JP3022317B2 - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JP3022317B2
JP3022317B2 JP8111476A JP11147696A JP3022317B2 JP 3022317 B2 JP3022317 B2 JP 3022317B2 JP 8111476 A JP8111476 A JP 8111476A JP 11147696 A JP11147696 A JP 11147696A JP 3022317 B2 JP3022317 B2 JP 3022317B2
Authority
JP
Japan
Prior art keywords
ion
solid electrolyte
polymer solid
cation
electrolyte according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8111476A
Other languages
Japanese (ja)
Other versions
JPH09324114A (en
Inventor
信三 ▲こうじ▼谷
裕子 池田
克人 三浦
茂 庄治
康夫 的場
正義 渡辺
尚彦 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27458784&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3022317(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP8111476A priority Critical patent/JP3022317B2/en
Publication of JPH09324114A publication Critical patent/JPH09324114A/en
Application granted granted Critical
Publication of JP3022317B2 publication Critical patent/JP3022317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質に
関し、特に電池、キャパシター、センサー等の電気化学
デバイス用材料として好適な高分子固体電解質に関す
る。
The present invention relates to a solid polymer electrolyte, and more particularly to a solid polymer electrolyte suitable as a material for electrochemical devices such as batteries, capacitors and sensors.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
電池、キャパシター、センサーなどの電気化学デバイス
を構成する電解質は、イオン伝導性の点から溶液または
ペースト状のものが用いられているが、液漏れによる機
器の損傷の恐れがあること、また電解液を含浸させるセ
パレーターを必要とするので、デバイスの超小型化、薄
型化に限界があることなどの問題点が指摘されている。
これに対し無機結晶性物質、無機ガラス、有機高分子系
物質などの固体電解質が提案されている。有機高分子系
物質は一般に加工性、成形性に優れ、得られる固体電解
質が柔軟性、曲げ加工性を有し、応用されるデバイスの
設計の自由度が高くなることなどの点からその進展が期
待されている。しかしながら、イオン伝導性の面では他
の材質より劣っているのが現状である。
2. Description of the Related Art
Electrolytes for electrochemical devices such as batteries, capacitors, and sensors are used in the form of solutions or pastes because of their ionic conductivity. It requires a separator impregnated with, so that problems have been pointed out, such as limitations on ultra-miniaturization and thinning of devices.
On the other hand, solid electrolytes such as inorganic crystalline substances, inorganic glasses, and organic polymer substances have been proposed. Organic polymer-based materials are generally excellent in processability and moldability, and the resulting solid electrolyte has flexibility and bendability, and its progress has been made in terms of increasing the degree of freedom in the design of applied devices. Expected. However, at present, it is inferior to other materials in terms of ion conductivity.

【0003】たとえばエピクロルヒドリン系ゴムと低分
子量のポリエチレングリコール誘導体の混合物に特定の
アルカリ金属塩を含有させて高分子固体電解質に応用す
る試みが本出願人を含む特開平2−235957号公報
に提案されているが、実用的に充分な伝導度の値は得ら
れていない。また、特開平3−47833号及び同4−
68064号記載の、平均分子量1,000〜20,0
00の高分子化合物を架橋した高分子固体電解質は、実
用温度範囲で比較的良好なイオン伝導性を示すが、なお
改善されたイオン伝導性が求められている。
For example, Japanese Patent Application Laid-Open No. 2-235957, which includes the present applicant, has proposed an attempt to apply a specific alkali metal salt to a mixture of an epichlorohydrin rubber and a low molecular weight polyethylene glycol derivative to apply it to a solid polymer electrolyte. However, a practically sufficient conductivity value has not been obtained. Also, JP-A-3-47833 and JP-A-4-47.
No. 68064, having an average molecular weight of 1,000 to 20,000.
Although the polymer solid electrolyte obtained by crosslinking the polymer compound of No. 00 shows relatively good ionic conductivity in a practical temperature range, it is still required to have improved ionic conductivity.

【0004】本出願人の特開昭63−154736号及
び同63−241026号、さらに欧州特許公開第43
4011号記載のオリゴオキシエチレン側鎖を有するポ
リエーテル共重合体では、高分子固体電解質やプラスチ
ック用静電気防止材料への応用を示唆しているが、特定
側鎖長で特定共重合組成のものがイオン伝導性固体電解
質として特異的に優れた性質を有することについては記
載も示唆もない。
The applicant's JP-A-63-154736 and JP-A-63-241026, and furthermore, European Patent Publication No. 43
The polyether copolymer having an oligooxyethylene side chain described in No. 4011 suggests application to a polymer solid electrolyte or an antistatic material for plastics, but a specific copolymer having a specific side chain length and a specific copolymer composition is suggested. There is no description or suggestion that it has specific superior properties as an ion-conductive solid electrolyte.

