフト化物が残ると、イ
オン伝導度を低下させたり、塩と反応したりするので、
官能基の量は等モルで反応させるのがよい。また、架橋
ポリマーのガラス転移温度を低(する必要があるので、
架橋点はアミド、ウレタン、エステル、エチルの順に好
ましく、さらに芳香族より脂肪族、シロキサンを用いた
方がよい。
The above crosslinking reaction is usually carried out using a catalyst, for example an organotin compound in the case of diisocyanates, at 25 to 100°C.
This can be carried out by reacting for about minutes to 2 hours. The amount of the crosslinking agent to be used is preferably 0.1 to 2.0 moles of functional groups per mole of hydroxyl groups in the grafted product. Optimally, uncrosslinked grafted materials should be used, since they can reduce ionic conductivity or react with salts.
It is preferable to react the functional groups in equimolar amounts. In addition, it is necessary to lower the glass transition temperature of the crosslinked polymer, so
The crosslinking points are preferably amide, urethane, ester, and ethyl in that order, and it is more preferable to use aliphatic and siloxane than aromatic.

−・方、グラフ1〜化物の末端がビニル基の場合、この
基を開環重合することのできるクメンヒドロバーオキザ
イド、過酸化ベンゾイル、過酸化ラウロイル、過酸化カ
リウム、ブチルヒドロパーオキサイド、ジクミルパーオ
キサイド、ジ−t−ブチルパーオキサイドなどの有機過
酸化物、アゾビスイソブチロニトリル、アゾビス−2・
4−ジメチルバレロニトリル、アゾビスシクロへギサン
力ルポニトリルなどのアゾビス化合物などが用いられる
。その使用量はグラフト化物100重量部に対し通常0
.01〜1重量部程置部よく、架橋反応ば25〜100
°Cで5分〜2時間程度で行うことができる。また、こ
れ以外の架橋手段として、電子線、紫外線、可視光また
は赤外線を照射して架橋処理することもできる。
-, graph 1 ~ When the terminal of the compound is a vinyl group, this group can be ring-opening polymerized such as cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, potassium peroxide, butyl hydroperoxide, dichloride, etc. Organic peroxides such as mil peroxide and di-t-butyl peroxide, azobisisobutyronitrile, azobis-2.
Azobis compounds such as 4-dimethylvaleronitrile and azobiscyclohegysanyluponitrile are used. The amount used is usually 0 per 100 parts by weight of the grafted product.
.. 01 to 1 part by weight Approximately 25 to 100 parts for crosslinking reaction
It can be carried out in about 5 minutes to 2 hours at °C. Moreover, as a crosslinking method other than this, crosslinking treatment can also be performed by irradiating with an electron beam, ultraviolet rays, visible light, or infrared rays.

本発明において、上記の架橋ポリマーと共に、リチウム
イオン伝導性ポリマー電解質を構成させるリチウム塩と
しては、従来のポリマー電解質に用いられているものが
いずれも使用可能である。
In the present invention, any of the lithium salts used in conventional polymer electrolytes can be used as the lithium salt constituting the lithium ion conductive polymer electrolyte together with the above-mentioned crosslinked polymer.

具体例をあげると、たとえばLiBr、LiI、Li5
CN、LiBF< 、LiAsF、、 、LiC1!0
4、Li CF3303 、L i C6FI2SO3
、L i Hg T zなどがある。これらのリチウム
塩の使用量は、上記の架橋ポリマーに対し通常0.1〜
40重量%の範囲、特に3〜20重量%の範囲が好まし
い。
To give specific examples, for example, LiBr, LiI, Li5
CN, LiBF< , LiAsF, , LiC1!0
4, Li CF3303, Li C6FI2SO3
, L i Hg T z and so on. The amount of these lithium salts used is usually 0.1 to
A range of 40% by weight, especially a range of 3 to 20% by weight is preferred.

