JP2015056282A - Polymer solid electrolyte battery - Google Patents

Polymer solid electrolyte battery Download PDF

Info

Publication number
JP2015056282A
JP2015056282A JP2013188945A JP2013188945A JP2015056282A JP 2015056282 A JP2015056282 A JP 2015056282A JP 2013188945 A JP2013188945 A JP 2013188945A JP 2013188945 A JP2013188945 A JP 2013188945A JP 2015056282 A JP2015056282 A JP 2015056282A
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
active material
weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188945A
Other languages
Japanese (ja)
Inventor
恵介 本田
Keisuke Honda
恵介 本田
広和 大熊
Hirokazu Okuma
広和 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yachiyo Industry Co Ltd
Original Assignee
Yachiyo Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yachiyo Industry Co Ltd filed Critical Yachiyo Industry Co Ltd
Priority to JP2013188945A priority Critical patent/JP2015056282A/en
Publication of JP2015056282A publication Critical patent/JP2015056282A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer solid electrolyte battery having stable discharge capacity by improving positive electrode active material utilization efficiency and also capable of minimizing temperature characteristics of a polymer solid electrolyte battery, specifically an increase in internal resistance of a battery in a low temperature environment.SOLUTION: In a polymer solid electrolyte battery 1 including a polymer electrolyte membrane 4 held between a positive electrode 2 and a negative electrode 3, the positive electrode 2 includes: an active material particle 22 comprising olivine type lithium phosphate (LiMPO(where M represents at least one selected from the group consisting of Co, Ni, Mn and Fe)); a solid electrolyte 25 comprising PEO-EM (polyethylene oxide in which ethyl methyl oxide is added to a side chain) having ion conductivity; and a conductive material 24 having electron conductivity.

Description

本発明は、正極と負極との間に高分子固体電解質を挟持させた高分子固体電解質電池に関する。   The present invention relates to a polymer solid electrolyte battery in which a polymer solid electrolyte is sandwiched between a positive electrode and a negative electrode.

近年、携帯電話等の情報端末や、ディジタルカメラ等の携帯用電子機器の電源として、小型の高分子固体電解質電池が二次電池として使用されている。高分子固体電解質をイオン移動媒体とする電池は、液体電解質の代わりに液体電解質をポリマー内に固着させたものを使用するため、液漏れが少なく、電池の信頼性、安全性を向上させることができる。更に、アルミラミネートフィルム等の簡易な電池容器を採用することで厚みを1mm以下とすることができ、電池形状の設計自由度も高く、パッケージの簡略化、軽量化が期待されている。高分子固体電解質電池は、今後、更に自動車等の輸送機器、電力貯蔵・負荷平準化(キャパシタ)等に本格的な使用が予想され、より一層の安定した電力供給性能が求められている。   In recent years, small polymer solid electrolyte batteries have been used as secondary batteries as power sources for information terminals such as mobile phones and portable electronic devices such as digital cameras. A battery using a solid polymer electrolyte as an ion transfer medium uses a liquid electrolyte fixed in a polymer instead of a liquid electrolyte, so there is little liquid leakage and the reliability and safety of the battery can be improved. it can. Furthermore, by adopting a simple battery container such as an aluminum laminate film, the thickness can be reduced to 1 mm or less, the design flexibility of the battery shape is high, and simplification and weight reduction of the package are expected. In the future, solid polymer electrolyte batteries are expected to be used in full-scale for transportation equipment such as automobiles, power storage and load leveling (capacitors), and further stable power supply performance is required.

このような、高分子固体電解質電池として、例えば、正極を構成する正極活物質粒子の表面を、正極活物質に比べて酸素を供給されても容易に酸化することのないイオン伝導性および電子伝導性を有する付着物で被覆し、活物質粒子表面の少なくとも一部を高分子固体電解質と直接接触しない状態とした高分子固体電解質電池が開示されている(特許文献1)。   As such a polymer solid electrolyte battery, for example, the surface of the positive electrode active material particles constituting the positive electrode is not easily oxidized even when oxygen is supplied compared to the positive electrode active material, and the ionic conductivity and the electronic conductivity. There has been disclosed a polymer solid electrolyte battery that is coated with an adherent having a property so that at least part of the surface of the active material particles is not in direct contact with the polymer solid electrolyte (Patent Document 1).

また、他の例として、アルミン酸エステルと、エチレン性不飽和結合を含む官能基を2つ以上有する多官能モノマーと、グライムと、リチウム塩とを含む電解質前駆体組成物を重合してなる高分子電解質、およびこれを用いたリチウムイオン二次電池が開示されている(特許文献2)。   As another example, a polymer electrolyte composition comprising an aluminate ester, a polyfunctional monomer having two or more functional groups containing an ethylenically unsaturated bond, glyme, and a lithium salt is polymerized. A molecular electrolyte and a lithium ion secondary battery using the same are disclosed (Patent Document 2).

また、他の例として、正極材料用の導電助剤(導電材)としてカーボンブラック(アセチレンブラック)と、平均繊維径5〜25nm、平均繊維長100〜10000nm、平均比表面積100〜500m/gの範囲にあるカーボンナノファイバーとを含み、カーボンナノファイバーの質量と、カーボンブラック及びカーボンナノファイバーの合計質量との質量割合((カーボンナノファイバー/(カーボンブラック+カーボンナノファイバー))×100)を0.05〜50%とする技術が開示され、更に、この導電助剤およびオリビン型リン酸鉄リチウム(正極活物質)、ポリフッ化ビニリデン(バインダー)を用いた正極の構成が開示されている(特許文献3)。 As another example, carbon black (acetylene black) as a conductive auxiliary agent (conductive material) for the positive electrode material, an average fiber diameter of 5 to 25 nm, an average fiber length of 100 to 10000 nm, and an average specific surface area of 100 to 500 m 2 / g The ratio of the mass of the carbon nanofiber and the total mass of carbon black and carbon nanofiber ((carbon nanofiber / (carbon black + carbon nanofiber)) × 100) A technique of 0.05 to 50% is disclosed, and further, a configuration of a positive electrode using this conductive additive, olivine type lithium iron phosphate (positive electrode active material), and polyvinylidene fluoride (binder) is disclosed ( Patent Document 3).

特許第4997400号公報Japanese Patent No. 4997400 特開2010−080301号公報JP 2010-080301 A 特開2013−077475号公報JP 2013-077745 A

高分子固体電解質電池においては、正極材料として高分子固体電解質を使用した際、電池性能向上を実現するために、活物質の選定および活物質の特性に応じた導電材の選定が重要となり、活物質利用率の向上が必須である。更に、活物質、導電材およびバインダーの配合比率(重量比)による性能向上効果についても把握することが重要となる。   In polymer solid electrolyte batteries, when a polymer solid electrolyte is used as the positive electrode material, it is important to select an active material and a conductive material according to the characteristics of the active material in order to improve battery performance. Improvement of material utilization is essential. Furthermore, it is important to grasp the performance improvement effect by the blending ratio (weight ratio) of the active material, the conductive material and the binder.