【0005】[0005]

【課題を解決するための手段】本発明者らは、特定側鎖
長を有するオリゴエチレングリコールグリシジルエーテ
ルに共重合成分としてエチレンオキシドを組み合わせた
特定組成比のポリエール共重合体が、これに可溶性の電
解質塩化合物を配合することによって、他のエポキシ
ド、例えばプロピレンオキシドやエピクロルヒドリンを
組み合わせたものに比べて著しくイオン伝導性の増大し
た固体電解質が得られることを見いだしたものである。
すなわち本発明は、主鎖構造が下記(1)式の構造単位
5〜30モル%と(2)式の構造単位95〜70モル%
とからなる固体状のランダム共重合体であって、(1)
式の側鎖部分のオキシエチレン単位の重合度nが1〜1
2、数平均分子量が10万〜200万、示差走査熱量計
(DSC)で測定したガラス転移点が−60℃以下、融
解熱量が70J/g以下であるオリゴオキシエチレン側
鎖を有するポリエーテル共重合体および該共重合体に可
溶性の電解質塩化合物からなることを特徴とする高分子
固体電解質及びこれを用いた電池である。
Means for Solving the Problems The present inventors have developed a polyer copolymer having a specific composition ratio, in which an ethylene oxide is combined as a copolymer component with an oligoethylene glycol glycidyl ether having a specific side chain length, to obtain a soluble electrolyte. It has been found that by adding a salt compound, a solid electrolyte having significantly increased ionic conductivity can be obtained as compared with a combination of other epoxides, for example, propylene oxide or epichlorohydrin.
That is, in the present invention, the main chain structure has a structural unit of the following formula (1) of 5 to 30 mol% and a structural unit of the formula (2) of 95 to 70 mol%
(1) a solid random copolymer comprising:
The degree of polymerization n of the oxyethylene unit in the side chain portion of the formula is from 1 to 1.
2. Polyether having an oligooxyethylene side chain having a number average molecular weight of 100,000 to 2,000,000, a glass transition point measured by a differential scanning calorimeter (DSC) of -60 ° C or less, and a heat of fusion of 70 J / g or less. A solid polymer electrolyte comprising a polymer and an electrolyte salt compound soluble in the copolymer, and a battery using the same.

【0006】[0006]

【化3】 Embedded image

【0007】[0007]

【化4】 Embedded image

【0008】本発明において用いられるオリゴオキシエ
チレン側鎖を有するポリエーテル共重合体(以下ポリエ
ーテル共重合体と略称する)の製法は、前記特開昭63
−154736号公報に記載されている。すなわち、開
環重合用触媒として有機アルミニウムを主体とする触媒
系、有機亜鉛を主体とする触媒系、有機錫−リン酸エス
テル縮合物触媒系などを用いて、上記(1)式及び
(2)式に対応する各モノマーを溶媒の存在下又は不存
在下、反応温度10〜80℃、撹拌下で反応させること
によって得られる。
The method for producing the polyether copolymer having an oligooxyethylene side chain (hereinafter abbreviated as polyether copolymer) used in the present invention is described in
No. 154736. That is, using a catalyst system mainly composed of organic aluminum, a catalyst system mainly composed of organic zinc, a catalyst system composed of an organic tin-phosphate ester condensate, or the like as a ring-opening polymerization catalyst, the above formula (1) and (2) It is obtained by reacting each monomer corresponding to the formula in the presence or absence of a solvent at a reaction temperature of 10 to 80 ° C. with stirring.

【0009】本発明で用いられるポリエーテル共重合体
は、構造単位(1)式及び(2)式のモル比が(1)式
5〜30モル%、好ましくは10〜30モル%及び
(2)式95〜70モル%、好ましくは90〜70モル
%のものが適する。(2)式のモル比が95モル%を越
えるとガラス転移点の上昇と(2)式構造単位の結晶化
を招き、ガラス転移点−60℃以下及び融解熱量70J
/g以下を維持できなくなり、結果的に固体電解質のイ
オン伝導性を著しく悪化させることとなる。一般にポリ
エチレンオキシドの結晶性を低下させることによりイオ
ン伝導性が向上することは知られているが、本発明のポ
リエーテル共重合体の場合はイオン伝導性の向上効果は
格段に大きいことがわかった。一方、(2)式のモル比
が70モル%より少ないと共重合体の軟化温度が低下
し、室温(例えば20℃)で固体状の電解質を得ること
が困難となる。上記ガラス転移点及び融解熱量は示差走
査熱量計(DSC)により測定したもので、本発明にお
いてはポリエーテル共重合体のガラス転移点は−60℃
以下、好ましくは−65℃以下、融解熱量は70J/g
以下、好ましくは50J/g以下のものが使用に適す
る。ガラス転移点及び融解熱量が上記値を超えるものは
イオン伝導性の低下を招く。
The polyether copolymer used in the present invention has a molar ratio of the structural units (1) and (2) of the formula (1) of 5 to 30 mol%, preferably 10 to 30 mol% and (2). ) Those of the formula 95-70 mol%, preferably 90-70 mol% are suitable. When the molar ratio of the formula (2) exceeds 95 mol%, the glass transition point is increased and crystallization of the structural unit of the formula (2) is caused, and the glass transition point is -60 ° C. or less and the heat of fusion is 70 J.
/ G or less cannot be maintained, and as a result, the ionic conductivity of the solid electrolyte is significantly deteriorated. It is generally known that the ionic conductivity is improved by lowering the crystallinity of polyethylene oxide, but the effect of improving the ionic conductivity was found to be significantly large in the case of the polyether copolymer of the present invention. . On the other hand, when the molar ratio of the formula (2) is less than 70 mol%, the softening temperature of the copolymer decreases, and it becomes difficult to obtain a solid electrolyte at room temperature (for example, 20 ° C.). The above glass transition point and heat of fusion are measured by a differential scanning calorimeter (DSC). In the present invention, the glass transition point of the polyether copolymer is -60 ° C.
Or less, preferably -65 ° C or less, and the heat of fusion is 70 J / g.
Below, preferably 50 J / g or less are suitable for use. When the glass transition point and the heat of fusion exceed the above values, the ion conductivity is reduced.