本発明のリチウムイオン伝導性ポリマー電解質は、上記
の架橋ポリマーとリチウム塩との複合体からなるもので
あるが、この複合体は、たとえば上記の架橋ポリマーを
リチウム塩を溶解した有機溶媒溶液に浸漬し、リチウム
塩溶液を架橋ポリマ0 中に浸透させてから、有機溶媒溶液を蒸発除去すること
によって得ることができる。
The lithium ion conductive polymer electrolyte of the present invention is composed of a composite of the above-mentioned crosslinked polymer and a lithium salt, and this composite can be prepared by, for example, immersing the above-mentioned crosslinked polymer in an organic solvent solution in which a lithium salt is dissolved. It can be obtained by infiltrating a lithium salt solution into the crosslinked polymer 0 and then evaporating off the organic solvent solution.

上記のように架橋ポリマーをリチウム塩溶液に浸漬する
ことにより、リチウム塩が架橋ポリマ中のエーテル酸素
に錯体を形成して結合し、溶媒除去後も上記結合が保た
れて、架橋ポリマーとリチウム塩との複合体が得られる
By immersing the crosslinked polymer in the lithium salt solution as described above, the lithium salt forms a complex and bonds to the ether oxygen in the crosslinked polymer, and even after the solvent is removed, the above bond is maintained, and the crosslinked polymer and lithium salt A complex with is obtained.

ポリマー電解質の形態は、その用途目的などによって適
宜決められる。たとえばポリマー電解質をリチウム電池
用の電解質として用い、かつ正負両極間のセパレークと
しての機能を兼ねさせる場合は、ポリマー電解質をシー
ト状に形成すればよい。このシート状のポリマー電解質
を得るには、架橋ポリマーをシート状に形成し、このシ
ーI・状の架橋ポリマーをリチウム塩の有機溶媒溶液に
浸潤後、有機溶媒を蒸発除去すればよい。上記シトとし
ては一般にフィルムと呼ばれているようなミクロンオー
ダーのきわめて薄いものも作製することができる。
The form of the polymer electrolyte is appropriately determined depending on its intended use. For example, when a polymer electrolyte is used as an electrolyte for a lithium battery and also functions as a separator between positive and negative electrodes, the polymer electrolyte may be formed into a sheet shape. In order to obtain this sheet-like polymer electrolyte, a cross-linked polymer may be formed into a sheet-like form, this C-shaped cross-linked polymer may be soaked in an organic solvent solution of a lithium salt, and then the organic solvent may be removed by evaporation. As the above-mentioned sheet, an extremely thin sheet on the order of microns, which is generally called a film, can also be produced.

また、本発明のポリマー電解質をリチウム電池の正極に
適用する場合は、架橋前のグラフト化物、架橋剤、正極
活物質などを所定割合で加え、−上記グラフト化物を架
橋させたのち成形し、得られた成形体をリチウl、塩の
有機溶媒溶液に浸清し、その後有機溶媒を蒸発除去すれ
ばよい。そうすることによって、ポリマー電解質と正極
活物質などとが混在一体化したものが得られる。
In addition, when applying the polymer electrolyte of the present invention to a positive electrode of a lithium battery, the grafted product before crosslinking, a crosslinking agent, a positive electrode active material, etc. are added in a predetermined ratio, and the grafted product is crosslinked and then molded. The molded body thus obtained may be immersed in an organic solvent solution of lithium and salt, and then the organic solvent may be removed by evaporation. By doing so, a mixture of the polymer electrolyte and the positive electrode active material can be obtained.

ポリマー電解質を得るにあたって、リチウム塩を溶解さ
せる有機溶媒としては、リチウム塩を充分に溶解し、か
つポリマーと反応しない有m溶媒、たとえばアセI・ン
、テトラヒドロフラン、ジメトキシエタン、ジオキソラ
ン、プロピレンカーボネト、アセトニトリル、ジメチル
フォルムアミドなどが用いられる。
In obtaining the polymer electrolyte, the organic solvent for dissolving the lithium salt may be a solvent that sufficiently dissolves the lithium salt and does not react with the polymer, such as acetin, tetrahydrofuran, dimethoxyethane, dioxolane, propylene carbonate, Acetonitrile, dimethylformamide, etc. are used.