しかしながら、特許文献1においては、正極シートにLiCoO、導電材のアセチレンブラック、イオン伝導性バインダーのP(EO/MEEGE)−LiBETI(LiN(SOCFCF)を用い、重量比を正極活物質/導電材/バインダー=82/5/13としたものが開示されているが、正極活物質としてオリビン型リン酸リチウムを用いた場合の正極活物質/導電材/バインダーの重量比、特にバインダーと導電材との重量比と正極活物質利用率との関係についてはなんら開示されていない。 However, in Patent Document 1, LiCoO 2 , acetylene black as a conductive material, and P (EO / MEEGE) -LiBETI (LiN (SO 2 CF 2 CF 3 ) 2 ) as an ion conductive binder are used for the positive electrode sheet, and the weight ratio. In which positive electrode active material / conductive material / binder = 82/5/13 is disclosed, but the weight ratio of positive electrode active material / conductive material / binder when olivine type lithium phosphate is used as the positive electrode active material In particular, there is no disclosure about the relationship between the weight ratio of the binder and the conductive material and the utilization ratio of the positive electrode active material.

また、特許文献2で開示された技術では、正極活物質であるオリビン型リン酸鉄リチウム(LiFePO)(平均粒子径:1μm)(86質量%)、導電材であるアセチレンブラック(7質量%)、および結着材であるポリフッ化ビニリデン(PVdF)(7質量%)を用いた正極が開示されているが、バインダーとしてイオン伝導性が小さい高分子材料であるポリフッ化ビニリデン(PVdF)が使用されている。このようなイオン伝導性が小さい高分子材料を用いることで電極全体の電子伝導経路の形成が妨げられ、活物質添加量に対する電池性能向上効果に反映されにくいという課題がある。 In the technique disclosed in Patent Document 2, olivine-type lithium iron phosphate (LiFePO 4 ) (average particle size: 1 μm) (86% by mass) as a positive electrode active material, acetylene black (7% by mass) as a conductive material. ) And a binder using polyvinylidene fluoride (PVdF) (7% by mass), which is a binder, is disclosed, but polyvinylidene fluoride (PVdF), which is a polymer material having low ion conductivity, is used as a binder. Has been. By using such a polymer material having low ion conductivity, formation of the electron conduction path of the entire electrode is hindered, and there is a problem that it is difficult to be reflected in the effect of improving battery performance with respect to the amount of active material added.

また、特許文献3で開示された技術では、正極活物質としてカーボンコートされた平均粒径1.2μmのLiFePO粉末、結着剤としてポリフッ化ビニリデン(PVdF)、導電助剤として、比表面積70m/gのアセチレンブラック(AB)を用いた正極が開示されている。しかしながら、特許文献3においても特許文献2と同様に、バインダーとしてイオン伝導性が小さい高分子材料であるポリフッ化ビニリデン(PVdF)が使用されており、イオン伝導性が小さい高分子材料を用いることで電極全体の電子伝導経路の形成が妨げられ、活物質添加量に対する電池性能向上効果に反映されにくいという課題がある。 In the technique disclosed in Patent Document 3, LiFePO 4 powder having an average particle diameter of 1.2 μm coated with carbon as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and a specific surface area of 70 m as a conductive auxiliary agent. A positive electrode using 2 / g acetylene black (AB) is disclosed. However, in Patent Document 3, as in Patent Document 2, polyvinylidene fluoride (PVdF), which is a polymer material having low ion conductivity, is used as a binder, and a polymer material having low ion conductivity is used. There is a problem in that the formation of the electron conduction path of the entire electrode is hindered and is not easily reflected in the effect of improving battery performance with respect to the amount of active material added.

本発明は、このような背景に鑑みなされたもので、正極に使用する活物質の利用率向上に着目して安定した放電容量を備える高分子固体電解質電池を提供することを目的とする。   This invention is made | formed in view of such a background, and it aims at providing the polymer solid electrolyte battery provided with the stable discharge capacity paying attention to the utilization factor improvement of the active material used for a positive electrode.

上記課題を解決するために、本発明は、正極(2)と負極(3)との間に高分子電解質膜(4)を挟持した固体高分子電解質電池(1)であって、前記正極の構成として、オリビン型リン酸リチウム(LiMPO(ただし、MはCo、Ni、MnおよびFeの群から選択される少なくとも一種である))からなる活物質粒子(22)と、イオン伝導性を有するPEO−EM(エチルメチルオキシドが側鎖に付されたポリエチレンオキシド)からなる固体電解質(25)と、電子伝導性を有する導電材(24)と、を有するものである。 In order to solve the above problems, the present invention provides a solid polymer electrolyte battery (1) having a polymer electrolyte membrane (4) sandwiched between a positive electrode (2) and a negative electrode (3), The active material particles (22) made of olivine-type lithium phosphate (LiMPO 4 (wherein M is at least one selected from the group of Co, Ni, Mn, and Fe)) and ionic conductivity It has a solid electrolyte (25) made of PEO-EM (polyethylene oxide having ethylmethyl oxide attached to the side chain) and a conductive material (24) having electronic conductivity.

この構成によれば、活物質粒子と導電材とを結着するバインダーとして、それ自身がイオン伝導性を有する固体電解質であり、かつ低温時の電気伝導率が大きいPEO−EMを使用することで、安定した充放電を行うことが可能となる。   According to this configuration, as a binder for binding the active material particles and the conductive material, a PEO-EM that is a solid electrolyte that has ionic conductivity and that has a high electric conductivity at low temperatures can be used. Stable charge / discharge can be performed.

また、本発明は、前記活物質粒子(22)と前記固体電解質(25)と前記導電材(24)とを含む正極固体電解質部(20)と、前記正極固体電解質部を外部と電気的に接続する正極集電体(21)と、を備える正極構成を有し、前記正極固体電解質部において、前記正極固体電解質部の重量に対する前記活物質粒子の重量の比率を、重量比xとするとき、前記重量比xを、x≧0.65とし、かつ前記導電材の重量に対する前記固体電解質の重量の比率を、重量比yとするとき、前記重量比yを、2.0≦y≦4.0の範囲としたものである。   The present invention also provides a positive electrode solid electrolyte part (20) including the active material particles (22), the solid electrolyte (25), and the conductive material (24), and the positive electrode solid electrolyte part electrically connected to the outside. A positive electrode current collector (21) to be connected, and in the positive electrode solid electrolyte part, the ratio of the weight of the active material particles to the weight of the positive electrode solid electrolyte part is a weight ratio x When the weight ratio x is x ≧ 0.65 and the ratio of the weight of the solid electrolyte to the weight of the conductive material is the weight ratio y, the weight ratio y is 2.0 ≦ y ≦ 4. .0 range.

これによって、電子伝導パス、イオン伝導パスの伝導経路の形成により相互作用が向上して、正極の活物質利用率の向上を図ることが可能となる。   Thereby, the interaction is improved by the formation of the conduction path of the electron conduction path and the ion conduction path, and the utilization rate of the active material of the positive electrode can be improved.