【0010】本発明において、ポリエーテル共重合体の
(1)式の側鎖部分のオキシエチレン単位の重合度nは
1〜12が好ましく、12を越えると得られた固体電解
質のイオン伝導性が低下し好ましくない。またポリエー
テル共重合体の分子量は、加工性、成形性、機械的強
度、柔軟性を得るためには数平均分子量10万〜200
万、好ましくは20万〜150万のものが適する。数平
均分子量が10万より小さいと得られた電解質が液状と
なるため液漏れを生じ実用上好ましくなく、また200
万を越えると加工性、成形性に問題を生ずる。
In the present invention, the degree of polymerization n of the oxyethylene unit in the side chain of formula (1) of the polyether copolymer is preferably from 1 to 12, and if it exceeds 12, the ionic conductivity of the obtained solid electrolyte becomes poor. It is not preferable because it decreases. The molecular weight of the polyether copolymer is preferably from 100,000 to 200, in order to obtain processability, moldability, mechanical strength and flexibility.
Ten thousand, preferably 200,000 to 1.5 million are suitable. When the number average molecular weight is less than 100,000, the obtained electrolyte becomes liquid, causing liquid leakage, which is not practically preferable.
If the number exceeds 10,000, problems arise in workability and formability.

【0011】本発明において用いられる電解質塩化合物
としては、本発明のポリエーテル共重合体に可溶のもの
ならば何でもよいが、本発明においては以下に挙げるも
のが好ましく用いられる。即ち、金属陽イオン、アンモ
ニウムイオン、アミジニウムイオン、及びグアニジウム
イオンから選ばれた陽イオンと、塩素イオン、臭素イオ
ン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオ
ン、テトラフルオロホウ素酸イオン、硝酸イオン、As
、PF 、ステアリルスルホン酸イオン、オク
チルスルホン酸イオン、ドデシルベンゼンスルホン酸イ
オン、ナフタレンスルホン酸イオン、ドデシルナフタレ
ンスルホン酸イオン、7,7,8,8−テトラシアノ−
p−キノジメタンイオン、RSO 、(R
)(RSO)N、(RSO)(RSO
)(RSO)C、及び(RSO)(R
)YCから選ばれた陰イオンとからなる化合物が
挙げられる。但し、R、R、R、及びYは電子吸
引性基である。好ましくはR、R、及びRは各々
独立して炭素数が1から6迄のパーフルオロアルキル基
又はパーフルオロアリール基であり、Yはニトロ基、ニ
トロソ基、カルボニル基、カルボキシル基又はシアノ
ある。R、R、及びRは各々同一であっても、
異なっていてもよい。金属陽イオンとしては遷移金属の
陽イオンを用いる事ができる。好ましくはMn、Fe、
Co、Ni、Cu、Zn及びAg金属から選ばれた金属
の陽イオンが用いられる。又、Li,Na,K,Rb,
Cs,Mg,Ca及びBa金属から選ばれた金属の陽イ
オンを用いても好ましい結果が得られる。電解質塩化合
物として前述の化合物を2種類以上併用することは自由
である。
The electrolyte salt compound used in the present invention may be any as long as it is soluble in the polyether copolymer of the present invention. In the present invention, the following compounds are preferably used. That is, metal cations, ammonium ions, amidinium ions, and cations selected from guanidinium ions, chloride ions, bromine ions, iodine ions, perchlorate ions, thiocyanate ions, tetrafluoroborate ions, Nitrate ion, As
F 6 , PF 6 , stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-
p-quinodimethane ion, R 1 SO 3 , (R 1 S
O 2 ) (R 2 SO 2 ) N , (R 1 SO 2 ) (R 2 SO
2 ) (R 3 SO 2 ) C and (R 1 SO 2 ) (R 2 S
O 2) YC - compound comprising the selected anions from the like. Here, R 1 , R 2 , R 3 and Y are electron-withdrawing groups. Preferably, R 1 , R 2 , and R 3 are each independently a perfluoroalkyl group or a perfluoroaryl group having 1 to 6 carbon atoms, and Y is a nitro group, a nitroso group, a carbonyl group, a carboxyl group or Cyano group
It is. R 1 , R 2 and R 3 are each the same,
It may be different. A transition metal cation can be used as the metal cation. Preferably Mn, Fe,
A cation of a metal selected from Co, Ni, Cu, Zn and Ag metals is used. Li, Na, K, Rb,
Preferable results can be obtained by using a cation of a metal selected from Cs, Mg, Ca and Ba metals. It is free to use two or more of the aforementioned compounds as electrolyte salt compounds.