第1図は上記した本発明のポリマー電解質を用いたリチ
ウム電池の一例を示すもので、図中、1はステンレス鋼
からなる方形平板状の正極集電板、2は周辺を一面側へ
段状に折曲した主面と同し向きの平坦状の周辺部2aを
設けたステンレス鋼からなる浅い方形皿状の負極集電板
、3は両極集電1 2 板1,2の対向する周辺部1a、2a間を封止する接着
剤層である。
Figure 1 shows an example of a lithium battery using the polymer electrolyte of the present invention described above. A shallow rectangular dish-shaped negative electrode current collector plate made of stainless steel with a flat peripheral part 2a facing the same direction as the main surface bent in the direction, 3 is a bipolar current collector 1 2 opposing peripheral parts of the plates 1 and 2 This is an adhesive layer that seals between 1a and 2a.

4は両極集電板1.2間に構成された空間5内において
正極集電板1側に配された本発明のポリマー電解質と正
極活物質などとを既述の方法にてシート状に成形してな
る正極、6は空間5内において負極集電板2側に装填さ
れたリチウムまたはリチウム合金からなる負極、7は正
極4と負極6との間に介在させた前記本発明のポリマー
電解質をシート状に成形してなるセパレークである。
4, the polymer electrolyte of the present invention, the positive electrode active material, etc. arranged on the positive electrode current collector plate 1 side in the space 5 formed between the two electrode current collector plates 1 and 2 are formed into a sheet shape by the method described above. 6 is a negative electrode made of lithium or a lithium alloy loaded on the negative electrode current collector plate 2 side in the space 5; 7 is the polymer electrolyte of the present invention interposed between the positive electrode 4 and the negative electrode 6; This is a separate lake formed into a sheet.

なお、上記正極4は、場合により正極活物質とポリテト
ラフルオロエチレン粉末などの結着剤や電子伝導助剤と
を混合してシート状に成形したものなどであってもよい
。正極4に用いる正極活物質としては、たとえばT I
 S2 、M OS2 、、 Vr。
The positive electrode 4 may be formed into a sheet by mixing a positive electrode active material with a binder such as polytetrafluoroethylene powder or an electron conduction aid, as the case may be. As the positive electrode active material used for the positive electrode 4, for example, T I
S2, M OS2,, Vr.

013、■205、■5eXNIPS3、ポリアニリン
、ポリピロール、ポリチオフェンなどの1種もしくは2
種以」二が用いられる。
One or two of 013, ■205, ■5eXNIPS3, polyaniline, polypyrrole, polythiophene, etc.
``2'' is used.

このように構成されるリチウム電池は、セバレタ7が前
記リチウムイオン伝導性ポリマー電解質からなるシート
秋物であることにより、また正極4が上記リチウムイオ
ン伝導性ポリマー電解質を含む同様のシート状物である
ことによって、電池の薄型化や電池作製のための作業性
、封止の信頼性などの向上に寄与させることができ、ま
た液体電解質のような漏液の心配が本質的にないといっ
た種々の利点を有するうえに、」二記ポリマー電解質が
そのリチウムイオン伝導性にすぐれていることにより、
−次電池としての放電特性や二次電池としての充放電サ
イクル特性に非常にすぐれたものとなる。
The lithium battery constructed in this manner has the following features: the separator 7 is a sheet material made of the lithium ion conductive polymer electrolyte, and the positive electrode 4 is a similar sheet material containing the lithium ion conductive polymer electrolyte. This makes it possible to contribute to making the battery thinner, improving the workability of battery production, and improving the reliability of sealing.It also has various advantages such as essentially no worries about leakage like liquid electrolytes. In addition, the polymer electrolyte has excellent lithium ion conductivity,
- It has very excellent discharge characteristics as a secondary battery and charge/discharge cycle characteristics as a secondary battery.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、室温で固体状で
あってかつ高いリチウムイオン伝導性を示すリチウムイ
オン伝導性ポリマー電解質を提供することができる。
As explained above, according to the present invention, it is possible to provide a lithium ion conductive polymer electrolyte that is solid at room temperature and exhibits high lithium ion conductivity.