また、本発明は、前記活物質粒子(22)と前記固体電解質(25)と前記導電材(24)とを含む正極固体電解質部(20)と、前記正極固体電解質部を外部と電気的に接続する正極集電体(21)と、を備える正極構成を有し、前記正極固体電解質部において、前記正極固体電解質部の重量に対する前記活物質粒子の重量の比率を、重量比xとするとき、前記重量比xを、x≧0.65とし、かつ前記導電材の重量に対する前記固体電解質の重量の比率を、重量比yとするとき、前記重量比yを、2.5≦y≦4.0の範囲としたものである。   The present invention also provides a positive electrode solid electrolyte part (20) including the active material particles (22), the solid electrolyte (25), and the conductive material (24), and the positive electrode solid electrolyte part electrically connected to the outside. A positive electrode current collector (21) to be connected, and in the positive electrode solid electrolyte part, the ratio of the weight of the active material particles to the weight of the positive electrode solid electrolyte part is a weight ratio x When the weight ratio x is x ≧ 0.65 and the ratio of the weight of the solid electrolyte to the weight of the conductive material is the weight ratio y, the weight ratio y is 2.5 ≦ y ≦ 4. .0 range.

これによって、電子伝導パス、イオン伝導パスの相互作用が向上して、正極の活物質利用率を90%以上とすることが可能となるとともに、高分子固体電解質電池全体としての電池容量を安定化することが可能になる。   As a result, the interaction between the electron conduction path and the ion conduction path is improved, the active material utilization rate of the positive electrode can be increased to 90% or more, and the battery capacity of the entire polymer solid electrolyte battery is stabilized. It becomes possible to do.

また、本発明は、前記導電材(24)には炭素繊維の含有有無によらずアセチレンブラックを50%以上含むことを特徴とするものである。   Moreover, this invention is characterized by including 50% or more of acetylene black in the said electrically conductive material (24) irrespective of the presence or absence of carbon fiber.

これによって、導電材として気相法炭素繊維のような高価な材料を用いることなく、正極の活物質利用率を向上させて、低コストの高分子固体電解質電池を製造することが可能となる。   This makes it possible to produce a low-cost polymer solid electrolyte battery by improving the active material utilization rate of the positive electrode without using an expensive material such as vapor grown carbon fiber as the conductive material.

また、本発明は、前記導電材(24)が炭素繊維を更に含むようにしたものである。   In the present invention, the conductive material (24) further includes carbon fiber.

また、導電材として比較的安価なカーボンナノチューブを併用することで、正極の活物質利用率を向上させて、低コストの高分子固体電解質電池を製造することが可能となる。   In addition, by using a relatively inexpensive carbon nanotube as a conductive material, it is possible to improve the active material utilization rate of the positive electrode and manufacture a low-cost polymer solid electrolyte battery.

このように本発明を活用することにより、正極活物質利用率を向上させて、安定した充放電容量を備える高分子固体電解質電池を提供することが可能となる。   Thus, by utilizing the present invention, it is possible to improve the utilization rate of the positive electrode active material and provide a polymer solid electrolyte battery having a stable charge / discharge capacity.

本発明に係る高分子固体電解質電池の概略構成を示す構成図The block diagram which shows schematic structure of the polymer solid electrolyte battery which concerns on this invention イオン伝導性高分子であるPEO(ポリエチレンオキシド)およびPEO−EMの温度に対する電気伝導率を示すグラフGraph showing electric conductivity with respect to temperature of ion conductive polymer PEO (polyethylene oxide) and PEO-EM (a)実施例1で作成した製作セルの充放電特性を示すグラフ(A) The graph which shows the charge / discharge characteristic of the production cell created in Example 1 (b)比較例で作成した製作セルの充放電特性を示すグラフ(B) Graph showing the charge / discharge characteristics of the production cell created in the comparative example (a)実施例2で作成した製作セルの充放電特性を示すグラフ(A) Graph showing the charge / discharge characteristics of the production cell prepared in Example 2 (b)比較例で作成した製作セルの充放電特性を示すグラフ(B) Graph showing the charge / discharge characteristics of the production cell created in the comparative example バインダーと導電材との重量比yを変化させた際の、正極活物質の単位重量あたりの電池容量の変化を示すグラフThe graph which shows the change of the battery capacity per unit weight of a positive electrode active material when changing the weight ratio y of a binder and a electrically conductive material.

以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明に係る高分子固体電解質電池1の概略構成を示す構成図である。図1に示すように、高分子固体電解質電池1は、正極2と、負極3と、正極2および負極3に挟持された高分子電解質膜4とで構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a schematic configuration of a polymer solid electrolyte battery 1 according to the present invention. As shown in FIG. 1, the polymer solid electrolyte battery 1 includes a positive electrode 2, a negative electrode 3, and a polymer electrolyte membrane 4 sandwiched between the positive electrode 2 and the negative electrode 3.

正極2は、正極集電体21と、コート層23によって被覆された粒子状の正極活物質22と、導電材24と、固体電解質を兼ねるバインダー25とを含んでいる(以降、正極活物質22と導電材24とバインダー25とを含む部分を正極固体電解質部20と呼称することがある)。バインダー25は、正極活物質22および導電材24を分散された状態で保持するとともにイオン伝導性を備える。なお、正極固体電解質部20においては、実際は、正極活物質22が最密充填された構造となっており、正極活物質22同士の隙間を埋めるように、バインダー25(ポリマー)の中に微細な粒子状の導電材24が均質に分散されている状態で充填されている。また正極固体電解質部20は、後述するように塗布によって正極集電体21の表面に形成するために、粘度調製用のアセトニトリル等が加えられており、微量ではあるが正極活物質22、導電材24、バインダー25以外の成分を含む。   The positive electrode 2 includes a positive electrode current collector 21, a particulate positive electrode active material 22 covered with a coat layer 23, a conductive material 24, and a binder 25 that also serves as a solid electrolyte (hereinafter, positive electrode active material 22). The portion including the conductive material 24 and the binder 25 may be referred to as the positive electrode solid electrolyte portion 20). The binder 25 holds the positive electrode active material 22 and the conductive material 24 in a dispersed state and has ion conductivity. The positive electrode solid electrolyte part 20 actually has a structure in which the positive electrode active material 22 is closely packed, and a fine amount is contained in the binder 25 (polymer) so as to fill the gap between the positive electrode active materials 22. The particulate conductive material 24 is filled in a uniformly dispersed state. In addition, the positive electrode solid electrolyte portion 20 is added with acetonitrile for viscosity adjustment in order to be formed on the surface of the positive electrode current collector 21 by coating as will be described later. 24, components other than the binder 25 are included.

正極集電体21は、正極固体電解質部20と外部とを電気的に接合する部材であるとともに、電流を正極活物質22に供給する。正極集電体21の素材としては導電性を有する材料が好ましく、Al、Ni、Ti、ステンレス鋼等を用いることができる。本実施形態では、正極集電体21としてAl箔を用いている。   The positive electrode current collector 21 is a member that electrically joins the positive electrode solid electrolyte part 20 and the outside, and supplies current to the positive electrode active material 22. The material of the positive electrode current collector 21 is preferably a conductive material, and Al, Ni, Ti, stainless steel, or the like can be used. In the present embodiment, an Al foil is used as the positive electrode current collector 21.