【0012】本発明において、上記可溶性電解質塩化合
物の使用量はポリエーテル共重合体の主鎖及び側鎖を含
めたエチレンオキシド単位の総モル数に対して、可溶性
電解質塩化合物のモル数/エチレンオキシド単位の総モ
ル数の値が0.0001〜5、好ましくは0.001〜
0.5の範囲がよい。この値が5を越えると加工性、成
形性及び得られた固体電解質の機械的強度や柔軟性が低
下し、さらにイオン伝導性も低下する。
In the present invention, the amount of the soluble electrolyte salt compound used is based on the total number of moles of ethylene oxide units including the main chain and the side chains of the polyether copolymer, based on the number of moles of the soluble electrolyte salt compound / the number of ethylene oxide units. Is 0.0001 to 5, preferably 0.001 to 5.
A range of 0.5 is preferred. If this value exceeds 5, processability, moldability, mechanical strength and flexibility of the obtained solid electrolyte are reduced, and ion conductivity is also reduced.

【0013】[0013]

【発明の実施の形態】本発明の高分子固体電解質の製造
方法は特に制約はないが、通常夫々の成分を機械的に混
合するか、或いは溶剤に溶解させて混合した後、溶剤を
除去するなどの方法によって製造される。機械的に混合
する手段としては、各種ニーダー類、オープンロール、
押出機などを任意に使用できる。溶剤を使用して製造す
る場合は各種極性溶媒、例えばテトラヒドロフラン、ア
セトン、アセトニトリル、ジメチルホルムアミド、ジメ
チルスルホキシド、ジオキサン、メチルエチルケトン、
メチルイソブチルケトン等が単独、或いは混合して用い
られる。溶液の濃度は特に制限はないが1〜50重量%
が好ましい。また固体電解質は必要に応じ架橋しても良
い。共重合体を架橋する際の架橋剤としては2−4−ト
リレンジイソシアネート、2−6−トリレンジイソシア
ネート、4−4−ジフェニルメタンジイソシアネート、
ヘキサメチレンジイソシアネート等のイソシアネート化
合物を例示することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a solid polymer electrolyte according to the present invention is not particularly limited, but usually the respective components are mixed mechanically or dissolved in a solvent and mixed, and then the solvent is removed. It is manufactured by such a method. Various kneaders, open rolls,
An extruder or the like can be used arbitrarily. When produced using a solvent, various polar solvents, for example, tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, dioxane, methyl ethyl ketone,
Methyl isobutyl ketone or the like is used alone or as a mixture. The concentration of the solution is not particularly limited, but is 1 to 50% by weight.
Is preferred. Further, the solid electrolyte may be cross-linked if necessary. As crosslinking agents for crosslinking the copolymer, 2-4-tolylene diisocyanate, 2-6-tolylene diisocyanate, 4-4-diphenylmethane diisocyanate,
An isocyanate compound such as hexamethylene diisocyanate can be exemplified.

【0014】本発明で示された高分子固体電解質を用い
ると、高分子の利点である可とう性を有して大面積薄膜
形状の固体電解質が容易に得られる。例えば本発明で示
された高分子電解質を用いた電池の作製が可能である。
この場合、正極材料としてはリチウム−マンガン複合酸
化物、コバルト酸リチウム、五酸化バナジウム、ポリア
セン、ポリピレン、ポリアニリン、ポリフェニレン、ポ
リフェニレンサルファイド、ポリフェニレンオキサイ
ド、ポリピロール、ポリフラン、ポリアズレン等があ
る。負極材料としてはリチウムがグラファイトあるいは
カーボンの層間に吸蔵された層間化合物、リチウム金
属、リチウム−鉛合金等がある。 実施例8に電池の一
例を示す。また高い電気伝導性を利用してアルカリ金属
イオン、Cuイオン、Caイオン、及びMgイオン等の
陽イオンのイオン電極の隔膜としての利用も考えられ
る。
When the polymer solid electrolyte described in the present invention is used, a large area thin film solid electrolyte having flexibility, which is an advantage of a polymer, can be easily obtained. For example, a battery using the polymer electrolyte shown in the present invention can be manufactured.
In this case, examples of the cathode material include lithium-manganese composite oxide, lithium cobalt oxide, vanadium pentoxide, polyacene, polypyrene, polyaniline, polyphenylene, polyphenylene sulfide, polyphenylene oxide, polypyrrole, polyfuran, and polyazulene. Examples of the negative electrode material include an interlayer compound in which lithium is occluded between layers of graphite or carbon, lithium metal, lithium-lead alloy, and the like. Example 8 shows an example of the battery. In addition, utilization of a cation such as an alkali metal ion, a Cu ion, a Ca ion, and a Mg ion as a diaphragm of an ion electrode using high electric conductivity can be considered.