〔実施例〕〔Example〕

以下に、本発明の実施例を記載してより具体的に説明す
る。
EXAMPLES Below, the present invention will be explained in more detail by describing examples.

実施例1 3 4 1・3・5・7−チトラメチルシクロテトラシロキサン
(1・−レシリコーン社製、分子量240゜5)2.4
1gと、平均分子量1,000のアリル化ポリエチレン
グリコール(日本油脂社製)30gと、オクヂル酸亜鉛
10++vとを混合して、スタラ−で撹拌しながら10
0°Cで200時間反応せ、末端アリル基を有するグラ
フト化物を得た。
Example 1 3 4 1,3,5,7-titramethylcyclotetrasiloxane (manufactured by 1-Resilicone, molecular weight 240°5) 2.4
1g, 30g of allylated polyethylene glycol (manufactured by NOF Corporation) with an average molecular weight of 1,000, and 10++v of zinc ocdylate, and stirred with a stirrer for 10
The reaction was carried out at 0°C for 200 hours to obtain a grafted product having terminal allyl groups.

つぎに、このグラフ1−化物20gに希硫酸を反応させ
たのち水酸化カリウムで処理して、末端アリル基を水酸
基に変性した。この水酸基変性グラフト化物20gにブ
チルビニルエーテル4gを酢酸水銀の存在下で60℃で
300時間反応せることにより、末端ビニル基を有する
グラフト化物を得た。
Next, 20 g of this graph 1 compound was reacted with dilute sulfuric acid, and then treated with potassium hydroxide to modify the terminal allyl group into a hydroxyl group. A grafted product having a terminal vinyl group was obtained by reacting 20 g of this hydroxyl group-modified grafted product with 4 g of butyl vinyl ether at 60° C. for 300 hours in the presence of mercury acetate.

つぎに、」−記のようにして得た末端ヒニル基を有する
グラフI・化物4gと、アゾビスイソブチロニトリル2
0■とを三角フラスコに入れ、マグネツトスターラ−で
撹拌後、得られた粘性溶液をアルミニウム板上に滴下し
、アルゴンガス中ホッ1ヘプレート上で100℃で1時
間反応させて架橋処理し、架橋ポリマーを得た。得られ
た架橋ポリマをアルミニウム板からはがし、アセトン中
に浸漬し、未反応物をアセI・ンに溶解除去した。
Next, 4 g of the graph I compound having a terminal hinyl group obtained as described above and 2 g of azobisisobutyronitrile
After stirring with a magnetic stirrer, the resulting viscous solution was dropped onto an aluminum plate, heated in argon gas, and reacted on a plate at 100°C for 1 hour for crosslinking treatment. A crosslinked polymer was obtained. The obtained crosslinked polymer was peeled off from the aluminum plate and immersed in acetone, and unreacted substances were dissolved and removed in acetone.

つづいて、この架橋ポリマーを2重量%のL iBF、
lのアセトン溶液中に8時間浸漬し、上記LiB F 
aアセトン溶液を架橋ポリマー中に含浸させたのち、ア
セトンを蒸発除去して、厚さQ、 l mmのシー1・
状ポリマー電解質を得た。
Subsequently, this crosslinked polymer was mixed with 2% by weight of LiBF,
The above LiB F
a After impregnating the acetone solution into the crosslinked polymer, the acetone is evaporated off to form a sheet 1 with a thickness of Q, l mm.
A polymer electrolyte was obtained.

実施例2 ■・3・5・7−テ1−ラメチルシクロテトラシロキサ
ン(実施例1と同じもの) 2.4 gと、平均分子量
550のアリル化ポリエチレングリコール(日本油脂社
製)11gとを用いた以外は、実施例1と同様にして末
端アリル基を有するグラフト化物を得、このグラフト化
物を実施例1と同様に変性して末端ビニル基を有するグ
ラフト化物とし、さらにこれを用いて実施例1と同様に
してシー1〜状ポリマー電解質を得た。
Example 2 ■ 2.4 g of 3.5.7-te1-ramethylcyclotetrasiloxane (same as in Example 1) and 11 g of allylated polyethylene glycol (manufactured by NOF Corporation) with an average molecular weight of 550 were prepared. A grafted product having a terminal allyl group was obtained in the same manner as in Example 1, except that the grafted product was modified in the same manner as in Example 1 to obtain a grafted product having a terminal vinyl group, and this was used to carry out the experiment. A sheet-like polymer electrolyte was obtained in the same manner as in Example 1.