負極3は、負極集電体31と、粒子状の負極活物質32と、導電材33と、バインダー34とで構成されている。負極集電体31の素材としては、Cu、Ni、Ti、ステンレス等を単独で、あるいは2種以上を組み合わせて用いることができる。   The negative electrode 3 includes a negative electrode current collector 31, a particulate negative electrode active material 32, a conductive material 33, and a binder 34. As a material of the negative electrode current collector 31, Cu, Ni, Ti, stainless steel, or the like can be used alone or in combination of two or more.

正極活物質22は、オリビン型リン酸リチウムを粒子状に加工したものである。正極活物質22を構成するオリビン型リン酸リチウムは、一般式がLiMPO(MはCo、Ni、Mn、Feの群から選択される金属元素を1種類、または2種以上を混合したもの)で表されるリチウム複合化合物である。 The positive electrode active material 22 is obtained by processing olivine type lithium phosphate into particles. The olivine-type lithium phosphate constituting the positive electrode active material 22 has a general formula of LiMPO 4 (M is a metal element selected from the group of Co, Ni, Mn, and Fe, or a mixture of two or more) It is a lithium composite compound represented by these.

特にMとして産出量が多く安価なFeを用いることで、高分子固体電解質電池1の生産コストを低減できる可能性があり、かつ毒性がないため安全性に優れることから、本実施形態では主に、正極活物質22としてLiFePO(オリビン型リン酸鉄リチウム)を用いている。 In particular, in the present embodiment, since the production cost of the polymer solid electrolyte battery 1 may be reduced by using Fe which is a large amount of output and is inexpensive as M, and is excellent in safety because it is not toxic. LiFePO 4 (olivine type lithium iron phosphate) is used as the positive electrode active material 22.

LiFePO粒子の製造方法としては、シュウ酸鉄や酢酸鉄を出発原料とした固相法、リン酸鉄を原料とした固相法や、より微細な粒子を得るためのゾルゲル法や、水熱法などがあるが、本実施例では固相法で得たものを用いた。 The production method of LiFePO 4 particles includes a solid phase method using iron oxalate and iron acetate as a starting material, a solid phase method using iron phosphate as a raw material, a sol-gel method for obtaining finer particles, hydrothermal method, In this example, the one obtained by the solid phase method was used.

オリビン型リン酸リチウムで構成される正極活物質22は、それ自体では導電性がないが、コート層23をカーボンコート層とすることで、正極活物質22の表面に電子を供給することができる。   The positive electrode active material 22 composed of olivine-type lithium phosphate is not conductive by itself, but can supply electrons to the surface of the positive electrode active material 22 by using the coat layer 23 as a carbon coat layer. .

導電材24は、正極材料用の導電助剤であって電子伝導性を有している。ここでは、アセチレンブラック、または、アセチレンブラックとカーボンナノチューブ(炭素繊維)の混合物を用いることができる。アセチレンブラックは、カーボンブラックの一種でアセチレンの熱分解によって製造される。   The conductive material 24 is a conductive aid for the positive electrode material and has electronic conductivity. Here, acetylene black or a mixture of acetylene black and carbon nanotube (carbon fiber) can be used. Acetylene black is a kind of carbon black and is produced by thermal decomposition of acetylene.

また、カーボンナノチューブとしては、市場で入手可能なもので構わない。例えば、分散溶媒NMP系、濃度:1,3重量%の界面活性剤添加物を用いることができる。   Carbon nanotubes may be commercially available. For example, a surfactant additive having a dispersion solvent NMP system and a concentration of 1,3% by weight can be used.

導電材24としてアセチレンブラックのみ、あるいは上述したカーボンナノチューブおよびアセチレンブラックの混合物を用いた場合、後述する製造工程によってバインダー25中の分散性を向上させることができ、電子伝導経路が形成されやすくなる。   When only acetylene black or a mixture of the above-mentioned carbon nanotube and acetylene black is used as the conductive material 24, the dispersibility in the binder 25 can be improved by a manufacturing process described later, and an electron conduction path is easily formed.

バインダー25は、イオン伝導性を有するPEO−EM(エチルメチルオキシドが側鎖に付されたポリエチレンオキシド)からなる固体電解質である。本実施形態では、イオン伝導性を有する高分子材料で形成された固体電解質をバインダー25と兼用している。   The binder 25 is a solid electrolyte made of PEO-EM (polyethylene oxide having ethylmethyl oxide attached to the side chain) having ion conductivity. In the present embodiment, a solid electrolyte formed of a polymer material having ion conductivity is also used as the binder 25.

図2は、イオン伝導性高分子であるPEO(ポリエチレンオキシド)およびPEO−EMの温度に対する電気伝導率を示すグラフである。図2に示すように、PEOおよびPEO−EMは80〜40℃まではほぼ同等の電気伝導度を有するが、30℃より低温になるとPEO−EMの優位性が明らかとなり、0℃においては、PEO−EMはPEOの100倍程度の電気伝導度を示す。このように本実施形態では、バインダー兼固体電解質として、イオン伝導性高分子を用いることで、30℃以下の高分子固体電解質電池の特性を大幅に向上させることができる。   FIG. 2 is a graph showing the electric conductivity with respect to temperature of PEO (polyethylene oxide) and PEO-EM which are ion conductive polymers. As shown in FIG. 2, PEO and PEO-EM have substantially the same electrical conductivity from 80 to 40 ° C., but the advantage of PEO-EM becomes clear when the temperature is lower than 30 ° C. At 0 ° C., PEO-EM exhibits an electric conductivity about 100 times that of PEO. Thus, in this embodiment, the characteristics of a polymer solid electrolyte battery at 30 ° C. or lower can be greatly improved by using an ion conductive polymer as the binder and solid electrolyte.

以降、図1に戻って説明を続ける。負極活物質32として、炭素系活物質と、金属、金属塩、または酸化物等との混合物や、炭素系活物質の粒子表面を、金属、金属塩、または酸化物等で被覆したものを用いてもよい。無機系活物質としては、Si、Sn、Zn、Mn、Fe、Ni等の酸化物や硫酸塩、リチウム金属、チタン酸リチウム等を使用することができる。   Hereinafter, returning to FIG. 1, the description will be continued. As the negative electrode active material 32, a mixture of a carbon-based active material and a metal, a metal salt, or an oxide, or a particle surface of a carbon-based active material coated with a metal, a metal salt, or an oxide is used. May be. As the inorganic active material, oxides such as Si, Sn, Zn, Mn, Fe, Ni, sulfates, lithium metal, lithium titanate, and the like can be used.

負極3は、負極活物質32として難黒鉛化性炭素、導電材33としてアセチレンブラック、バインダー34としてポリフッ化ビニリデン(PVdF)、分散媒としてカーボンナノチューブ(炭素繊維)とで構成される。これらの負極材料を混合しスラリーを調製する。このスラリーを負極集電体31に塗布し、乾燥させた後にプレス処理を行なうことで、負極3が得られる。   The negative electrode 3 is composed of non-graphitizable carbon as the negative electrode active material 32, acetylene black as the conductive material 33, polyvinylidene fluoride (PVdF) as the binder 34, and carbon nanotubes (carbon fibers) as the dispersion medium. These negative electrode materials are mixed to prepare a slurry. The slurry is applied to the negative electrode current collector 31, dried, and then subjected to a press treatment, whereby the negative electrode 3 is obtained.