【0015】[0015]

【実施例】【Example】

実施例1〜4 比較例1〜5 第1表及び第2表のポリエーテル共重合体(比較例3は
ポリエチレンオキシド)1gをテトラヒドロフラン20
mlに溶解し、可溶性電解質塩化合物のモル数/エチレ
ンオキシド単位の総モル数が0.005となるように過
塩素酸リチウムのテトラヒドロフラン溶液を混合した。
この混合液をポリテトラフルオロエチレン製モールド上
にキャストして充分乾燥し、フィルムを得た。実施例及
び比較例の結果を各々第1表及び第2表にまとめた。第
1表及び第2表中、ガラス転移点、融解熱量は理学電気
(株)製示差走査熱量計DSC8230Bを用い、窒素
雰囲気中、温度範囲−100〜80℃、昇温速度10℃
/minで測定した。導電率σの測定は白金を電極と
し、電圧0.5V、周波数範囲5Hz〜1MHzの交流
法を用い、複素インピーダンス法により算出した。
Examples 1 to 4 Comparative Examples 1 to 5 1 g of the polyether copolymer shown in Tables 1 and 2 (Comparative Example 3 was polyethylene oxide) was added to tetrahydrofuran 20
Then, a solution of lithium perchlorate in tetrahydrofuran was mixed so that the number of moles of the soluble electrolyte salt compound / the total number of moles of ethylene oxide units was 0.005.
This mixture was cast on a polytetrafluoroethylene mold and dried sufficiently to obtain a film. The results of Examples and Comparative Examples are summarized in Tables 1 and 2, respectively. In Tables 1 and 2, the glass transition point and the heat of fusion were measured using a differential scanning calorimeter DSC8230B manufactured by Rigaku Denki Co., Ltd., in a nitrogen atmosphere, in a temperature range of -100 to 80 ° C, and at a heating rate of 10 ° C.
/ Min. The conductivity σ was measured by the complex impedance method using platinum as an electrode, an alternating current method at a voltage of 0.5 V and a frequency range of 5 Hz to 1 MHz.

【0016】実施例5 (1)式の構造単位が5モル%、(2)式の構造単位が
95モル%のポリエーテル共重合体1gをアセトニトリ
ル20mlに溶解し、リチウムビストリフルオロメタン
スルフォニルイミド(以下LiTFSIとする)のモル
数/エチレンオキシド単位の総モル数が0.005とな
るようにLiTFSIのアセトニトリル溶液を混合し
た。この混合液をポリテトラフルオロエチレン製モール
ド上にキャストして充分乾燥し、フィルムを得た。実施
例1〜4と同様の方法でフィルムの特性を測定した。3
0℃における固体電解質の導電率は4.0X10-4S/
cmであった。
Example 5 1 g of a polyether copolymer having 5 mol% of the structural unit of the formula (1) and 95 mol% of the structural unit of the formula (2) was dissolved in 20 ml of acetonitrile, and lithium bistrifluoromethanesulfonylimide ( A solution of LiTFSI in acetonitrile was mixed so that the number of moles of LiTFSI / the total number of moles of ethylene oxide units was 0.005. This mixture was cast on a polytetrafluoroethylene mold and dried sufficiently to obtain a film. The characteristics of the film were measured in the same manner as in Examples 1 to 4. 3
The conductivity of the solid electrolyte at 0 ° C. is 4.0 × 10 −4 S /
cm.

【0017】実施例6 (1)式の構造単位が12モル%、(2)式の構造単位
が88モル%のポリエーテル共重合体1gをアセトニト
リル20mlに溶解し、LiTFSIのモル数/エチレ
ンオキシド単位の総モル数が0.003となるようにL
iTFSIのアセトニトリル溶液を混合した。この混合
液をポリテトラフルオロエチレン製モールド上にキャス
トして充分乾燥し、フィルムを得た。実施例1〜4と同
様の方法でフィルムの特性を測定した。
EXAMPLE 6 1 g of a polyether copolymer having 12 mol% of the structural unit of the formula (1) and 88 mol% of the structural unit of the formula (2) was dissolved in 20 ml of acetonitrile, and the number of moles of LiTFSI / ethylene oxide unit was obtained. L such that the total number of moles of
A solution of iTFSI in acetonitrile was mixed. This mixture was cast on a polytetrafluoroethylene mold and dried sufficiently to obtain a film. The characteristics of the film were measured in the same manner as in Examples 1 to 4.