実施例3 1・3・5・7−チトラメチルシクロテトラシ] 5 6 0キザン(実施例1と同しもの)2.4gと、平均分子
量1.100のアリル化ポリエーテルグリコル(IEI
本油脂社製、エチレンオキシドとプロピレンオキシドと
の共重合比0.7510.25) 22 gとを用いた
以外は、実施例1と同様にして末端アリル基を有するグ
ラフト化物を得、このグラフト化物を実施例1と同様に
変性して末端ビニル基を有するグラフト化物とし、さら
にこれを用いて実施例1と同様にしてシート状ポリマー
電解質を得た。
Example 3 2.4 g of 1,3,5,7-titramethylcyclotetraci]560kizan (same as in Example 1) and allylated polyether glycol (IEI) having an average molecular weight of 1.100.
A grafted product having a terminal allyl group was obtained in the same manner as in Example 1, except that 22 g of ethylene oxide and propylene oxide copolymerization ratio 0.7510.25) manufactured by Hon Yushi Co., Ltd. was used. This was modified in the same manner as in Example 1 to obtain a grafted product having terminal vinyl groups, and this was further used to obtain a sheet-like polymer electrolyte in the same manner as in Example 1.

実施例4 ベンタメチルシクロベンタシロキサンく東しシリコーン
社製、分子量300)3gと、平均分子量1.、 OO
Oのアリル化ポリエチレングリコール(日本油脂社製)
30gとを用いた以外は、実施例1と同様にして末端ア
リル基を有するグラフト化物を得、このグラフト化物を
実施例1と同様に変性して末端ビニル基を有するグラフ
ト化物とし、さらにこれを用いて実施例1と同様にして
シート状ポリマー電解質を得た。
Example 4 Bentamethylcyclobentasiloxane manufactured by Kutoshi Silicone Co., Ltd., molecular weight 300) 3 g, and average molecular weight 1. , OO
Allylated polyethylene glycol of O (manufactured by NOF Corporation)
A grafted product having a terminal allyl group was obtained in the same manner as in Example 1, except that 30 g was used, and this grafted product was modified in the same manner as in Example 1 to obtain a grafted product having a terminal vinyl group. A sheet-like polymer electrolyte was obtained in the same manner as in Example 1.

実施例5 実施例1で得た末端アリル基を有するグラフト化物を使
用し、このグラフト化物20gと、ビニルハイドロ1〜
リシロキザン6gと、塩化白金酸カリウム20mgとを
、100℃で3時間反応させて、末端に前記の弐(a)
で示される基が導入された変性グラフト化物を得た。
Example 5 Using the grafted product having a terminal allyl group obtained in Example 1, 20 g of this grafted product and vinyl hydro 1-
6 g of resiloxane and 20 mg of potassium chloroplatinate were reacted at 100°C for 3 hours, and the terminal
A modified grafted product into which the group represented by was introduced was obtained.

つぎに、このようにして得た変性グラフト化物4gと、
アゾビスイソブチロニトリル]、Omgとを三角フラス
コに入れ、マグネットスターシーで撹拌後、得られた粘
性溶液をアルミニラJ、板上に滴下し、アルゴンガス中
ホツ1〜プレー ト上で100℃で1時間反応させて架
橋処理し、架橋ポリマを得た。以下、実施例1と同様に
してシート状ポリマー電解質を得た。
Next, 4 g of the modified grafted product obtained in this way,
[Azobisisobutyronitrile] and Omg were placed in an Erlenmeyer flask, stirred with a magnetic star, and the resulting viscous solution was dropped onto an Aluminum J plate, heated in argon gas, and heated at 100°C on the plate. The mixture was reacted for 1 hour for crosslinking treatment to obtain a crosslinked polymer. Thereafter, a sheet-like polymer electrolyte was obtained in the same manner as in Example 1.