高分子電解質膜4は、正極2と負極3とに挟持されている電解質シートである。高分子電解質膜4には電気伝導性を有する材料が求められ、本実施形態では、ポリ(エチレンオキサイド/末端をメトキシで置換したエチレンオキサイド/アリルグリシジルエーテル)共重合体(P(EO/EM/AGE))等のポリエーテル共重合体を用いている。   The polymer electrolyte membrane 4 is an electrolyte sheet that is sandwiched between the positive electrode 2 and the negative electrode 3. The polymer electrolyte membrane 4 is required to have a material having electrical conductivity. In this embodiment, a poly (ethylene oxide / ethylene oxide / allyl glycidyl ether having a terminal substituted with methoxy) copolymer (P (EO / EM / EM) is used. A polyether copolymer such as AGE)) is used.

このように構成された高分子固体電解質電池1を充電すると、正極2の中のリチウムイオンが引き抜かれ、正極固体電解質部20および高分子電解質膜4中を移動して負極3の中に吸収される。高分子固体電解質電池1を放電すると、逆に負極3からリチウムイオンが放出されて正極2に入る。この時に、外部に電気エネルギーが取り出される。   When the polymer solid electrolyte battery 1 configured in this way is charged, lithium ions in the positive electrode 2 are extracted, moved through the positive electrode solid electrolyte portion 20 and the polymer electrolyte membrane 4 and absorbed into the negative electrode 3. The When the polymer solid electrolyte battery 1 is discharged, lithium ions are released from the negative electrode 3 and enter the positive electrode 2. At this time, electric energy is extracted to the outside.

以降、本発明の作用効果について実施例に基づいて説明する。
[実施例1]
正極活物質22としてLiFePO、導電材24としてアセチレンブラック、イオン伝導性のバインダー25として、PEO−EM−LiTFSIを用いた。正極活物質22/バインダー25/導電材24の重量比を65/25/10とし、これらの正極材料をアセトニトリル中に導入、撹拌してスラリーを調製し、アルミニウム製の正極集電体21上に塗布して正極シート(正極2。以下同じ)を得た。このようにして作成した正極シートは乾燥を行った後、アルゴン雰囲気下のグローブボックスに保存した。セル作製時は正極シート、高分子電解質膜4(電解質シート)、負極3を所定のサイズにカットし、貼り合わせた後、電極タブを設けたラミネート袋に封入し高分子固体電解質電池1を製作した。なお実施例1では、負極3として参照極の役割を果たすリチウム金属を使用し、電解質シートを正極シートと参照極で挟んだ構成を用いて正極2の評価を行っている(以降の各実施例、比較例についても同じ)。また、製作した電池の厚みは約30μmである(以降の各実施例、比較例についても同じ)。なお、以降、製作した電池を製作セルと呼称することがある。
Hereinafter, the function and effect of the present invention will be described based on examples.
[Example 1]
LiFePO 4 was used as the positive electrode active material 22, acetylene black was used as the conductive material 24, and PEO-EM-LiTFSI was used as the ion conductive binder 25. The weight ratio of the positive electrode active material 22 / binder 25 / conductive material 24 is 65/25/10, and these positive electrode materials are introduced into acetonitrile and stirred to prepare a slurry, which is then placed on the positive electrode current collector 21 made of aluminum. Application was performed to obtain a positive electrode sheet (positive electrode 2, the same applies hereinafter). The positive electrode sheet thus prepared was dried and then stored in a glove box under an argon atmosphere. At the time of cell preparation, the positive electrode sheet, the polymer electrolyte membrane 4 (electrolyte sheet), and the negative electrode 3 are cut into a predetermined size and bonded together, and then sealed in a laminate bag provided with electrode tabs to produce a solid polymer electrolyte battery 1 did. In Example 1, lithium metal that serves as a reference electrode is used as the negative electrode 3, and the positive electrode 2 is evaluated using a configuration in which an electrolyte sheet is sandwiched between the positive electrode sheet and the reference electrode (each of the following examples) The same applies to the comparative example). Moreover, the thickness of the manufactured battery is about 30 μm (the same applies to each of the following examples and comparative examples). Hereinafter, the manufactured battery may be referred to as a manufacturing cell.

[実施例2]
正極活物質22としてLiFePO、導電材24としてアセチレンブラックとカーボンナノチューブの1:1混合物、イオン伝導性のバインダー25として、PEO−EM−LiTFSIを用いた。
[Example 2]
LiFePO 4 was used as the positive electrode active material 22, a 1: 1 mixture of acetylene black and carbon nanotubes was used as the conductive material 24, and PEO-EM-LiTFSI was used as the ion conductive binder 25.

以降、実施例2〜10の高分子固体電解質電池1に係る正極2の製造工程について説明する。まず、導電材24としてカーボンナノチューブおよびアセチレンブラックを混合する。その後、混合された導電材24とバインダー25兼固体電解質であるPEO−EM−LiTFSIと粘度調整用のアセトニトリルとを投入して混練する。これにさらに正極活物質22としてLiFePO粒子を加え、混練してスラリーを調製する。 Hereafter, the manufacturing process of the positive electrode 2 which concerns on the polymer solid electrolyte battery 1 of Examples 2-10 is demonstrated. First, carbon nanotubes and acetylene black are mixed as the conductive material 24. Thereafter, the mixed conductive material 24, PEO-EM-LiTFSI as the binder 25 and solid electrolyte, and acetonitrile for viscosity adjustment are added and kneaded. Further, LiFePO 4 particles are added as the positive electrode active material 22 and kneaded to prepare a slurry.

実施例2においてのスラリーを調製する際の重量比としては、正極活物質22/バインダー25/導電材24を65/25/10とした。(実施例3〜実施例10について重量比は後述する)。調製したスラリーを、正極集電体21上に塗布して正極シートを得た。このようにして作成した正極シートは、乾燥を行った後、アルゴン雰囲気下に保存した。セル作製時は正極シート、電解質シート、負極3を所定のサイズにカットし、貼り合わせた後、電極タブを設けたラミネート袋に封入し高分子固体電解質電池を製作した。   As a weight ratio at the time of preparing the slurry in Example 2, the positive electrode active material 22 / binder 25 / conductive material 24 was set to 65/25/10. (The weight ratio of Examples 3 to 10 will be described later). The prepared slurry was applied onto the positive electrode current collector 21 to obtain a positive electrode sheet. The positive electrode sheet thus prepared was dried and then stored in an argon atmosphere. At the time of cell preparation, the positive electrode sheet, the electrolyte sheet, and the negative electrode 3 were cut into a predetermined size and bonded together, and then sealed in a laminate bag provided with an electrode tab to produce a polymer solid electrolyte battery.