【0018】実施例7 LiTFSIのモル数/エチレンオキシド単位の総モル
数が0.05である以外は実施例6と同様の方法でフィ
ルムを得た。実施例1〜4と同様の方法でフィルムの特
性を測定した。本発明電解質が特に優れたイオン伝導性
を有することは、比較例と対比して明らかである。
Example 7 A film was obtained in the same manner as in Example 6, except that the mole number of LiTFSI / the total mole number of ethylene oxide units was 0.05. The characteristics of the film were measured in the same manner as in Examples 1 to 4. It is clear that the electrolyte of the present invention has particularly excellent ionic conductivity in comparison with Comparative Examples.

【0019】実施例8 電解質として実施例3で得られた高分子固体電解質、負
極としてリチウム金属箔、及び正極としてコバルト酸リ
チウム(LiCoO2 )を用いて二次電池を構成した。
高分子固体電解質のサイズは10 mm X 10 mm X 1 mmであ
る。 リチウム箔のサイズは10 mm X 10 mm X 0.1 mmで
ある。 コバルト酸リチウムは所定量の炭酸リチウム及
び炭酸コバルト粉体を混合した後900℃で5時間焼成
する事により調製した。次にこれを粉砕し、更に適量の
アセチレンブラックを添加した後300 Kgw /cm2 の圧力
で10 mm X 10 mm X 2 mmにプレス成形して電池の正極と
した。実施例3で得られた高分子固体電解質をリチウム
金属箔とコバルト酸リチウム板ではさみ、界面が密着す
るように10 Kgw/cm2の圧力をかけながら電池の充放電
特性を調べた。初期の端子電圧3.2 Vでの放電電流は0.4
mA/cm2であり、0.3 mA/cm2で充電可能であった。本
実施例の電池は容易に薄いものに作製できるので、軽量
でしかも大容量の電池になる。
Example 8 A secondary battery was constructed using the solid polymer electrolyte obtained in Example 3 as an electrolyte, a lithium metal foil as a negative electrode, and lithium cobalt oxide (LiCoO 2 ) as a positive electrode.
The size of the polymer solid electrolyte is 10 mm × 10 mm × 1 mm. The size of the lithium foil is 10 mm X 10 mm X 0.1 mm. Lithium cobaltate was prepared by mixing predetermined amounts of lithium carbonate and cobalt carbonate powder and then firing at 900 ° C. for 5 hours. Next, this was pulverized and further added with an appropriate amount of acetylene black, and then press-molded to 10 mm × 10 mm × 2 mm at a pressure of 300 Kgw / cm 2 to obtain a positive electrode of a battery. The polymer solid electrolyte obtained in Example 3 was sandwiched between a lithium metal foil and a lithium cobaltate plate, and the charge / discharge characteristics of the battery were examined while applying a pressure of 10 Kgw / cm 2 so that the interface was in close contact. The discharge current at an initial terminal voltage of 3.2 V is 0.4
mA / cm 2 , and could be charged at 0.3 mA / cm 2 . Since the battery of this embodiment can be easily manufactured to be thin, it is lightweight and has a large capacity.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の高分子固体電解質は加工性、成
形性、機械的強度、柔軟性などに優れており、かつその
イオン伝導性は著しく改善されている。したがって固体
電池をはじめ、大容量コンデンサー、表示素子、例えば
エレクトロクロミックディスプレイなど電子機器への応
用が期待される。
The polymer solid electrolyte of the present invention is excellent in workability, moldability, mechanical strength, flexibility and the like, and its ionic conductivity is remarkably improved. Therefore, application to electronic devices such as solid-state batteries, large-capacity capacitors, and display devices such as electrochromic displays is expected.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 正義 神奈川県横浜市西区老松町30番地3− 401 (72)発明者 坂下 尚彦 大阪府大阪市淀川区東三国2丁目11番18 −204 審査官 ▲吉▼澤 英一 (56)参考文献 特開 昭63−154736(JP,A) 特開 昭61−83249(JP,A) 特開 平3−200864(JP,A) 特開 平3−200865(JP,A) 特開 平6−76829(JP,A) 特開 平5−304051(JP,A) 特開 平5−202281(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 71/00 - 71/14 H01M 6/18,10/40 H01G 9/00 - 9/02 ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Masayoshi Watanabe 30-3-Oimatsu-cho, Nishi-ku, Yokohama-shi, Kanagawa Prefecture ▲ Yoshi ▼ Eiichi Sawa (56) References JP-A-63-154736 (JP, A) JP-A-61-83249 (JP, A) JP-A-3-200864 (JP, A) JP-A-3-200865 (JP, A) JP-A-6-76829 (JP, A) JP-A-5-304051 (JP, A) JP-A-5-202281 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) C08L 71/00-71/14 H01M 6 / 18,10 / 40 H01G 9/00-9/02