実施例6 実施例1で得た水酸基変性グラフト化物を使用し、かつ
このグラフト化物3gとへキザメチレンジイソシアネー
ト168■とスズブチルラウレ1−5■とを100℃で
2時間反応させて架橋処理7 8 するようにした以外は、実施例1と同様にしてシト状ポ
リマー電解質を得た。
Example 6 The hydroxyl-modified grafted product obtained in Example 1 was used, and 3 g of this grafted product was reacted with 168 cm of hexamethylene diisocyanate and 1-5 cm of tin butyl laureate at 100°C for 2 hours to perform a crosslinking treatment. A sheet-like polymer electrolyte was obtained in the same manner as in Example 1 except that the procedure was as follows.

比較例1 平均分子量60.000のポリエチレンオキシド1gと
LiBF40.326gとをアセトニトリル5mβに溶
解し、マグネチツクスクーラーで撹拌して均一に溶解し
た。得られた粘性溶液をガラス基板上に滴下し、常圧下
アルゴンガス中で5時間放置したのち、真空度1×1O
−2Torr、温度100°Cで10時間処理して、ア
セトニトリルを蒸発除去し、厚さ0.1 mmのシート
状のポリマー電解質を得た。
Comparative Example 1 1 g of polyethylene oxide having an average molecular weight of 60.000 and 40.326 g of LiBF were dissolved in 5 mβ of acetonitrile and stirred with a magnetic cooler to dissolve uniformly. The resulting viscous solution was dropped onto a glass substrate, left in argon gas under normal pressure for 5 hours, and then vacuumed to 1×1O
The mixture was treated at −2 Torr and 100° C. for 10 hours to evaporate and remove acetonitrile, thereby obtaining a sheet-like polymer electrolyte with a thickness of 0.1 mm.

」二記の実施例1〜6および比較例1のポリマ電解質の
性能を調べるために、以下のイオン伝導度試験および電
池の内部抵抗試験を行った。
In order to investigate the performance of the polymer electrolytes of Examples 1 to 6 and Comparative Example 1, the following ionic conductivity test and battery internal resistance test were conducted.

〈イオン伝導度試験〉 実施例1〜6のポリマー電解質は、Au板でサンドイッ
チ状にはさみ、比較例1のポリマー電解質ばその上にA
u<L型電極を蒸着法で形成し、電極間の交流インピー
ダンス解析を行い、25°Cのイオン伝導度を測定した
。結果は、つぎの第1表に示すとおりであった。
<Ionic conductivity test> The polymer electrolytes of Examples 1 to 6 were sandwiched between Au plates, and A was placed on top of the polymer electrolyte of Comparative Example 1.
A u<L type electrode was formed by a vapor deposition method, AC impedance analysis between the electrodes was performed, and ionic conductivity at 25°C was measured. The results were as shown in Table 1 below.

第  1  表 また、種々の温度条件下でのイオン伝導度を」二記と同
様にして測定した結果は、第2図に示すとおりであった
。なお、同図において、縦軸はイオン伝導度(S / 
cm )であり、横軸は絶対温度の逆数103/T (
K−’)である。
Table 1 In addition, the ionic conductivity under various temperature conditions was measured in the same manner as described in Section 2, and the results were as shown in FIG. In the figure, the vertical axis represents the ionic conductivity (S/
cm ), and the horizontal axis is the reciprocal of absolute temperature 103/T (
K-').

〈電池の内部抵抗試験〉 実施例1〜6および比較例1のポリマー電解質を用いて
、第1図に示す構成の総厚1龍、−辺の9 0 長さ]、 Cmの正方形薄型リチウム電池を作製した。
<Battery Internal Resistance Test> Using the polymer electrolytes of Examples 1 to 6 and Comparative Example 1, a square thin lithium battery having the configuration shown in FIG. was created.