[比較例]
正極活物質22としてLiFePO、導電材24として気相法炭素繊維、イオン伝導性のバインダー25として、PEO−EM−LiTFSIを用いた。正極活物質22/バインダー25/導電材24の重量比を65/25/10とし、アセトニトリル中で撹拌してスラリーを調製し、正極集電体21上に塗布して正極シートを得た。作成した正極シートは、乾燥を行った後、アルゴン雰囲気下に保存した。セル作製時は正極シート、電解質シート、負極3を所定のサイズにカットし、貼り合わせた後、電極タブを設けたラミネート袋に封入し高分子固体電解質電池を製作した。
[Comparative example]
LiFePO 4 was used as the positive electrode active material 22, vapor grown carbon fiber was used as the conductive material 24, and PEO-EM-LiTFSI was used as the ion conductive binder 25. A weight ratio of positive electrode active material 22 / binder 25 / conductive material 24 was set to 65/25/10, and the mixture was stirred in acetonitrile to prepare a slurry, which was applied onto the positive electrode current collector 21 to obtain a positive electrode sheet. The prepared positive electrode sheet was dried and then stored in an argon atmosphere. At the time of cell preparation, the positive electrode sheet, the electrolyte sheet, and the negative electrode 3 were cut into a predetermined size and bonded together, and then sealed in a laminate bag provided with an electrode tab to produce a polymer solid electrolyte battery.

実施例1、2および比較例で作成した製作セルについて、2.5−4.0[V]、60℃の条件下で充放電試験を実施した。   About the production cell created in Example 1, 2 and the comparative example, the charge / discharge test was implemented on condition of 2.5-4.0 [V] and 60 degreeC.

図3(a)は、実施例1で作成した製作セルの充放電特性を示すグラフ、同(b)は、比較例で作成した製作セルの充放電特性を示すグラフである。図3において、横軸は正極活物質22の単位重量あたりの電池容量(充放電容量)であり、縦軸は充電ないし放電電圧である。図3(a)に示すように、実施例1に基づく製作セルは3回の充放電を経ても、放電容量は、155[mAh/g]を維持しているが、比較例では充放電を繰り返すほど放電容量が減少し、3回目の放電時においては102[mAh/g]にまで低下していることがわかる。   FIG. 3A is a graph showing the charge / discharge characteristics of the production cell created in Example 1, and FIG. 3B is a graph showing the charge / discharge characteristics of the production cell produced in the comparative example. In FIG. 3, the horizontal axis represents the battery capacity (charge / discharge capacity) per unit weight of the positive electrode active material 22, and the vertical axis represents the charge or discharge voltage. As shown in FIG. 3 (a), the manufactured cell based on Example 1 maintains the discharge capacity of 155 [mAh / g] even after being charged and discharged three times. It can be seen that the discharge capacity decreases with repetition and decreases to 102 [mAh / g] at the time of the third discharge.

図4(a)は、実施例2で作成した製作セルの充放電特性を示すグラフ、同(b)は、比較例で作成した製作セルの充放電特性を示すグラフである。なお、図4(b)は図3(b)で示したグラフと同一のものである。図4(a)に示すように、実施例2に基づく製作セルにおいても、3回の充放電を経た後も、電池容量(放電容量)は、155[mAh/g]を維持していることがわかる。   FIG. 4A is a graph showing the charge / discharge characteristics of the production cell produced in Example 2, and FIG. 4B is a graph showing the charge / discharge characteristics of the production cell produced in the comparative example. FIG. 4B is the same as the graph shown in FIG. As shown in FIG. 4 (a), in the production cell based on Example 2, the battery capacity (discharge capacity) is maintained at 155 [mAh / g] even after being charged and discharged three times. I understand.

[実施例3〜10]
正極活物質22としてLiFePO、導電材24としてアセチレンブラックとカーボンナノチューブの1:1混合物、イオン伝導性のバインダー25として、PEO−EM−LiTFSIを用いた。実施例3〜10における正極活物質22/バインダー25/導電材24の重量比を表1に示す。なお、表1には、参考として実施例1、実施例2における重量比も併記している。
[Examples 3 to 10]
LiFePO 4 was used as the positive electrode active material 22, a 1: 1 mixture of acetylene black and carbon nanotubes was used as the conductive material 24, and PEO-EM-LiTFSI was used as the ion conductive binder 25. The weight ratio of positive electrode active material 22 / binder 25 / conductive material 24 in Examples 3 to 10 is shown in Table 1. In Table 1, the weight ratios in Examples 1 and 2 are also shown for reference.

Figure 2015056282
Figure 2015056282

表1に示すように、固体電解質であるバインダー25:導電材24=y:1の重量比y(即ち、重量比y=固体電解質の重量/導電材24の重量)をy=1.5〜5.0の範疇になるようにし、正極活物質22とともにアセトニトリル中にて撹拌してスラリーを調製し、正極集電体21上に塗布して正極シートを得た。このようにして作成した正極シートは乾燥を行った後、アルゴン雰囲気下に保存した。セル作製時は正極シート、電解質シート、負極3を所定のサイズにカットし、貼り合わせた後、電極タブを設けたラミネート袋に封入し高分子固体電解質電池1を製作した。   As shown in Table 1, a solid electrolyte binder 25: conductive material 24 = y: 1 weight ratio y (that is, weight ratio y = weight of solid electrolyte / weight of conductive material 24) is set to y = 1.5 to A slurry was prepared by stirring in acetonitrile together with the positive electrode active material 22 so as to be in the range of 5.0, and applied to the positive electrode current collector 21 to obtain a positive electrode sheet. The positive electrode sheet thus prepared was dried and then stored in an argon atmosphere. At the time of cell preparation, the positive electrode sheet, the electrolyte sheet, and the negative electrode 3 were cut to a predetermined size and bonded together, and then sealed in a laminate bag provided with electrode tabs to produce a polymer solid electrolyte battery 1.

なお、各実施例では、導電材24とバインダー25と正極活物質22とを含む正極固体電解質部20(図1参照)の全体重量(Wh)に対する正極活物質22の重量(Wa)の比率(重量比x=Wa/Wh)が0.65(65%)以上となるようにしている。なお、比較例についても、正極活物質22の重量比xは65%としている。そして上述した重量比yは、導電材24の重量(Wb)に対する固体電解質(バインダー25)の重量(Wc)の比率(重量比y=Wc/Wb)である。   In each example, the ratio of the weight (Wa) of the positive electrode active material 22 to the total weight (Wh) of the positive electrode solid electrolyte portion 20 (see FIG. 1) including the conductive material 24, the binder 25, and the positive electrode active material 22 ( The weight ratio x = Wa / Wh) is set to 0.65 (65%) or more. In the comparative example, the weight ratio x of the positive electrode active material 22 is 65%. The weight ratio y described above is a ratio of the weight (Wc) of the solid electrolyte (binder 25) to the weight (Wb) of the conductive material 24 (weight ratio y = Wc / Wb).

実施例3〜10で作成した製作セルについても、2.5−4.0[V]、60℃の条件下で充放電試験を行って正極活物質22の単位重量あたりの電池容量(充放電容量)を算出した。   The production cells prepared in Examples 3 to 10 were also subjected to a charge / discharge test under the conditions of 2.5 to 4.0 [V] and 60 ° C., and the battery capacity per unit weight (charge / discharge) Volume) was calculated.

図5は、横軸に重量比yをとり、縦軸に正極活物質22の単位重量あたりの電池容量をプロットしたものである。   In FIG. 5, the horizontal axis represents the weight ratio y, and the vertical axis represents the battery capacity per unit weight of the positive electrode active material 22.