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主鎖構造が下記(1)式の構造単位5〜
30モル%と(2)式の構造単位95〜70モル%から
なる固体状のランダム共重合体であって、(1)式の側
鎖部分のオキシエチレン単位の重合度nが1〜12、数
平均分子量が10万〜200万、示差走査熱量計(DS
C)で測定したガラス転移点が−60℃以下、融解熱量
が70J/g以下であるオリゴオキシエチレン側鎖を有
するポリエーテル共重合体および該共重合体に可溶性の
電解質塩化合物からなることを特徴とする高分子固体電
解質。 【化1】 【化2】
The main chain structure is represented by the following structural unit (1):
A solid random copolymer comprising 30 mol% and 95 to 70 mol% of the structural unit of the formula (2), wherein the degree of polymerization n of the oxyethylene unit in the side chain portion of the formula (1) is 1 to 12, Number average molecular weight 100,000-2,000,000, differential scanning calorimeter (DS
It comprises a polyether copolymer having an oligooxyethylene side chain having a glass transition point of −60 ° C. or lower and a heat of fusion of 70 J / g or lower as measured in C), and an electrolyte salt compound soluble in the copolymer. Characterized polymer solid electrolyte. Embedded image Embedded image
【請求項2】 (1)式の構造単位10〜30モル%と
(2)式の構造単位90〜70モル%のポリエーテル共
重合体を用いる請求項1記載の高分子固体電解質。
2. The polymer solid electrolyte according to claim 1, wherein a polyether copolymer comprising 10 to 30 mol% of the structural unit of the formula (1) and 90 to 70 mol% of the structural unit of the formula (2) is used.
【請求項3】 ガラス転移点が−65℃以下及び融解熱
量が50J/g以下のポリエーテル共重合体を用いる請
求項1又は2に記載の高分子固体電解質。
3. The polymer solid electrolyte according to claim 1, wherein a polyether copolymer having a glass transition point of −65 ° C. or less and a heat of fusion of 50 J / g or less is used.
【請求項4】 電解質塩化合物が金属陽イオン、アンモ
ニウムイオン、アミジニウムイオン、及びグアニジウム
イオンから選ばれた陽イオンと、塩素イオン、臭素イオ
ン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオ
ン、テトラフルオロホウ素酸イオン、硝酸イオン、As
6 - 、PF6 - 、ステアリルスルホン酸イオン、オク
チルスルホン酸イオン、ドデシルベンゼンスルホン酸イ
オン、ナフタレンスルホン酸イオン、ドデシルナフタレ
ンスルホン酸イオン、7,7,8,8-テトラシアノ-p- キノジ
メタンイオン、R1 SO3 - 、(R1 SO2 )(R2
2 )N- 、(R1 SO2 )(R2 SO2 )(R3 SO
2 )C- 、及び(R1SO2 )(R2 SO2 )YC-
ら選ばれた陰イオンとからなる化合物である請求項1〜
3のいずれかに記載の高分子固体電解質。但し、R1
2 、R3 、及びYは電子吸引性基である。
4. An electrolyte salt compound comprising a cation selected from a metal cation, an ammonium ion, an amidinium ion, and a guanidinium ion, a chloride ion, a bromine ion, an iodine ion, a perchlorate ion, and a thiocyanate ion. , Tetrafluoroborate ion, nitrate ion, As
F 6 , PF 6 , stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane Ions, R 1 SO 3 , (R 1 SO 2 ) (R 2 S
O 2) N -, (R 1 SO 2) (R 2 SO 2) (R 3 SO
2) C -, and (R 1 SO 2) (R 2 SO 2) YC - a compound consisting of a selected anionic from which claim 1
4. The polymer solid electrolyte according to any one of 3. Where R 1 ,
R 2 , R 3 and Y are electron withdrawing groups.
【請求項5】R、R、及びRは各々独立して炭素
数が1から6迄のパーフルオロアルキル基又はパーフル
オロアリール基であり、Yがニトロ基、ニトロソ基、カ
ルボニル基、カルボキシル基又はシアノ基である請求項
4に記載の高分子固体電解質。
5. R 1 , R 2 , and R 3 are each independently a perfluoroalkyl group or a perfluoroaryl group having 1 to 6 carbon atoms, and Y is a nitro group, a nitroso group, a carbonyl group, The polymer solid electrolyte according to claim 4, which is a carboxyl group or a cyano group .
【請求項6】 金属陽イオンがLi,Na,K,Rb,
Cs,Mg,Ca、及びBa金属から選ばれた金属の陽
イオンである請求項4又は5に記載の高分子固体電解
質。
6. The method according to claim 1, wherein the metal cation is Li, Na, K, Rb,
The polymer solid electrolyte according to claim 4, which is a cation of a metal selected from Cs, Mg, Ca, and Ba metals.
【請求項7】 金属陽イオンが遷移金属の陽イオンであ
る請求項4又は5に記載の高分子固体電解質
7. The solid polymer electrolyte according to claim 4, wherein the metal cation is a cation of a transition metal.
【請求項8】 金属陽イオンがMn、Fe、Co、N
i、Cu、Zn、及びAg金属から選ばれた金属の陽イ
オンである請求項4又は5に記載の高分子固体電解質
8. The method according to claim 1, wherein the metal cation is Mn, Fe, Co, N
The polymer solid electrolyte according to claim 4, which is a cation of a metal selected from i, Cu, Zn, and Ag metals.
【請求項9】 電解質塩化合物とポリエーテル共重合体
の配合割合が電解質塩化合物のモル数/エチレンオキシ
ド単位の総モル数の値が0.0001〜5である請求項
1〜8のいずれかに記載の高分子固体電解質。
9. The method according to claim 1, wherein the compounding ratio of the electrolyte salt compound and the polyether copolymer is such that the value of the number of moles of the electrolyte salt compound / the total number of moles of ethylene oxide units is 0.0001 to 5. The solid polymer electrolyte according to the above.
【請求項10】 請求項1〜9のいずれかに記載の高分
子固体電解質を用いた電池。
10. A battery using the polymer solid electrolyte according to claim 1.
JP8111476A 1995-05-08 1996-05-02 Polymer solid electrolyte Expired - Lifetime JP3022317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111476A JP3022317B2 (en) 1995-05-08 1996-05-02 Polymer solid electrolyte