なお、負極はリチウムとアルミニウムとの合金を、正極
は実施例1〜6および比較例1と同組成のポリマー電解
質とT iS zとを含むシート状成形物をそれぞれ用
いた。これらのリチウム電池について、25°C160
°C,100°Cでの内部抵抗を測定した。結果は、つ
ぎの第2表に示すとおりであった。
An alloy of lithium and aluminum was used as the negative electrode, and a sheet-shaped molded product containing T iS z and a polymer electrolyte having the same composition as in Examples 1 to 6 and Comparative Example 1 was used as the positive electrode. For these lithium batteries, 25°C160
The internal resistance was measured at 100°C. The results were as shown in Table 2 below.

第   2   表 実施例1〜6のポリマー電解質は、25°C(第2図の
横軸で約3.35のところ)で2.8X10−6〜1、
 OX 10 ”’S /amの高いイオン伝導度を示
したが、ポリエチレンオキシドを用いた比較例1のポリ
マー電解質は、25°Cでのイオン伝導度が1×10−
73/amと低い。このため、本発明の実施例1〜6の
ポリマー電解質を用いたリチウム電池の25℃での内部
抵抗は、100Ω〜3.57 KΩであったが、比較例
1のポリマー電解質を用いたリチウム電池の25℃での
内部抵抗は100にΩと非常に大きかった。
The polymer electrolytes of Table 2 Examples 1 to 6 were 2.8X10 to 1 at 25°C (approximately 3.35 on the horizontal axis of Figure 2).
Although the polymer electrolyte of Comparative Example 1 using polyethylene oxide showed a high ionic conductivity of OX 10'''S/am, the ionic conductivity at 25°C was 1 x 10-
As low as 73/am. Therefore, the internal resistance at 25°C of the lithium batteries using the polymer electrolytes of Examples 1 to 6 of the present invention was 100Ω to 3.57 KΩ, but the lithium batteries using the polymer electrolytes of Comparative Example 1 The internal resistance at 25° C. was extremely large at 100Ω.

なお、第2図に示すように、ポリエチレンオキシドを用
いた比較例1のポリマー電解質は、高温領域では実施例
1〜6のポリマー電解質よりイオン伝導度がむしろ高く
なるが、室温付近になるとイオン伝導度が大幅に低下し
て実施例1〜6のポリマー電解質よりはるかに低くなっ
た。
As shown in Figure 2, the polymer electrolyte of Comparative Example 1 using polyethylene oxide has higher ionic conductivity than the polymer electrolytes of Examples 1 to 6 in the high temperature range, but the ionic conductivity decreases at around room temperature. The polymer electrolytes of Examples 1 to 6 had a significantly lower temperature than those of the polymer electrolytes of Examples 1 to 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリチウムイオン伝導性ポリマ電解質を
用いたリチウム電池の一例を示す縦断1 2 面図、第2図は本発明および比較例のリチウムイオン伝
導性ポリマー電解質のイオン伝導度と温度との関係を示
す特性図である。
Figure 1 is a vertical cross-sectional view showing an example of a lithium battery using the lithium ion conductive polymer electrolyte of the present invention, and Figure 2 is the ionic conductivity and temperature of the lithium ion conductive polymer electrolytes of the present invention and comparative examples. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム塩と有機ポリマーとの複合体からなるリ
チウムイオン伝導性ポリマー電解質において、上記の有
機ポリマーが、つぎの式(1); ▲数式、化学式、表等があります▼ 〔式中、mは3〜10、nは1〜200、xは0.1〜
1.0、Rは−OH、−OCH=CH_2またはつぎの
式(a); ▲数式、化学式、表等があります▼ で示される基である〕 で表されるシロキサン−ポリエーテルグラフト化物を架
橋処理した架橋ポリマーからなることを特徴とするリチ
ウムイオン伝導性ポリマー電解質。
(1) In a lithium ion conductive polymer electrolyte consisting of a composite of a lithium salt and an organic polymer, the above organic polymer has the following formula (1); ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [In the formula, is 3 to 10, n is 1 to 200, x is 0.1 to
1.0, R is a group represented by -OH, -OCH=CH_2 or the following formula (a); A lithium ion conductive polymer electrolyte comprising a treated crosslinked polymer.
JP1328921A 1989-12-19 1989-12-19 Lithium ion-conductive polyelectrolyte Pending JPH03190959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1328921A JPH03190959A (en) 1989-12-19 1989-12-19 Lithium ion-conductive polyelectrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1328921A JPH03190959A (en) 1989-12-19 1989-12-19 Lithium ion-conductive polyelectrolyte