ここで改めて活物質利用率について説明を加える。活物質利用率とは充放電試験により評価した電池容量と、正極2に含まれる正極活物質22の理論容量の比率をいう。なお、理論容量とは、構成材料種による純粋な電気化学反応において電極が蓄えることができる最大の電気量であり、LiFePOでは170mAh/gである。従って、正極活物質22としてLiFePOを採用した場合、電池容量が153[mAh/g]のときに活物質利用率は90%となり、電池容量が145[mAh/g]のときに活物質利用率は85%となる。 Here, the active material utilization rate will be explained again. The active material utilization rate refers to the ratio between the battery capacity evaluated by the charge / discharge test and the theoretical capacity of the positive electrode active material 22 included in the positive electrode 2. The theoretical capacity is the maximum amount of electricity that the electrode can store in a pure electrochemical reaction depending on the constituent material type, and is 170 mAh / g for LiFePO 4 . Therefore, when LiFePO 4 is employed as the positive electrode active material 22, the active material utilization rate is 90% when the battery capacity is 153 [mAh / g], and the active material utilization is performed when the battery capacity is 145 [mAh / g]. The rate is 85%.

図5に示すように、重量比yを変化させたとき、各製作セルの放電容量分布は上に凸の曲線を描き、重量比y=3.25近傍で放電容量のピークが存在する。そして、重量比yを2.0≦y≦4.61の範囲としたときに活物質利用率は85%以上となり、更に、重量比yを2.5≦y≦4.0の範囲としたときに活物質利用率は90%以上となる。   As shown in FIG. 5, when the weight ratio y is changed, the discharge capacity distribution of each manufactured cell draws a convex curve upward, and a discharge capacity peak exists in the vicinity of the weight ratio y = 3.25. When the weight ratio y is in the range of 2.0 ≦ y ≦ 4.61, the active material utilization is 85% or more, and the weight ratio y is in the range of 2.5 ≦ y ≦ 4.0. Sometimes the active material utilization is 90% or more.

このように本発明では、導電材24(図1参照)として高価な気相法炭素繊維等を用いることなく、汎用材料で安価なアセチレンブラックを50%以上含ませることで、正極2の活物質利用率を90%以上とすることができる。   As described above, in the present invention, the active material of the positive electrode 2 is obtained by including 50% or more of acetylene black which is a general-purpose material without using an expensive vapor grown carbon fiber or the like as the conductive material 24 (see FIG. 1). The utilization rate can be 90% or more.

更に、重量比yを、2.5≦y≦4.0の範囲とすることで、活物質利用率が90%を越える、更に高効率の高分子固体電解質電池1を提供することができる。具体的活用例として、活物質利用率が大きいほど同一重量ではより多くの電気を蓄えることができ高分子固体電解質電池1の軽量化に貢献できることになる。   Furthermore, by setting the weight ratio y in the range of 2.5 ≦ y ≦ 4.0, it is possible to provide a more efficient polymer solid electrolyte battery 1 in which the active material utilization rate exceeds 90%. As a specific application example, the larger the active material utilization rate, the more the electricity can be stored with the same weight, which can contribute to the weight reduction of the polymer solid electrolyte battery 1.

以上で具体的実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲であれば適宜変更可能である。例えば、上述した高分子固体電解質電池1を複数段に積層して1つのセルとして構成してもよいし、図1に示す平板状の高分子固体電解質電池1を、絶縁シートを介在させたうえでロール状に巻回して円筒形状の電池を構成してもよい。また、実施形態に示した本発明に係る高分子固体電解質電池1の各構成要素は、必ずしも全てが必須ではなく、適宜取捨選択可能である。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the invention. For example, the polymer solid electrolyte battery 1 described above may be laminated in a plurality of stages to constitute one cell, or the flat polymer solid electrolyte battery 1 shown in FIG. A cylindrical battery may be formed by winding in a roll. In addition, all the constituent elements of the polymer solid electrolyte battery 1 according to the present invention shown in the embodiments are not necessarily essential, and can be appropriately selected.

1 高分子固体電解質電池
2 正極
3 負極
4 高分子電解質膜
20 正極固体電解質部
21 正極集電体
22 正極活物質(活物質粒子)
23 コート層
24 導電材
25 バインダー(固体電解質)
31 負極集電体
32 負極活物質
33 導電材
34 バインダー
DESCRIPTION OF SYMBOLS 1 Polymer solid electrolyte battery 2 Positive electrode 3 Negative electrode 4 Polymer electrolyte membrane 20 Positive electrode solid electrolyte part 21 Positive electrode collector 22 Positive electrode active material (active material particle)
23 Coat layer 24 Conductive material 25 Binder (solid electrolyte)
31 Negative electrode current collector 32 Negative electrode active material 33 Conductive material 34 Binder

Claims (5)

正極と負極との間に高分子電解質膜を挟持した固体高分子電解質電池であって、
前記正極の構成として、
オリビン型リン酸リチウム(LiMPO(ただし、MはCo、Ni、MnおよびFeの群から選択される少なくとも1種である))からなる活物質粒子と、
イオン伝導性を有するPEO−EM(エチルメチルオキシドが側鎖に付されたポリエチレンオキシド)からなる固体電解質と、
電子伝導性を有する導電材と、
を有することを特徴とする高分子固体電解質電池。
A solid polymer electrolyte battery having a polymer electrolyte membrane sandwiched between a positive electrode and a negative electrode,
As a configuration of the positive electrode,
Active material particles composed of olivine-type lithium phosphate (LiMPO 4 (where M is at least one selected from the group consisting of Co, Ni, Mn and Fe));
A solid electrolyte made of PEO-EM (polyethylene oxide having ethylmethyl oxide attached to the side chain) having ionic conductivity;
A conductive material having electron conductivity;
A polymer solid electrolyte battery comprising:
前記活物質粒子と前記固体電解質と前記導電材とを含む正極固体電解質部と、前記正極固体電解質部を外部と電気的に接続する正極集電体と、を備える正極構成を有し、
前記正極固体電解質部において、
前記正極固体電解質部の重量に対する前記活物質粒子の重量の比率を、重量比xとするとき、前記重量比xを、x≧0.65とし、かつ
前記導電材の重量に対する前記固体電解質の重量の比率を、重量比yとするとき、前記重量比yを、2.0≦y≦4.0の範囲としたことを特徴とする請求項1に記載の高分子固体電解質電池。
A positive electrode configuration comprising: a positive electrode solid electrolyte portion including the active material particles, the solid electrolyte, and the conductive material; and a positive electrode current collector that electrically connects the positive electrode solid electrolyte portion to the outside.
In the positive electrode solid electrolyte part,
When the ratio of the weight of the active material particles to the weight of the positive electrode solid electrolyte part is a weight ratio x, the weight ratio x is x ≧ 0.65, and the weight of the solid electrolyte with respect to the weight of the conductive material 2. The polymer solid electrolyte battery according to claim 1, wherein the weight ratio y is in a range of 2.0 ≦ y ≦ 4.0, where the weight ratio y is a weight ratio y.
前記活物質粒子と前記固体電解質と前記導電材とを含む正極固体電解質部と、前記正極固体電解質部を外部と電気的に接続する正極集電体と、を備える正極構成を有し、
前記正極固体電解質部において、
前記正極固体電解質部の重量に対する前記活物質粒子の重量の比率を、重量比xとするとき、前記重量比xを、x≧0.65とし、かつ
前記導電材の重量に対する前記固体電解質の重量の比率を、重量比yとするとき、前記重量比yを、2.5≦y≦4.0の範囲としたことを特徴とする請求項1に記載の高分子固体電解質電池。
A positive electrode configuration comprising: a positive electrode solid electrolyte portion including the active material particles, the solid electrolyte, and the conductive material; and a positive electrode current collector that electrically connects the positive electrode solid electrolyte portion to the outside.
In the positive electrode solid electrolyte part,
When the ratio of the weight of the active material particles to the weight of the positive electrode solid electrolyte part is a weight ratio x, the weight ratio x is x ≧ 0.65, and the weight of the solid electrolyte with respect to the weight of the conductive material 2. The polymer solid electrolyte battery according to claim 1, wherein the weight ratio y is in a range of 2.5 ≦ y ≦ 4.0, where the weight ratio y is a weight ratio y.
前記導電材には炭素繊維の含有有無によらずアセチレンブラックを50%以上含むことを特徴とする請求項1ないし請求項3のいずれか1項に記載の高分子固体電解質電池。   The polymer solid electrolyte battery according to any one of claims 1 to 3, wherein the conductive material contains 50% or more of acetylene black regardless of the presence or absence of carbon fiber. 前記導電材が炭素繊維を更に含むことを特徴とする請求項4に記載の高分子固体電解質電池。   The polymer solid electrolyte battery according to claim 4, wherein the conductive material further contains carbon fiber.
JP2013188945A 2013-09-12 2013-09-12 Polymer solid electrolyte battery Pending JP2015056282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188945A JP2015056282A (en) 2013-09-12 2013-09-12 Polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188945A JP2015056282A (en) 2013-09-12 2013-09-12 Polymer solid electrolyte battery