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10961695 1995-05-08
JP2789696 1996-02-15
JP7989896 1996-04-02
JP7-109616 1996-04-02
JP8-27896 1996-04-02
JP8-79898 1996-04-02
JP8111476A JP3022317B2 (en) 1995-05-08 1996-05-02 Polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH09324114A JPH09324114A (en) 1997-12-16
JP3022317B2 true JP3022317B2 (en) 2000-03-21

Family

ID=27458784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111476A Expired - Lifetime JP3022317B2 (en) 1995-05-08 1996-05-02 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP3022317B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2651097A (en) 1996-05-08 1997-11-26 Daiso Co. Ltd. Cross-linked solid polyelectrolyte and use thereof
JP3724252B2 (en) 1999-04-19 2005-12-07 ダイソー株式会社 Crosslinked polymer solid electrolyte and use thereof
JP4020296B2 (en) 2000-12-21 2007-12-12 キヤノン株式会社 Ionic conduction structure, secondary battery and method for producing them
US6656252B2 (en) 2001-08-22 2003-12-02 Daiso Co., Ltd. Polymer separation membrane
US6858351B2 (en) 2001-11-07 2005-02-22 Daiso Co., Ltd. Polyethylene oxide-based electrolyte containing silicon compound
WO2004113443A1 (en) 2003-06-19 2004-12-29 Daiso Co., Ltd. Crosslinked polymer electrolyte and use thereof
WO2006061987A1 (en) * 2004-12-10 2006-06-15 Konica Minolta Holdings, Inc. Display element
JP6341360B2 (en) * 2013-06-28 2018-06-13 株式会社大阪ソーダ Nonaqueous electrolyte secondary battery
JP6135346B2 (en) * 2013-07-12 2017-05-31 三菱瓦斯化学株式会社 Polymer electrolyte
JP2015056282A (en) * 2013-09-12 2015-03-23 八千代工業株式会社 Polymer solid electrolyte battery
JP6040977B2 (en) * 2014-11-23 2016-12-07 樫原 宏 Ether chelate and polyether chelate ferromagnetic organic ferrofluids
KR20220058654A (en) * 2018-09-13 2022-05-09 앰비라이트 인크. Method for fabricating solid state electrochromic device, solid state electrochromic device and its applications

Also Published As

Publication number Publication date
JPH09324114A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
KR100402997B1 (en) Polymer Solid Electrolyte
US8357470B2 (en) Organic solid electrolyte and secondary battery
US6537468B1 (en) Composition for ionically conductive solid polymer, ionically conductive solid polyelectrolyte, binder resin, and secondary battery
US6533964B1 (en) Polymer, binder resin, composition for ionically conductive polymer electrolyte, and secondary battery
US20020012849A1 (en) Polymer solid electrolyte
JP2002100405A (en) Resin composition for gel high polymer solid electrolyte and the gel high polymer solid electrolyte
WO2003088272A1 (en) Ion-conductive electrolyte and cell employing the same
JP3022317B2 (en) Polymer solid electrolyte
JP4005192B2 (en) Solid battery
JP2000123632A (en) Polymer solid electrolyte and its application
JP2000285929A (en) Solid electrolyte battery
US6677084B1 (en) Solid crosslinked-polymer electrolyte and use thereof
US6201071B1 (en) Polyether copolymer, solid polymer electrolyte and battery
JP3613908B2 (en) Polymer solid electrolyte and battery using the same
JP3290229B2 (en) Battery
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JP4640172B2 (en) Electrolyte composition and battery
JPH117980A (en) Lithium polymer battery
JP2581338B2 (en) Polymer solid electrolyte and battery using the same
JPH01107474A (en) Lithium ion conductive polymer electrolyte
US20240136570A1 (en) Fluoride ion conductive polymeric solid electrolyte, solid electrolyte material including the same, fluoride shuttle battery, and method for producing the same
JP4089246B2 (en) Crosslinked polymer solid electrolyte and battery
JP2002063936A (en) High polymer solid electrolyte and lithium polymer battery using it
JP2002015727A (en) Lithium based secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

EXPY Cancellation because of completion of term