Publications (1)

Publication Number Publication Date
JPH03190959A true JPH03190959A (en) 1991-08-20

Family

ID=18215581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328921A Pending JPH03190959A (en) 1989-12-19 1989-12-19 Lithium ion-conductive polyelectrolyte

Country Status (1)

Country Link
JP (1) JPH03190959A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145145A (en) * 1990-10-04 1992-05-19 Polytec Design:Kk Ion conductor comprising rubber as base material
WO2006129991A1 (en) * 2005-06-03 2006-12-07 Hee Jung Kim Anion receptor and electrolyte using the same
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2007165297A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007180015A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using it
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007184257A (en) * 2005-12-07 2007-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery employing the same
JP2007188871A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2013138012A (en) * 2005-12-22 2013-07-11 Mitsubishi Chemicals Corp Lithium secondary battery and battery pack formed by connecting lithium secondary batteries together
CN104584308A (en) * 2012-08-16 2015-04-29 丰田自动车株式会社 Lithium secondary battery and method for producing same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145145A (en) * 1990-10-04 1992-05-19 Polytec Design:Kk Ion conductor comprising rubber as base material
WO2006129991A1 (en) * 2005-06-03 2006-12-07 Hee Jung Kim Anion receptor and electrolyte using the same
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007165297A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007180015A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using it
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007184257A (en) * 2005-12-07 2007-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery employing the same
JP2007188871A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2013138012A (en) * 2005-12-22 2013-07-11 Mitsubishi Chemicals Corp Lithium secondary battery and battery pack formed by connecting lithium secondary batteries together
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
CN104584308A (en) * 2012-08-16 2015-04-29 丰田自动车株式会社 Lithium secondary battery and method for producing same

Similar Documents

Publication Publication Date Title
JPH03190959A (en) Lithium ion-conductive polyelectrolyte
US8062387B2 (en) Reactive polymer-supporting porous film for battery separator and use thereof
JP3429305B2 (en) Ion conductive polymer material
US5227043A (en) Ionic conductive polymer electrolyte and cell comprising the same
JP2004525204A (en) Conducting polyamine-based electrolytes
JP3143674B2 (en) Polycarbonate electrolyte and polymer lithium battery containing the same
Mindemark et al. Hydroxyl-functionalized poly (trimethylene carbonate) electrolytes for 3D-electrode configurations
KR20190030583A (en) Solid electrolyte composition for secondary battery and solid electrolyte
JPH02291603A (en) Ion conductive polymer electrolyte and battery using it
JPH02295004A (en) Lithium ion conductive polymer electrolyte
JPH1160870A (en) Ionically conductive polymer electrolyte, production thereof, and polymer battery
JP3603383B2 (en) Polymer solid electrolyte
JP2003282141A (en) Gel electrolyte, and manufacturing method and utilization of the same
JPH0224976A (en) Lithium ion conducting polymer electrolyte
JPH01107474A (en) Lithium ion conductive polymer electrolyte
JP3384174B2 (en) Polymer solid electrolyte
JPH0224975A (en) Lithium ion conducting polymer electrolyte
JP3843505B2 (en) Polymer electrolyte and battery
JPH03190960A (en) Lithium low-conductive polyelectrolyte
JPS63136407A (en) Lithium ion conducting polymer electrolyte
JP4155245B2 (en) battery
CA2118946A1 (en) Oxirane and dioxolane copolymers; process for preparing them and ion conductive materials containing the same
JPH0384809A (en) Lithium ion conductive polymer electrolyte
CA2522234A1 (en) Electrolyte composition and cell
JPH01107471A (en) Lithium ion conductive polymer electrolyte