Publications (1)

Publication Number Publication Date
JP2015056282A true JP2015056282A (en) 2015-03-23

Family

ID=52820554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188945A Pending JP2015056282A (en) 2013-09-12 2013-09-12 Polymer solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP2015056282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111201A1 (en) * 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2020110993A1 (en) * 2018-11-26 2020-06-04 株式会社大阪ソーダ Inorganic solid electrolyte secondary battery electrode and inorganic solid electrolyte secondary battery
US12132204B2 (en) 2018-11-28 2024-10-29 Denka Company Limited Composition for lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324114A (en) * 1995-05-08 1997-12-16 Daiso Co Ltd High-polymer solid electrolyte
JPH10130487A (en) * 1996-10-28 1998-05-19 Daiso Co Ltd Solid polymer electrolyte and battery made by using it
JPH117980A (en) * 1997-06-13 1999-01-12 Daiso Co Ltd Lithium polymer battery
JP2001126768A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Lithium secondary battery
JP2008181850A (en) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011086468A (en) * 2009-10-14 2011-04-28 Sony Corp Nonaqueous electrolyte battery
WO2011148970A1 (en) * 2010-05-25 2011-12-01 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP4997400B2 (en) * 2004-08-18 2012-08-08 一般財団法人電力中央研究所 Polymer solid electrolyte battery and method for producing positive electrode sheet used therefor
JP2012216347A (en) * 2011-03-31 2012-11-08 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2012226937A (en) * 2011-04-19 2012-11-15 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2013077475A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive auxiliary agent for positive electrode material of lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324114A (en) * 1995-05-08 1997-12-16 Daiso Co Ltd High-polymer solid electrolyte
JPH10130487A (en) * 1996-10-28 1998-05-19 Daiso Co Ltd Solid polymer electrolyte and battery made by using it
JPH117980A (en) * 1997-06-13 1999-01-12 Daiso Co Ltd Lithium polymer battery
JP2001126768A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Lithium secondary battery
JP4997400B2 (en) * 2004-08-18 2012-08-08 一般財団法人電力中央研究所 Polymer solid electrolyte battery and method for producing positive electrode sheet used therefor
JP2008181850A (en) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011086468A (en) * 2009-10-14 2011-04-28 Sony Corp Nonaqueous electrolyte battery
WO2011148970A1 (en) * 2010-05-25 2011-12-01 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP2012216347A (en) * 2011-03-31 2012-11-08 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2012226937A (en) * 2011-04-19 2012-11-15 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2013077475A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive auxiliary agent for positive electrode material of lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110993A1 (en) * 2018-11-26 2020-06-04 株式会社大阪ソーダ Inorganic solid electrolyte secondary battery electrode and inorganic solid electrolyte secondary battery
JPWO2020110993A1 (en) * 2018-11-26 2021-12-16 株式会社大阪ソーダ Electrodes for inorganic solid electrolyte secondary batteries, and inorganic solid electrolyte secondary batteries
JP7400729B2 (en) 2018-11-26 2023-12-19 株式会社大阪ソーダ Electrodes for inorganic solid electrolyte secondary batteries, and inorganic solid electrolyte secondary batteries
WO2020111201A1 (en) * 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JPWO2020111201A1 (en) * 2018-11-28 2021-10-21 デンカ株式会社 Positive composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7490567B2 (en) 2018-11-28 2024-05-27 デンカ株式会社 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US12132204B2 (en) 2018-11-28 2024-10-29 Denka Company Limited Composition for lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US11888108B2 (en) Prelithiated hybridized energy storage device
AU2018372708A1 (en) Compositions and methods for energy storage devices having improved performance
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP6367207B2 (en) Electrode for low resistance electrochemical element, method for producing the same, and electrochemical element including the electrode
KR102260425B1 (en) Anode Active Material for lithium secondary battery and Method for preparing the same
KR102364481B1 (en) Positive electrode, and secondary battery comprising the positive eletrode
JP2013084566A (en) Nonaqueous electrolytic secondary cell
JPWO2018051675A1 (en) Lithium secondary battery
CN111557056A (en) Three-dimensional structure electrode and electrochemical device including the same
AU2017348799B2 (en) Battery module for starting a power equipment
JP2013073705A (en) Lithium ion secondary battery
WO2024113992A1 (en) Positive electrode sheet for sodium-ion battery, and sodium-ion battery
JP6241911B2 (en) Active material particles, positive electrode for electricity storage device, electricity storage device, and method for producing active material particles
KR101891014B1 (en) Electrical device
US20210194053A1 (en) Energy storage devices with polymer electrolytes and fillers
JP2016134218A (en) Lithium ion secondary battery
KR102485801B1 (en) All solid battery unit cell using high loading, monopolar all solid battery comprising the same, and method for preparing the same
CN115336040A (en) Negative electrode and secondary battery comprising same
JP6212305B2 (en) Composite current collector, and electrode and secondary battery using the same
JP2014220115A (en) Sodium secondary battery
JP2015056282A (en) Polymer solid electrolyte battery
JP2013098070A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode
JP5533972B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014026868A (en) Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20220048852A (en) Negative electrode, method for preparing the negative electrode, and secondary battery comprising the negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205